EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES"

Transcripción

1 EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES

2 MATRICES. SISTEMAS DE ECUACIONES LINEALES Matrices ) Dada la matriz M=, prueba que n n M M, n. ) Demuestra la siguiente implicación: Si I A I AA A n A n ) Obtén una matriz triangular superior aplicando sucesivas operaciones elementales (por filas) en las siguientes matrices: A = 5, B = 5, C = Formas reducidas o escalonadas de una matriz ) Encuentra una sucesión de matrices elementales E, E,..., E k tal que E k... E E A sea una matriz en la forma reducida o escalonada más sencilla posible (forma canónica por filas o forma Echelon-Fila) y la matriz de paso correspondiente, donde: a) - A= b) A= - c) A= ) Halla el rango, mediante la reducción de matrices, de las matrices n+ A n = n+ y B n = n+ n n+ n+ según los valores del parámetro real n. n Estudio y resolución de sistemas lineales ) Resuelve, por el método de eliminación de Gauss, los siguientes sistemas de ecuaciones: x y + z = x + y z = x + y + z + t = x + y z = a) x + y z = 6 b) x y + z = c) x y z + t = d) x y z = x + y + z = x + 9y 5z = x y + z + t = 6 x + y + z = x + y z + t = x y z = 7 ) Estudia, aplicando el teorema de Rouché-Fröbenius, la compatibilidad de los siguientes sistemas según los distintos valores de los parámetros reales. Resuelve, cuando sea posible: x y + 5z = x + y + az = a x + ay + z = a) x y + z = b) x + ay + z = c) x + ay + z = a 5x y + 9z = k ax + y + z = x + ay + a z = 5) Elimina los parámetros en las siguientes ecuaciones paramétricas: x a b c x a b c x a x a b x a b c x a b x a b c a) x a b) x a b c) x b c d) x b e) x a c x a x b x a c x b c x x5 a b c x5 a b Cálculo de la inversa de una matriz 6) Halla la inversa, si existe, mediante operaciones elementales (por filas) de cada una de las siguientes matrices: a) - - a a a b) c) a d) a a a b c e) 5 f) g)

3 Ecuaciones matriciales 7) Sea A= ; encuentra todas las matices BM x tales que AB= m a) 8) Resuelve las siguientes ecuaciones matriciales: d) X = X = ; b) X ; e) X - - = - - = ; c) ; Matrices, resolución de sistemas y eliminación de parámetros con coeficientes en :, según el valor del parámetro real m. X = ) Halla el rango y la forma escalonada más sencilla (forma canónica por filas) de las siguientes matrices con coeficientes en :,,, ) Resuelve los siguientes sistemas de ecuaciones lineales con coeficientes en : x x x x x x x x x5 x x x5 x x x 5 7 x x x5 x6 x x x x5 x7 x x ) Elimina los parámetros en las siguientes ecuaciones paramétricas en : x x x x x x x x x x x x5 Aplicaciones ) Encuentra todos los polinomios p(x) = ax + bx + c con coeficientes reales tales que: a) p() =, p() =, p() = 6 b) p() =, p() =.

4 ESPACIOS VECTORIALES Espacios vectoriales ) En el conjunto se definen las operaciones siguientes: a a Es un espacio vectorial sobre respecto de las citadas operaciones? Dependencia e independencia lineal ) Estudia si los siguientes conjuntos de vectores de son linealmente independientes: a a a),, b),, c),, d),,, a a ) Estudia si los siguientes conjuntos de vectores de son linealmente independientes: a),,,,, b),, c),,, d), e), a ) Para qué valores de a el conjunto,, es linealmente dependiente? a a a 5) Determina si los vectores de los siguientes conjuntos son linealmente dependientes. En caso afirmativo, determina una relación de dependencia y un subconjunto con un número máximo de vectores l.i. a),, b),,, c),, Subespacios vectoriales y L({v,, v k }) 6) Cuáles de los siguientes subconjuntos son subespacios vectoriales? a) S = { (x, y, z) / y = } b) S = { (x, y, z) / x + y + z = } c) S = { (x, y, z) / x + z = } d) S = { (x, y, z) / x + z = } e) S = { (x, y, z) / x + z } f) S = { (x, y, z) / xy = } g) S = {(a,b,) / a, b } h) S = {(a,,b) / a, b } i) S = {(a,b,c) / a = a+b+c }

