GUÍA DE ESTUDIO ÁLGEBRA LINEAL

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUÍA DE ESTUDIO ÁLGEBRA LINEAL"

Transcripción

1 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales ) LOS NÚMEROS El sistema de úmeros reales cosiste e u cojuto R de elemetos llamados úmeros reales y dos operacioes deomiadas: adició y multiplicació, que se deota co los símbolos + y, respectivamete. Si a y b so elemetos del cojuto R, etoces a+b deota la suma de a y b; tambié a b (ó ab) idica su producto. La operació de sustracció se defie mediate: a + ( b) a b, dode b represeta el egativo de b tal que, b + ( b). La operació de divisió se defie co la ecuació: a b a b ; b, dode b - represeta el recíproco de b, tal que b b. U úmero real puede ser egativo, positivo o cero. Cualquier úmero real se puede clasificar como racioal o irracioal. U úmero racioal Q es cualquier úmero que se puede expresar como la razó de dos eteros. Es decir, u úmero racioal es u úmero de la forma p/q dode p y q so eteros y q. Los úmeros racioales comprede a los siguietes: Los eteros Z: so úmeros racioales co deomiador igual a (p/q p/ p), puede ser positivos, egativos y cero:...,-5, -4, -, -, -,,,,, 4, 5,... Los aturales N: so úmeros eteros (todos positivos):,,, 4, 5, 6, 7,... Fraccioes positivas y egativas, tales como:..., 4 8,,, Los decimales comesurables positivos y egativos, tales como: 6 5.6,. 5 Los decimales icomesurables periódicos positivos y egativos, tales como: Los úmeros irracioales so decimales icomesurables y o periódicos, tales como:.7... π Los úmeros complejos C se expresa geeralmete e la forma a +bi, dode a y b so úmeros reales, i es la llamada uidad imagiaria, que se caracteriza por teer la propiedad de que i -. ) ESPCIO VECORIL Espacio vectorial es u cojuto costituido por u úmero ifiito de vectores, para los cuales se ha defiido las operacioes de adició y multiplicació por u escalar, y además está defiidos sobre u determiado campo k. Esquemáticamete puede represetarse como: El campo k puede referirse a alguo de los siguietes úmeros: Complejos Reales Racioales Irracioales Eteros Naturales Los vectores v, v,..., v puede teer distitas formas, por ejemplo: R : v ( x, y) vector e dos dimesioes. DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

2 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales R : v ( x, y, z) vector e tres dimesioes. b M : v matriz cuadrada de. c d P: v ax + bx + c poliomio de grado meor o igual a dos. F: f ( x) v fució de cualquier forma. OSERVCIONES: Las operacioes de adició y multiplicació por u escalar para estos cojutos geeralmete o so las usuales. l resolver u problema, e cada axioma se debe escribir si se cumple o o se cumple; y al fial del problema, si el cojuto es o o u espacio vectorial. Para que u determiado cojuto sea u espacio vectorial, debe satisfacer los siguietes axiomas: Sea V u determiado cojuto; y vectores que V. u, v, w. Cerradura para la suma: u + v V. Propiedad comutativa de la suma: u + v v + u. Propiedad asociativa de la suma: u + ( v + w) ( u + v) + w 4. Existecia de vector eutro e : e + u u por la izquierda u + e u por la derecha 5. Existecia de iversos aditivos z : z + u e por la izquierda u + z e por la derecha 6. Cerradura para la multiplicació: u V 7. Propiedad distributiva de la multiplicació para la suma de vectores: u + v u + ( ) v 8. Propiedad distributiva de la multiplicació para la suma de escalares: ( + β) u u + βu 9. Propiedad asociativa de la multiplicació: ( βu) ( β)u. Existecia de uicidad: u u ) SUESPCIOS VECORILES Para que u subcojuto sea u subespacio vectorial de V, debe cumplirse las siguietes dos codicioes:. Cerradura para la suma: u+ v. Cerradura para la multiplicació: u es decir, que la suma etre vectores y el producto de u escalar por u vector de como resultado otro vector que tega la misma forma (perteezca) que los vectores del subcojuto. OSERVCIONES: Las operacioes de adició y multiplicació por u escalar, e este caso geeralmete so las usuales. El subcojuto { } es u subespacio vectorial. PROPIEDD IMPORNE DE LOS SUESPCIOS VECORILES La itersecció de dos subespacios vectoriales, tambié es u subespacio vectorial. DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

3 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales Ejemplo, sea: a, d R S.E.V. d b a, b, d R S.E.V. d Etoces: CSO I.-l meos u escalar e la ecuació de depedecia lieal es diferete de cero. Cuado esto ocurre, el cojuto se deomia Liealmete Depediete (L.D.) CSO II.- odos los escalares e la ecuació de depedecia lieal so iguales a cero. Cuado esto ocurre, el cojuto se deomia Liealmete Idepediete (L.I.) d tambié es S.E.V. 6) CONJUNO GENERDOR Y SE DE UN ESPCIO VECORIL NO: itersecció es el cojuto costituido por todos aquellos vectores que se ecuetra tato e como e. 4) COMINCIÓN LINEL U vector w es ua combiació lieal de los vectores u, u,..., u, si puede ser expresado como: w u + u u dode,,..., so escalares y idica u úmero fiito de vectores. 5) DEPENDENCI LINEL Esta ecuació expresa al vector cero,, como ua combiació lieal de los vectores v, v,..., v : v + v v dode,,..., so escalares y idica u úmero fiito de vectores. E la ecuació de depedecia lieal se distigue dos casos: y sea { u, u, u } u subcojuto V defiido sobre u campo k. Se dice que es u cojuto geerador del espacio vectorial V, si para todo vector v V existe los escalares,,, que permita escribir: v Combiació lieal u + u + u Se observa que si se pasara el vector v del lado derecho de la expresió aterior, ésta e realidad costituiría la ecuació de depedecia lieal, e la que al meos u escalar es (el escalar que multiplica a v ). Por tato, u cojuto geerador es u cojuto liealmete depediete. Por el cotrario, u cojuto liealmete idepediete es ua base. E resume: DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

4 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales a) Si V es Liealmete Depediete b) Si V es Liealmete Idepediete Es u cojuto geerador del espacio vectorial V Es ua base del espacio vectorial V partir de ua combiació lieal, es posible obteer el llamado vector de coordeadas de u vector v. Es decir, el vector de coordeadas está costituido por los escalares que iterviee e la combiació lieal referida a ua determiada base. OSERVCIONES: odas las bases de u espacio vectorial tiee el mismo úmero de vectores. La dimesió de u espacio vectorial es el úmero de vectores que tiee cualquier base de dicho espacio. El caso particular del cojuto { }, tiee dimesió cero: dim. 7) VECOR DE COORDENDS OSERVCIONES: El vector de coordeadas es u vector úico referido a ua base ordeada e particular. El orde e el que aparece los escalares e el vector de coordeadas, correspode al orde que tiee los vectores e la base. 8) MRIZ DE RNSICIÓN odo vector v V puede expresarse como combiació lieal de los vectores de las bases: Para la ase : v u + u + u dode ( v) [ ] es el vector de coordeadas de v e la ase. Para la ase : v β w + β w + β w β dode ( v) [ β β β] β es el vector β de coordeadas de v e la ase. Si se escribe los vectores de la ase como combiació lieal de los vectores de la ase : u ( ) [ ] ( ) [ ] ( ) [ ] + + aw aw aw u a a a u bw + bw + bw u b b b u cw + cw + cw u c c c ase ase dode ( u ) ( u ), ( u ), so los vectores de coordeadas de u, u, u e la ase, respectivamete. DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM 4 de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

5 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales La matriz de trasició de la ase a la ase, M se forma co los vectores de coordeadas de las combiacioes lieales ateriores: M a a b b b c c c CRCERÍSICS DE L MRIZ DE RNSICIÓN: Sus columas so vectores de coordeadas obteidos a partir de la combiació lieal de ua base respecto a otra. So matrices cuadradas (por ser combiacioes lieales etre bases). Siempre tiee iversa (por ser matrices cuadradas y cumplir det ). La matriz de trasició permite el cambio de coordeadas de ua base a otra; por tato, co la matriz de trasició es posible calcular el vector de coordeadas: ( ) M ( v) v vector de coordeadas de v e la ase. O bie, el vector: ( ) M ( v) v vector de coordeadas de v e la ase. demás, puesto que la matriz de trasició siempre tiee iversa, es posible calcular M a partir de la matriz M, co ta solo determiar su iversa, es decir: M ( M ) 9) MRIZ EN FORM CNÓNIC ESCLOND partir de trasformacioes elemetales es posible llevar a ua matriz cualquiera a su forma caóica escaloada, que satisfaga las siguietes codicioes:. Debe ser, por supuesto, ua matriz escaloada.. El primer elemeto distito de cero de cada fila debe ser.. El resto de los elemetos de la columa dode se ecuetra el uo aterior, debe ser. Ejemplo: Obsérvese que los uos o debe estar ecesariamete e la diagoal pricipal. OSERVCIONES: Para ua matriz determiada, existe ua y sólo ua matriz e forma caóica escaloada. Los regloes de ua matriz e forma caóica escaloada, costituye la base caóica de su espacio vectorial. Esta propiedad es válida para ua matriz escaloada cualquiera; solo que e este caso, los regloes costituye ua base, pero o la caóica. ) ISOMORFISMO EOREM: Los espacios vectoriales de la misma dimesió so isomorfos. Es decir, todos los espacios vectoriales de la misma dimesió so, algebraicamete DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM 5 de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