5 7) Averigua si los vectores a y b pertenecen al espacio vectorial generado por el conjunto 5 de vectores v 5,v,v 9. 8) Demuestra que los conjuntos A,, y B, de vectores de generan el mismo subespacio vectorial de. Demuestra que el conjunto C, no genera dicho subespacio. 9) En se considera el subespacio generado por los dos vectores, 5 p escalares p y q para los que el vector pertenece al citado subespacio. q Base de un espacio vectorial ) Halla una base del espacio vectorial generado por el siguiente conjunto de vectores {v = (,,, 5), v = (,,, ), v = (,,, ), v = (,, 9, 7)}.. Determina el valor de los ) Para qué valores del número real a es base de el conjunto {(a,, ), (, a, ), (,, a)}? Halla las coordenadas del vector (,, ) respecto del citado conjunto de vectores para a =. ) En se consideran los vectores ( + a,,, ), (, + a,, ), (,, +a, ) y (,,, + a). Determina según los valores del parámetro a la dimensión y la base más sencilla del subespacio vectorial que generan. En los casos en que los subespacios vectoriales que se obtengan sean distintos de, obtener ecuaciones paramétricas e implícitas de dichos subespacios. ) Demuestra que los vectores {(,,,), (,-,,), (,-,,), (,-,,-)} forman una base del espacio vectorial. Obtén las coordenadas del vector (,-,,) respecto de la base anterior. ) En se considera el conjunto {(,,), (,,), (9,6,)}. Prueba que es base de y calcula las coordenadas del vector (a,b,c) respecto de dicha base. 5) Estudia si el conjunto de soluciones de cada uno de los siguientes sistemas es un subespacio vectorial de y en caso afirmativo obtén una base: a) x +x = b) x +x = x +x = x +x =-. 6) Se considera el subespacio vectorial de 5 de las soluciones del siguiente sistema:

6 x+y-t+w= x+y+z-t-w= y+z-t-w= x+z-t-w= Obtén un sistema de generadores, una base y la dimensión del citado subespacio 7) En se consideran S = {(x, y, z) / x = z} y S = {(x, y, z) / x = z y }. a) Prueba que S y S son subespacios de. b) Encuentra una base B de S. Calcula las coordenadas del vector (x, y, z) S respecto de B. c) Prueba que B = {(,, ), (,, )} es base de S. Encuentra las coordenadas de (,, ) S respecto de B. abc 8) Halleauna base y la dimensión del subespacio vectorial M definido de la siguiente forma: a b M : a,b,c. ac 5 a b c Suma e intersección de subespacios 9) Sean S y T subespacios vectoriales de definidos por x S L,, y xzt, T : z y z t Obtén una base de los subespacios S + T y S T. Escribe las ecuaciones paramétricas e implícitas para los subespacios citados anteriormente. ) En se consideran los subconjuntos: x x x b y S : x-y+z-t= y y y a b T = z : con a, b, z z b t t t a a) Prueba que S y T son subespacios vectoriales de. b) Obtén las ecuaciones implícitas y paramétricas de S y T. c) Calcula S T y S + T dando bases más sencillas, dimensiones y ecuaciones implícitas y paramétricas (si existen) de ambos. a c ) Se consideran los subespacios de : b V : a,b y d V : c,d,e. b e a c Halla una base de los espacios V, V, V + V, V V. ) Sean U y W los subespacios vectoriales de definidos por U = {(x, y, z) / z = }, W = L{(,, ), (,, ), (,, )}. Obtén una base y la dimensión de los subespacios U, W, U W y U + W. ) Sean S y T los subespacios vectoriales de definidos por S = {(x, y, z, t) / x + y + z + t =, x y + z t =, x + y + z + t = } T = {(x, y, z, t) / x = a + b + c, y = b + c, z = a + b, t = b + c} Obtén una base y la dimensión de S, T, S + T y S T. ) Dados los subespacios vectoriales de :