6 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales hablado, iguales. De esta maera, al estudiar u espacio vectorial cualquiera V, de dimesió, se puede trabajar co vectores del espacio R y el resultado aplicarlo al espacio V. U espacio vectorial V es isomorfo co el espacio vectorial R si se establece ua fució biyectiva f : V R etre ambos tal que uv, V y R se cumple que: f ( u+ v) f ( u) + f ( v) f ( u) f ( u) Cuado se tiee matrices o poliomios, es posible aplicar el cocepto de isomorfismo si se requiere escribir estos vectores como los regloes de ua matriz (por ejemplo, para trasformar ua matriz a su forma caóica escaloada), o bie, e otros casos, se puede utilizar el isomorfismo para facilitar las operacioes algebraicas. E la siguiete tabla se proporcioa ejemplos de isomorfismos etre R y otros espacios vectoriales: a) Isomorfismo (*) Espacio de los poliomios de grado P R ax bx c b) Isomorfismo (*) Espacio de las matrices de M R 4 b c d Espacio R + + ( abc,, ) Espacio R ( abcd,,, ) (*) Para llevar a cabo el isomorfismo, los poliomios puede ser de cualquier grado y las matrices de cualquier dimesió m. ) ESPCIOS VECORILES SOCIDOS UN MRIZ partir de los elemetos que itegra ua matriz puede defiirse diversos espacios vectoriales. dos de ellos se les cooce como: Espacio Regló Espacio Columa Espacio Regló de, es el espacio vectorial geerado por los regloes de la matriz. Espacio Columa de, es el espacio vectorial geerado por las columas de la matriz. Cómo se obtiee el espacio regló de ua matriz dada?. Mediate trasformacioes elemetales debe llevarse a la matriz a su forma caóica escaloada.. Los regloes de la matriz e forma caóica escaloada, costituye los vectores de la base caóica del espacio vectorial buscado.. Si se escribe a esta base como ua combiació lieal, es posible obteer el vector geérico v (que represeta la forma geeral de todos los vectores del espacio vectorial buscado): v au+ bu u 4. El espacio regló está costituido por este vector geérico v. Por ejemplo, si v abc,, a, etoces: ( ) ( ) ( ) {,,,, } L r abc a abc R Es el espacio regló geerado a partir de la matriz. Cómo se obtiee el espacio columa de ua matriz dada? Puesto que ahora, el espacio vectorial es geerado por las columas de la matriz. Lo primero es obteer la traspuesta de dicha matriz. E la matriz traspuesta es posible realizar operacioes aálogas al caso e que se obtuvo el espacio regló; puesto que aquí las columas ya se trasformaro e regloes: DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM 6 de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

7 GUÍ DE ESUDIO ÁLGER LINEL ema. Espacios Vectoriales. Nuevamete se lleva a la matriz a su forma caóica escaloada.. Co los regloes se obtiee la base caóica del espacio vectorial.. partir de la combiació lieal de dicha base, se obtiee el vector geérico v que idica la forma del espacio columa L( c ) buscado. PROPIEDDES IMPORNES: El espacio regló geerado por ua matriz es distito del espacio columa geerado por la misma matriz : ( ) L( ) L r La dimesió del espacio regló geerado por ua matriz es igual a la dimesió del espacio columa geerado por la misma matriz : dim L r c ( ) dim L( ) El rago de la matriz es igual a la dimesió del espacio regló o igual a la dimesió del espacio columa de la matriz : ( ) dim ( ) dim ( ) R L r L c El rago R( ) de ua matriz se defie como el úmero máximo de regloes distitos de cero que cotiee esta matriz llevada a su forma escaloada. c ) WRONSKINO El cocepto del wroskiao se emplea cuado se quiere determiar si u cojuto de fucioes reales de variable real { f, f,..., f} es Liealmete Idepediete e u determiado itervalo (a,b). Co estos fies es posible establecer la ecuació de depedecia lieal para este cojuto e el itervalo (a,b) como: f ( x) + f ( x) f ( x) x ( ab, ) Si se deriva - veces la expresió aterior, se obtiee el sistema de ecuacioes lieales homogéeo: f'( x) + f'( x) + + f'( x) f''( x) + f''( x) + + f''( x) ( ) ( ) ( ) f ( x) + f ( x) + + f ( x) El wroskiao, W(x), del cojuto { f, f,..., f} e el itervalo (a,b), es el determiate de la matriz de coeficietes del sistema homogéeo aterior, es decir: W( x) ( ) ( ) ( ) f( x) f( x) f( x) f'( x) f'( x) f '( x) f ( x) f ( x) f ( x) Fialmete se dice que, si para algú valor x ( ab, ) el wroskiao es W( x ), etoces el cojuto es Liealmete Idepediete. DIVISIÓN: CIENCIS ÁSICS FCULD DE INGENIERÍ, UNM 7 de 7 COORDINCIÓN: MEMÁICS Profra. Dra. Norma Patricia López costa

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que

Espacio Vectorial Definición: Sea V un conjunto donde hemos definido una ley u operación interna, que Sea V u cojuto dode hemos defiido ua ley u operació itera, que desigaremos por + V V. Sea K u cuerpo (comutativo) y sea, por último, ua operació extera que desigaremos por K V V. Diremos que (V,+, ) tiee

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.

CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica. 5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto

Más detalles

Tema 2: Diagonalización de matrices cuadradas

Tema 2: Diagonalización de matrices cuadradas Departameto de Aálisis Ecoómico UNIVERSIDAD DE ZARAGOZA Tema : Diagoalizació de matrices cuadradas.1. El cojuto R Defiició: Dados úmeros reales x 1, x,..., x R, se llama -tupla ordeada a x = ( x 1,, x,...,

Más detalles

GUÍA DE ESTUDIO ÁLGEBRA LINEAL

GUÍA DE ESTUDIO ÁLGEBRA LINEAL GUÍ DE ESUDIO ÁLGER LINEL ema 3. rasformacioes Lieales. QUÉ ES UN RNSFORMCIÓN? E térmios geerales, ua trasformació es ua fució que permite trasformar u vector que perteece a u espacio vectorial (domiio)

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos...

ÍNDICE. Prólogo Capítulo 1. Ecuaciones diferenciales ordinarias. Generalidades.. 11 Introducción teórica Ejercicios resueltos... ÍNDICE Prólogo... 9 Capítulo 1. Ecuacioes difereciales ordiarias. Geeralidades.. 11 Itroducció teórica... 13 Ejercicios resueltos.... 16 Capítulo 2. itegració de la ecuació de primer orde. La ecuació lieal...................................................................

Más detalles

Eje I: Números y Operaciones

Eje I: Números y Operaciones Colegio Provicial de Educació Secudaria Nº Gregorio Álvarez Maestro Patagóico C I C L O Eje I: Números y Operacioes L E C T I V O 0 1 8 ALUMNO: PROFESORA: MARÍA ELISA PALMAS Eje I: Números y Operacioes

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138

Prácticas de Matemáticas I y Matemáticas II con DERIVE-5 138 Prácticas de Matemáticas I y Matemáticas II co DERIVE-5 8. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes:

Aplicaciones lineales. Diagonalización. . La aplicación f es lineal si se verifican las dos condiciones siguientes: Aplicacioes lieales Diagoalizació Defiició: Sea V y W dos espacios vectoriales sobre el mismo cuerpo y sea la aplicació f:v W v f v w La aplicació f es lieal si se verifica las dos codicioes siguietes:

Más detalles

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136

Prácticas de Matemáticas I y Matemáticas II con DERIVE 136 Prácticas de Matemáticas I y Matemáticas II co DERIVE 6. DIGONLIZCIÓN... PRINCIPLES FUNCIONES DE DERIVE PR L DIGONLIZCION: CLCULO DE UTOVLORES Y UTOVECTORES. tes de iiciar el estudio de los pricipales

Más detalles

α, entonces se cumple que: T ( x) α T ( x)

α, entonces se cumple que: T ( x) α T ( x) HÉCTOR ESCOAR Uidad 3 Álgebra Lieal ALGERA LINEAL UNIDAD 3: OPERADORES LINEALES CONCEPTO DE OPERADOR LINEAL: sea V, dos espacios lieales, etoces u operador lieal (trasformació lieal) es ua fució T : V

Más detalles

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes.