7 S = L{(,,, ), (,,, ), (,, 6, )} y T = L{(,,, ), (,,, ), (,,, )}. Demuestra que dim (S + T) = y dim (S T) =. 5) Para cada a se considera el subespacio vectorial V(a) = L{(, a,, ), (, a, a, ), (,, a, ), (, + a, + a, )} a) Halla una base de V(a). b) Estudie si el vector (, + a, + a, a + ) V(a) para algún a. c) Obtén las dimensiones de los subespacios V() + V() y V() V(). Suma directa de subespacios 6) En se consideran los subespacios: U = {(x, y, z) / x = z }, V = {(,, c) / c } y W = {(x, y, z) / x + y + z = }. Prueba que: a) = U + V, b) = V + W, c) = U + W En qué casos la suma es directa? 7) Se consideran los subespacios vectoriales de : S = L{(,, ), (,, ), (,, )} y T = L{(,, ), (,, ), (,, )}. Halla un subespacio U tal que = S U y la suma T + U no sea directa. 8) Estudia si la suma de los subespacios vectoriales S = L{(,,, ), (,,, ), (,,, )} y S = L{(,,, ), (,,, )} de es directa. Halla una base del subespacio suma. a 9) Halla una base del subespacio vectorial b F : a,b de b. Amplía la base obtenida hasta formar una base de. Halla a continuación un subespacio suplementario de F. ) Sean los subespacios vectoriales de : V = L{(,,,), (,,,), (,,-,), (,,,) } y W = L{(,,,-), (,,,-), (,,-,) }. Demuestra que W V y halla un subespacio suplementario de W en V. Espacios vectoriales generales 5 ) Sea S el s.v. de generado por el conjunto de vectores A =,,,. Encuentra una base del s.v. S formada por vectores de A. Encuentra la base más sencilla de S (es aquella cuyos vectores puestos en fila proporcionan una matriz en forma Echelon-fila). Qué dimensión tiene S? Cuántos vectores tiene S?. ) En sea el s.v. S = L,,. Halla las ecuaciones implícitas y paramétricas de S. Qué dimensión tiene S? Cuántos vectores tiene S?. ) Sea S el s. v. de dado por las ecuaciones implícitas: x x x. Halla las ecuaciones paramétricas y una base de S. Qué dimensión tiene S? Cuántos vectores tiene S?. x x5 x7 ) Sea S el s. v. de 7 dado por las ecuaciones implícitas: x x5 x6. Halla las ecuaciones x x paramétricas y una base de S. Qué dimensión tiene S? Cuántos vectores tiene S?.

8 5) Sea S el s. v. de 7 dado por las soluciones del sistema homogéneo x x x. x x5 x 6 x7 Halla las ecuaciones paramétricas y una base de S. Qué dimensión tiene S? Cuántos vectores tiene S?. 6) Cuáles de los siguientes subconjuntos son subespacios vectoriales? a) S = {p(x) P () / p(x) = x + ax + b} b) S = {p(x) P ( ) / p(x) = ax + b} c) S = {p(x) P ( ) / p() = p()} 7) Halla una base del subespacio vectorial F = :, de M (). Amplía la base obtenida hasta formar una base de M (). Halla a continuación un subespacio suplementario de F. 8) Halla una base y la dimensión del subespacio vectorial M definido de la siguiente forma: M={ a b c a c a b a b 5c 9) Se consideran los subespacios de M (): V = { a b -b a Halla una base de los espacios V, V, V + V, V V. / a, b, c }. / a,b } y V = { c d e -c / c, d, e }. ) Sea P () el espacio vectorial de los polinomios de grado menor o igual que y S={p(x)P () / p()=p()}. Obtén ecuaciones implícitas y paramétricas de S, una base de S y un suplementario de S.

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1:

Trabajo Práctico N 5: ESPACIOS VECTORIALES. Ejercicio 1: 6 Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio : Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios y subespacios vectoriales Espacios Vectoriales 1. Demuestre que con la suma y multiplicación habituales es un espacio vectorial real.. Considere el conjunto C de los números complejos con la suma

Más detalles

Tema 2: Espacios Vectoriales

Tema 2: Espacios Vectoriales Tema 2: Espacios Vectoriales José M. Salazar Octubre de 2016 Tema 2: Espacios Vectoriales Lección 2. Espacios vectoriales. Subespacios vectoriales. Bases. Lección 3. Coordenadas respecto de una base. Ecuaciones.

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Espacios vectoriales Sea (K, +,.) un cuerpo con característica 0. Podemos pensar K = Q, R o C. Si V es un conjunto cualquiera en el que

Más detalles

Tema 3: Espacios vectoriales

Tema 3: Espacios vectoriales Tema 3: Espacios vectoriales K denotará un cuerpo. Definición. Se dice que un conjunto no vacio V es un espacio vectorial sobre K o que es un K-espacio vectorial si: 1. En V está definida una operación

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE 3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE ECUACIONES LINEALES Y MATRICES COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2011-2012 3.1.1. Resolución de sistemas de ecuaciones lineales. Método

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen

Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen Guía. Álgebra II. Examen parcial III. Transformaciones lineales. Teoremas los más importantes cuyas demostraciones se pueden incluir en el examen 1. Teorema de la representación matricial de una transformación

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 2 APLICACIONES LINEALES EJERCICIOS DE TEMA APLICACIONES LINEALES APLICACIONES LINEALES ) Estudiar cuáles de las siguientes aplicaciones son lineales entre los espacios vectoriales dados: x y a) f: f(x, y) = x y x b) f: x f(x)

Más detalles

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría

Espacio afín. 1. Rectas en el espacio. Piensa y calcula. Aplica la teoría 6 Espacio afín 1. Rectas en el espacio Piensa y calcula Calcula las coordenadas de un vector que tenga la dirección de la recta que pasa por los puntos A2, 1, 5 y B3, 1, 4 AB 1, 2, 1 Aplica la teoría 1.

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Sistemas lineales con parámetros

Sistemas lineales con parámetros 4 Sistemas lineales con parámetros. Teorema de Rouché Piensa y calcula Dado el siguiente sistema en forma matricial, escribe sus ecuaciones: 3 0 y = 0 z + y 3z = 0 y = Aplica la teoría. Escribe los siguientes

Más detalles

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1

Bases y dimensión. Problemas teóricos. En todos los problemas se supone que V es un espacio vectorial sobre un campo F. p=1 Bases y dimensión Problemas teóricos Bases de un espacio vectorial En todos los problemas se supone que V es un espacio vectorial sobre un campo F. Definición de base. Sean b 1,..., b n V. Se dice que

Más detalles

Espacios Vectoriales

Espacios Vectoriales Leandro Marín Octubre 2010 Índice Definición y Ejemplos Paramétricas vs. Impĺıcitas Bases y Coordenadas Para definir un espacio vectorial tenemos que empezar determinando un cuerpo sobre el que esté definido

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES MATEMÁTICA I - - Capítulo 8 ------------------------------------------------------------------------------------ ESPACIOS VECTORIALES.. Espacios Vectoriales y Subespacios... Definición. Un espacio vectorial

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aplicaciones Lineales 1 / 47 Objetivos Al finalizar este tema tendrás que: Saber si una aplicación es