Los vectores desempeñan un papel importante en Matemáticas, Física e Ingeniería y actualmente en materias como procesamiento de imágenes. ESPACIOS VECTORIALES 1. INTRODUCCIÓN Escalares y Vectores E la técica existe catidades como Logitud, Área, Volume, Temperatura, Presió, Masa, Potecial, Carga eléctrica que se represeta por u úmero real.

Más detalles

Aplicaciones Lineales. Diagonalización 1.- Sean xy

Aplicaciones Lineales. Diagonalización 1.- Sean xy Aplicacioes Lieales. Diagoalizació.- Sea xy, vectores propios de ua matriz A asociados al mismo valor propio. Etoces: a) x+ y tambié es vector propio de A. b) x+ y tambié es vector propio de A, si x +

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

Capítulo III Teoría de grupos

Capítulo III Teoría de grupos Capítulo III Teoría de grupos Tema 1. Leyes de composició iteras. 1.1 Leyes de composició iteras. Dado u cojuto A, se defie como Ley de composició itera defiida e A a toda aplicació, A A A ( x, y) x y

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En

LOS NUMEROS REALES. Conjunto no vacío designado como R y denominado conjunto de los números reales. En LOS NUMEROS REALES Cojuto o vacío desigado como R y deomiado cojuto de los úmeros reales. E él se defie ua relació de igualdad = y dos operacioes algebraicas + y. Relació de igualdad Defiició: R = (a,b)

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate

UNIVERSIDAD DIEGO PORTALES Instituto de Ciencias Básicas. Álgebra Lineal. Isabel Arratia Zárate UNIVERSIDAD DIEGO PORTALES Istituto de Ciecias Básicas Álgebra Lieal Isabel Arratia Zárate Matrices y Sistemas de ecuacioes lieales Algebra Lieal - I. Arratia Z. Matrices: defiicioes y otacioes básicas

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares

Números Complejos. Capítulo Los números complejos. 1.2 El plano complejo. 2 Matemáticas 1 : Preliminares 2 Matemáticas 1 : Prelimiares Capítulo 1 Números Complejos Este tema de úmeros complejos es más iformativo que recordatorio, siedo el uso explícito de los complejos escaso e las asigaturas de Matemáticas

Más detalles

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc.

Una sucesión es un conjunto infinito de números ordenados de tal forma que se puede decir cuál es el primero, cuál el segundo, el tercero, etc. Sucesioes Sucesi o. Ua sucesió es u cojuto ifiito de úmeros ordeados de tal forma que se puede decir cuál es el primero, cuál el segudo, el tercero, etc. Los térmios de ua sucesió se desiga mediate a 1,

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura - Ferado Sáchez - - 5 Números Cálculo I complejos 14 10 2015 E el cuerpo de los úmeros reales ecuacioes como x 2 + 1 = 0 o tiee solució: el poliomio x 2 + 1 o tiee raíces reales. Hace falta exteder el

Más detalles

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Determinantes. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Determiates Ramó Espioza Armeta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Sea A M ( K), dode 2. El i-ésimo meor de A es la matriz A i, obteida a partir de A elimiado el regló i y la columa. Eemplo. Sea 3

Más detalles

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18

Negativos: 3, 2, 1 = 22. ab/c 11 Æ 18 Los úmeros reales.. Los úmeros reales El cojuto de los úmeros reales está formado por los úmeros racioales y los irracioales. Se represeta por la letra Los úmeros racioales so los úmeros eteros, los decimales

Más detalles

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS

CLAUSURA ALGEBRAICA Y NÚMEROS COMPLEJOS Clausura algebraica y úmeros complejos CLAUSURA ALGEBRAICA Y NÚEROS COPLEJOS. Itroducció Nos pregutamos Porqué o podemos resolver ciertas ecuacioes poliómicas e u determiado campo de úmeros?. Geeralmete,

Más detalles

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma:

Polinomio de una sola variable. , llamaremos polinomio de la variable x a toda expresión algebraica entera de la forma: Semiario Uiversitario de Igreso 07 oliomio de ua sola variable a0; a; a;...; a úmeros reales y N 0, llamaremos poliomio de la variable a toda epresió algebraica etera de la forma: a0 a a... a Los poliomios