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades:

un conjunto cuyos elementos denominaremos vectores y denotaremos por es un espacio vectorial si verifica las siguientes propiedades: CAPÍTULO 2: ESPACIOS VECTORIALES 2.1- Definición y propiedades. 2.1.1-Definición: espacio vectorial. Sea un cuerpo conmutativo a cuyos elementos denominaremos escalares o números. No es necesario preocuparse

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Problemas de exámenes de Aplicaciones Lineales y Matrices

Problemas de exámenes de Aplicaciones Lineales y Matrices 1 Problemas de exámenes de Aplicaciones Lineales y Matrices 1. Consideramos f End(R n ), que tiene matriz A respecto la base canónica. Cuál de las siguientes afirmaciones es incorrecta? a) Si v es un vector

Más detalles

Problemas de Álgebra Lineal Espacios Vectoriales

Problemas de Álgebra Lineal Espacios Vectoriales Problemas de Álgebra Lineal Espacios Vectoriales 1. Estudia cuáles de los siguientes subconjuntos son subespacios de R n para el n que corresponda: i) S 1 = {(x, y, z, t) R 4 x + y + z + t = b} siendo

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26

Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del / 26 Álgebra Lineal Ivan D. Molina N. Universidad del Norte Enero del 2016 Ivan D. Molina N. (Universidad del Norte) Álgebra Lineal Enero del 2016 1 / 26 1 Subespacios y combinaciones lineales 2 Dependencia

Más detalles

Ba s e, d i M e n s i ó n y Mat r i z

Ba s e, d i M e n s i ó n y Mat r i z Unidad 4 Ba s e, d i M e n s i ó n y Mat r i z de transición Objetivos: Al inalizar la unidad, el alumno: Conocerá la deinición de base de un espacio vectorial Identiicará bases canónicas para algunos

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2004 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2004 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : V 1 / 8 Ejercicios sugeridos para : los temas de las clases del 18 y 20 de mayo de 2004. Temas : Rectas y planos en el espacio. Espacios vectoriales. Subespacios. Secciones 3.5, 4.2, 4.3, del texto. Observación

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma:

SISTEMAS DE ECUACIONES. Un sistema de m ecuaciones lineales con n incógnitas, x 1, x 2,, x n es un conjunto de m igualdades de la forma: TEMA Sistemas de ecuaciones SISTEMAS DE ECUACIONES. DEFINICIÓN SISTEMAS DE ECUACIONES Un sistema de m ecuaciones lineales con n incógnitas,,,, n es un conjunto de m igualdades de la forma: a a an n b a

Más detalles

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Espacios Vectoriales AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21 Objetivos Al finalizar este tema tendrás que: Saber si unos vectores son independientes.

Más detalles

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL

Más detalles

HOJA 4: APLICACIONES LINEALES

HOJA 4: APLICACIONES LINEALES HOJA 4: APLICACIONES LINEALES Estudio de la linealidad 1) Estudie la linealidad de las siguientes aplicaciones: a) ff: RR RR 2, ff(xx) = ( 3xx, 2xx) b) ff: RR 2 RR, ff(xx, yy) = xxxx c) ff: RR 2 RR 3,

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

Construcción de bases en la suma y la intersección de subespacios (ejemplo)

Construcción de bases en la suma y la intersección de subespacios (ejemplo) Construcción de bases en la suma y la intersección de subespacios (ejemplo) Objetivos Aprender a construir bases en S + S y S S, donde S y S están dados como subespacios generados por ciertos vectores

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Luisa Martín Horcajo U.P.M. Definición: Vector libre. Operaciones Un vector fijo es una segmento orientado, que queda caracterizado por su origen A y su extremo B y se representa por

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión.

Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Universidad de Jaén Departamento de Matemáticas Ingeniería Técnica en Informática de Gestión. Algebra I I Relación de problemas 3. Espacios vectoriales. 1.-Estudiar si los siguientes conjuntos forman o

Más detalles

Espacios vectoriales. Vectores del espacio.

Espacios vectoriales. Vectores del espacio. Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del

Más detalles

Ecuaciones de la recta en el espacio

Ecuaciones de la recta en el espacio Ecuaciones de la recta en el espacio Ecuación vectorial de la recta Sea P(x 1, y 1 ) es un punto de la recta r y uu su vector director, el vector PPXX tiene igual dirección que uu, luego es igual a uu

Más detalles

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES

Espacios Vectoriales. Matemáticas. Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES Espacios Vectoriales Matemáticas Espacios Vectoriales CARACTERIZACION COMBINACIONES LINEALES REDUCCION DE GAUSS SISTEMA GENERADOR, BASES 5 ESPACIO VECTORIAL Dados: (E,+) Grupo Abeliano (K,+, ) Cuerpo :

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Algebra Lineal y Geometría.

Algebra Lineal y Geometría. Algebra Lineal y Geometría. Unidad n 4: Dimensión de un Espacio Esp. Liliana Eva Mata Contenidos. Combinación lineal de vectores. Dependencia e Independencia Lineal. Sistema de Generadores. Base de un

Más detalles

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado

Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado Independencia lineal y rango Ejemplos. Rango. Rango y matriz inversa Teorema de Rouché-Frobenius revisitado c Jana Rodriguez Hertz p. /2 Independencia lineal Si el sistema x A + x 2 A 2 + + x n A n = O

Más detalles

Introducción a los espacios vectoriales

Introducción a los espacios vectoriales 1 / 64 Introducción a los espacios vectoriales Pablo Olaso Redondo Informática Universidad Francisco de Vitoria November 19, 2015 2 / 64 Espacios vectoriales 1 Las 10 propiedades de un espacio vectorial

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

6 Vectores. Dependencia e independencia lineal.

6 Vectores. Dependencia e independencia lineal. 6 Vectores. Dependencia e independencia lineal. Introducción Hay fenómenos reales que se pueden representar adecuadamente mediante un número con su adecuada unidad de medida. Sin embargo para representar

Más detalles

Núcleo e Imagen de una aplicación lineal.

Núcleo e Imagen de una aplicación lineal. PRÁCTICA Nº 8 Núcleo e Imagen de una aplicación lineal. Con esta práctica se pretende utilizar el cálculo de la expresión matricial de una aplicación lineal respecto de las bases del dominio y codominio

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 5 Curso 006-007 Matrices, determinantes y sistemas lineales 8. Dadas las matrices A y B siguientes, calcule

Más detalles

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN

BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN 1 BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS DE LA COMPUTACIÓN BANCO DE PREGUNTAS CURSO: ALGEBRA LINEAL LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MC Fco. Javier Robles Mendoza Otoño

Más detalles

Ejercicios del Tema 2: Estructuras algebraicas básicas

Ejercicios del Tema 2: Estructuras algebraicas básicas Ejercicios del Tema 2: Estructuras algebraicas básicas En los ejercicios 1, 2, 8 y 9 se utilizará que si G = {g 1,...,g n } es un conjunto finito y * una operación interna definida en G, podemos utilizar

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales Grado en Óptica y Optometría Curso 00-0 Hoja de ejercicios n o Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule A + B, A B, AB, BA, AA, BB. 0 0 A = 3 0 0 B =

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 I / Ejercicios sugeridos para : los temas de las clases del 2 y 23 de abril de 29. Tema : Matrices. Operaciones con matrices. Ejemplos. Operaciones elementales

Más detalles

Suma e Intersección de Subespacios. (c) 2012 Leandro Marin

Suma e Intersección de Subespacios. (c) 2012 Leandro Marin 09.00 Suma e Intersección de Subespacios 3 48700 90009 (c) 0 Leandro Marin . Sumas e Intersecciones de Espacios Vectoriales Definición. Sean U un espacio vectorial y sean V y W dos subespacios vectoriales