Más detalles

UNIDAD N 2 BASES Y DIMENSIÓN

UNIDAD N 2 BASES Y DIMENSIÓN UNIDAD N ASES Y DIMENSIÓN UNIDAD Nº : ASES Y DIMENSIÓN PROF. MARÍA EUGENIA RIVERO ASES Y DIMENSIÓN DEFINICIÓN Nº : Sea V u espacio vectorial sobre el cuerpo F. U subcouto S de V se dice LINEALMENTE DEPENDIENTE

Más detalles

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS

MATEMÁTICA LIC. Y PROF. EN CS. BIOLÓGICAS Defiició de límite de ua fució (segú Heie) Sea f : D R ua fució y a R (D R) Diremos que se cumple que f() L R a f( ) L si para cualquier sucesió { } D { a} tal que a Ejemplos: ) Probar que Demostració:

Más detalles

Números reales. Operaciones

Números reales. Operaciones Números reales. Operacioes Matemáticas I 1 Números reales. Operacioes Números racioales. Caracterizació. Recuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma

Más detalles

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización

Tema 2. Espacios vectoriales, aplicaciones lineales, diagonalización Tema 2. Espacios vectoriales, aplicacioes lieales, diagoalizació Asigatura: Matemáticas I Grado e Igeiería Electróica Idustrial Uiversidad de Graada Prof. Rafael López Camio Uiversidad de Graada 3 de septiembre

Más detalles

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna,

con operacion inversa la resta (suma de opuestos) y una operacion producto escalar, que no es interna, Tema 9 El plao complejo 9. Números complejos E IR, las operacioes suma producto de úmeros reales so operacioes iteras (el resultado de operar es otro úmero real) que permite la existecia de operacioes

Más detalles

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I

- Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura. Cálculo I - Ferado Sáchez - - Números Cálculo I complejos 09 0 07 E el cuerpo de los úmeros reales ecuacioes como x + = 0 o tiee solució: el poliomio x + o tiee raíces reales. Hace falta exteder el cocepto de úmero

Más detalles

CLASE SOBRE APLICACIONES LINEALES

CLASE SOBRE APLICACIONES LINEALES Álgebra Mauel Hervás Curso 0-0 CLAS SOBR APLICACIONS LINALS. INTRODUCCIÓN l problema que se va a abordar es la forma de RLACIONAR los elemetos de dos espacios vectoriales, mediate expresioes matemáticas.

Más detalles

GUIA DE ESTUDIO Nro 1

GUIA DE ESTUDIO Nro 1 MATERIA: MATEMÁTICA I CURSO: I AÑO EJE ESTRUCTURAL I: CONCEPTOS FUNDAMENTALES DEL ALGEBRA GRUPOS CONCEPTUALES: - Epresioes algebraicas. Poliomios. - Ecuacioes. Iecuacioes. TEMARIO: GUIA DE ESTUDIO Nro

Más detalles

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica:

es ligada, siendo v V Dos subespacios F y G de V son suplementarios si y solo si se verifica: 1- Dado el sbcojto F={ ( λ μ, λ,μ, μ) R / λ, μ R} de R, se verifica qe: a) dim F= b) {(1,1,0,0),(-,0,,-1)} es a base de F c) F o es sbespacio vectorial de R - E sistema ligado, se verifica qe: a) Agregado

Más detalles

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ).

TEMA 12 ESPACIOS VECTORIALES. A lo largo de este tema 12 denotaremos mediante la letra K un cuerpo conmutativo, (K, +, ). 1. Espacios Vectoriales. 2. Subespacios Vectoriales. 2.1. tersecció de Subespacios. 2.2. Uió de Subespacios. 2.3. Suma de Subespacios. 2.4. Suma Directa de Subespacios. 3. Aplicacioes Lieales. Espacio

Más detalles

4.- Aproximación Funcional e Interpolación

4.- Aproximación Funcional e Interpolación 4- Aproximació Fucioal e Iterpolació 4 Itroducció Ua de las mayores vetajas de aproximar iformació discreta o fucioes complejas co fucioes aalíticas secillas, radica e su mayor facilidad de evaluació y

Más detalles

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS

TEMA 10: POSICIONES RELATIVAS DE RECTAS Y PLANOS TEMA 0: POSICIONES RELATIVAS DE RECTAS Y PLANOS Ates de itroducir los coceptos que correspode a este apartado, haremos u repaso de dos coceptos que ecesitamos, matrices y determiates, así como alguas de

Más detalles

CAP ITULO I ALGEBRA LINEAL. 1

CAP ITULO I ALGEBRA LINEAL. 1 CAPÍTULO I ÁLGEBRA LINEAL 1 Tema 1 Espacios Vectoriales Notaremos por R al cuerpo de los úmeros reales Defiició 11 Sea E u cojuto o vacío e el que se tiee defiida ua ley de composició itera (llamada suma):

Más detalles

Convolución discreta cíclica

Convolución discreta cíclica Covolució discreta cíclica Estos aputes está escritos por Darío Coutiño Aquio y Egor Maximeko. Objetivos. Defiir la covolució discreta cíclica y demostrar el teorema sobre la covolució discreta cíclica

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Universidad Antonio Nariño Matemáticas Especiales

Universidad Antonio Nariño Matemáticas Especiales Uiversidad Atoio Nariño Matemáticas Especiales Guía N 1: Números Complejos Grupo de Matemáticas Especiales Resume Se preseta el cojuto de los úmeros complejos juto co sus operacioes y estructuras relacioadas.

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS

UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS I.E.S. Ramó Giraldo UNIDAD 0: CONCEPTOS BÁSICOS DE NÚMEROS. NÚMEROS REALES.. NÚMEROS NATURALES =,,, 4,... Operacioes iteras (el resultado es u úmero atural) - Suma y producto Operacioes eteras (el resultado

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

MATEMÁTICA I Capítulo 5. a, a,..., a, término independiente b e incógnitas. = b, por ejemplo 2

MATEMÁTICA I Capítulo 5. a, a,..., a, término independiente b e incógnitas. = b, por ejemplo 2 MTEMÁTIC I - Capítulo MTRICES.. Itroducció. Nocioes básicas. Ua ecuació lieal co coeficietes reales a, a,..., a, térmio idepediete b e icógitas x, x,..., x es ua expresió de la forma a. x + a. x +... +

Más detalles

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a.

4 ALGEBRA DE BOOLE. 4.1 Introducción. 4.2 Axiomas. (a) a + b = b + a (b) a b = b a. (a) a + (b c) = (a + b) (a + c) (b) a (b + c) = a. Arquitectura del Computador 4 ALGEBRA DE BOOLE 4. Itroducció. El álgebra de Boole es ua herramieta de fudametal importacia e el mudo de la computació. Las propiedades que se verifica e ella sirve de base

Más detalles

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices:

b) Encontrar: τ o σ ; π o σ ; σ y τ. 2. Usar la definición de determinante para encontrar: 4. Calcular los determinantes de las siguientes matrices: EJERCICIOS PROPUESTOS. Tarea 3. Cosiderar las siguietes particioes de S 5 σ = 354 τ = 354 π = 453. a) Determiar el sigo de cada ua de las ateriores particioes. b) Ecotrar: τ o σ ; π o σ ; σ y τ.. Usar

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios

UNIDAD 9. PROBABILIDAD Matemáticas II. Ies do Barral.Curso 2017/ Experimentos aleatorios 1. Experimetos aleatorios U experimeto se llama aleatorio cuado o se puede predecir su resultado; además, si se repitiese el mismo experimeto e codicioes aálogas, los resultados puede diferir. a) El resultado

Más detalles

TEMA #2 EL CONJUNTO DE LOS NÚMEROS REALES PROFESOR: AQUILINO MIRANDA, NIVEL: 8, COLEGIO DANIEL O. CRESPO. Nombre del estudiante:

TEMA #2 EL CONJUNTO DE LOS NÚMEROS REALES PROFESOR: AQUILINO MIRANDA, NIVEL: 8, COLEGIO DANIEL O. CRESPO. Nombre del estudiante: TEMA # EL CONJUNTO DE LOS NÚMEROS REALES PROFESOR: AQUILINO MIRANDA, NIVEL: 8, COLEGIO DANIEL O. CRESPO Nombre del estudiate: Grupo: Objetivos: coocer la teoría de los úmeros reales y las aplica para resolver

Más detalles

Números racionales. Caracterización.

Números racionales. Caracterización. Números reales Matemáticas I Aplicadas a las Ciecias Sociales 1 Números racioales. Caracterizació. ecuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma a b

Más detalles

Introducción al control moderno

Introducción al control moderno Igeiería e Cotrol y Automatizació Itroducció al cotrol modero Ecuacioes e variables de Estado TEORÍA DEL CONTROL III 5 de agosto de 5 Autor: M. e C. Rubé Velázquez Cuevas Escuela Superior de Igeiería Mecáica

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

Límites en el infinito y límites infinitos de funciones.