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 3 Curso 005-006 Matrices, determinantes y sistemas lineales 54. Dadas las matrices A y B siguientes, calcule

Más detalles

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide:

vectoriales N(f) e Im(f) N(f) = (5,1,0),( 3,0,1) y f(1,0,0)=(2,-1,1). Se pide: .- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax, así como los subespacios vectoriales N(f) e Im(f) a) f(x,y) = (x,-y) b) f(x,y)

Más detalles

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v

. Halla los valores de α en cada uno de los siguientes casos: a) (1 punto) u r, v EJERCICIOS BLOQUE III: GEOMETRÍA (04-M;Jun-A-4) Considera la recta r que pasa por los puntos A (,0, ) y (,,0 ) a) ( punto) Halla la ecuación de la recta s paralela a r que pasa por C (,,) b) (5 puntos)

Más detalles

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO

TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO Temas 6 y 7 Rectas y planos en el espacio Matemáticas II - 2º Bachillerato 1 TEMAS 6 Y 7 RECTAS Y PLANOS EN EL ESPACIO RECTAS Y PLANOS EJERCICIO 1 : Halla el volumen del tetraedro determinado por los ejes

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010.

Algebra Lineal * Working draft: México, D.F., a 17 de noviembre de 2010. Algebra Lineal * José de Jesús Ángel Ángel jjaa@mathcommx Working draft: México, DF, a 17 de noviembre de 2010 Un resumen de los principales temas tratados en un curso de Álgebra Lineal Contenido 1 Sistemas

Más detalles

Matrices, determinantes y sistemas lineales

Matrices, determinantes y sistemas lineales UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Relación de Problemas n o 7 Curso 008-009 Matrices, determinantes y sistemas lineales 0. Dadas las matrices A y B siguientes, calcule

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

x y z 3x 3y 3z b) 3x 3y+2 3z+4. x+2 y+2 z+2

x y z 3x 3y 3z b) 3x 3y+2 3z+4. x+2 y+2 z+2 MasMatescom 1 1 1 [2014] [EXT-A] a) Compruebe que la matriz A = es regular (o inversible) y calcule su matriz inversa -2-3 b) Resuelva la ecuación matricial AXA = B, siendo A la matriz anterior y B = 5-2

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES REFLEXIONA Y RESUELVE Resolución de sistemas 2 Ò 2 mediante determinantes A A y Resuelve, aplicando x = x e y =, los siguientes sistemas de ecuaciones: A A

Más detalles

MATEMÁTICAS I, Grado en Ingeniería Eléctrica, Electrónica Industrial y Mecánica.

MATEMÁTICAS I, Grado en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. MATEMÁTICAS I, Grado en Ingeniería Eléctrica, Electrónica Industrial y Mecánica. Departamento de Matemática Aplicada II. Escuela Politécnica Superior de Sevilla Curso - Boletín n o. Sistemas de ecuaciones

Más detalles

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido

ALGEBRA LINEAL. 1º GRADO DE ECONOMÍA CURSO Prof. Pedro Ortega Pulido ALGEBRA LINEAL. º GRADO DE ECONOMÍA CURSO 0-04 Prof. Pedro Ortega Plido I. ESPACIOS VECTORIALES I.. Vectores. Operaciones con vectores I.. Espacio vectorial. Propiedades I.. Sbespacio vectorial. Operaciones

Más detalles

ACTIVIDADES SELECTIVIDAD MATRICES

ACTIVIDADES SELECTIVIDAD MATRICES ACTIVIDADES SELECTIVIDAD MATRICES Ejercicio 1 Para qué valores de m tiene solución la ecuación matricial? (b) Resuelve la ecuación matricial dada para. Ejercicio 2 Siendo I la matriz identidad de orden

Más detalles

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta.

5 = z. 2. Hallar el valor de m para que los puntos A(3,m,1), B(1,1,-1) y C(-2,10,-4) pertenezcan a la misma recta. . Expresar en forma paramétrica y reducida la recta x+ 3 = y- 5 = z -. Hallar el valor de m para que los puntos A(3,m,), B(,,-) y C(-,0,-4) pertenezcan a la misma recta. 3. Probar que todos los planos

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES 1. Introducción: 1.1 Grupo Abeliano 1. Cuerpo. Estructura de espacio vectorial 3. Propiedades 4. Subespacio vectorial 5. Combinación lineal de vectores 5.1 Propiedades 6. Dependencia e independencia lineal

Más detalles

1 Sistemas de ecuaciones lineales.

1 Sistemas de ecuaciones lineales. Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Sea S el siguiente sistema de m ecuaciones lineales y n incógnitas: 9 a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x n = b 2 >=

Más detalles

I. Operaciones con matrices usando Mathematica

I. Operaciones con matrices usando Mathematica PRÁCTICA 9: RESOLUCIÓN DE SISTEMAS LINEALES II I. Operaciones con matrices usando Mathematica Introducir matrices en Mathematica: listas y escritura de cuadro. Matrices identidad y diagonales. El programa

Más detalles

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA

INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA INGENÍERIA INFORMÁTICA. PROBLEMAS DE ALGEBRA C. Galindo 1. Resolver el siguiente sistema de ecuaciones x 1 + 3x 2 2x 3 + 2x 5 = 0 2x 1 + 6x 2 5x 3 2x 4 + 4x 5 3x 6 = 1 5x 3 + 10x 4 + 15x 6 = 5 2x 1 + 6x

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Rectas y planos en el espacio

Rectas y planos en el espacio Rectas y planos en el espacio 1. 2. 3. Discute el siguiente sistema según el valor del parámetro a: ax 4y z 1 y az a x 14y 2az 8 Dada la recta x 4 y z 1, 5 2 averigua si el punto P(6, 2, 2) está contenido

Más detalles

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2

b) y 1 = 10x x 2 y 2 = 25x x 2 d) y 1 = 4x 1 3x 2 y 2 = 2x 1 5x 2 Álgebra lineal Curso 2008-2009 Tema 2 Hoja 1 Tema 2 ÁLGEBRA SUPERIOR 1 Expresar los siguientes sistemas lineales en notación matricial a y 1 = 2x 1 + 3x 2 y 2 = 4x 1 + 2x 2 b y 1 = 10x 1 + 12x 2 y 2 =

Más detalles

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no

es el lugar geométrico de los puntos p tales que p 0 p n o p 0 p o. p x ; y ; z perteneciente a y un vector no El Plano y la Recta en el Espacio Matemática 4º Año Cód. 145-15 P r o f. M a r í a d e l L u j á n M a r t í n e z P r o f. J u a n C a r l o s B u e P r o f. M i r t a R o s i t o P r o f. V e r ó n i

Más detalles

{ } { 1, 0, 0, 0, 0,1,1,1,(1,1,1,1)} ( ) ( ) ( )

{ } { 1, 0, 0, 0, 0,1,1,1,(1,1,1,1)} ( ) ( ) ( ) .- Se considera R con la suma habitual con el producto por un escalar que se indica en los casos siguientes. Prueba que en ninguno de ellos, (R,+, ) es espacio vectorial señalando alguna propiedad del

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio 4,

Más detalles

Álgebra Lineal Ma843

Álgebra Lineal Ma843 Álgebra Lineal Ma843 Principios de Desarrollo Discursivo/Didáctico Departamento de Matemáticas ITESM Principios de Desarrollo Discursivo/Didáctico Álgebra Lineal - p. 1/12 Problema Fundamental El problema

Más detalles

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por

x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y

Más detalles

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico

Más detalles