Límites en el infinito y límites infinitos de funciones. Límites e el ifiito y límites ifiitos de fucioes. 1 Calcula 2 Límite e el ifiito Cuado se calcula el límite de ua fució e el ifiito se trata de determiar la tedecia que tedrá la fució (los valores que

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

VECTORES. A partir de la representación de, como una recta numérica, los elementos

VECTORES. A partir de la representación de, como una recta numérica, los elementos VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES Espacios Vectoiales Heamietas ifomáticas paa el igeieo e el estudio del algeba lieal. ESPACIOS VECTORIALES.. ESTRUCTURA DE ESPACIO VECTORIAL... Defiició..2. Ejemplos de espacios vectoiales..3. Popiedades

Más detalles

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

UNITAT 2. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS UNITAT. ÁLGEBRA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.1.- POLINOMIOS FACTORIZACIÓN. REGLA DE RUFFINI U poliomio co idetermiada x es ua expresió de la forma: Los úmeros que acompaña a la icógita se

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS º BCT DPTO DE MATEMÁTICAS T4: NÚMEROS COMPLEJOS - LOS NÚMEROS COMPLEJOS.- INTRODUCCIÓN: LAS ECUACIONES DE º GRADO CON SOLUCIONES IMPOSIBLES Desde el siglo XVI al XVIII llamaro la ateció, por la forma de

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

Coeficientes binomiales

Coeficientes binomiales Coeficietes biomiales (Ejercicios Objetivos Defiir coeficietes biomiales y estudiar sus propiedades pricipales Coocer su aplicació e la fórmula para las potecias del biomio y su setido combiatorio (si

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Coordinación de Matemática II (MAT022)

Coordinación de Matemática II (MAT022) Coordiació de Matemática II MAT0 Guía de ejercicios Ejercicios Mat0 parte complemetos Operacioes co matrices. Cosidere A = 0 0 3 B = cuado sea posible si o se puede justificar 0 3 5 6 y C = 0 calcular

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Transformaciones Lineales

Transformaciones Lineales Trasformacioes Lieales 1 Trasformacioes Lieales Las trasformacioes lieales iterviee e muchas situacioes e Matemáticas y so alguas de las fucioes más importates. E Geometría modela las simetrías de u objeto,

Más detalles

TEMA 1 NÚMEROS REALES

TEMA 1 NÚMEROS REALES . Objetivos / Criterios de evaluació TEMA 1 NÚMEROS REALES O.1.1 Coocer e idetificar los cojutos uméricos N, Z, Q, I,R, Im O.1.2 Saber covertir úmeros racioales e fraccioes. O.1.3 Redodeo y aproximació

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - Curso de Verao 016 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c y

Más detalles

bc (b) a b + c d = ad+bc a b = b a

bc (b) a b + c d = ad+bc a b = b a 1 Cojutos 1 Describa los elemetos de los siguietes cojutos A = { x x 1 = 0 } D = { x x 3 x + x = } B = { x x 1 = 0 } E = { x x + 8 = 9 } C = {x x + 8 = 9} F = { x x + 16x = 17 } Para los cojutos del ejercicio

Más detalles

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir

LIMITES DE FUNCIONES. Ejemplo: Sea la función F(x) = 3X 2, evalúe la función para valores de X cercanos a 2, es decir PRECONCEPTO. LIMITES DE FUNCIONES. Ejemplo: Sea la fució F() = X, evalúe la fució para valores de X cercaos a, es decir X se acerca hacia el umero por la izquierda ( - ) X,,7,5,47,68,89,9,96,99,99,995,

Más detalles

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en:

SUCESIÓN. La colección de números que definen a una sucesión permite clasificar a éstas en: UCEIÓN CPR. JORGE JUAN Xuvia-Naró Ua sucesió, (a ), de úmeros reales es ua fució que hace correspoder a cada úmero atural, excluido el cero, u úmero real, la cual viee defiida segú: f: N* R a a i a Número

Más detalles

CUADRATURA GAUSSIANA

CUADRATURA GAUSSIANA CUADRATURA GAUSSIANA Este método de basa e muestrear el itegrado de la fució cuya itegral se desea ecotrar, a valores que represeta raíces de poliomios ortogoales Los más populares de éstos so los poliomios

Más detalles

UNIVERSIDAD NACIONAL DE CATAMARCA FACULTAD CIENCIAS DE LA SALUD CURSO DE ORIENTACIÓN Y NIVELACIÓN AL ESTUDIO UNIVERSITARIO EN CIENCIAS DE LA SALUD

UNIVERSIDAD NACIONAL DE CATAMARCA FACULTAD CIENCIAS DE LA SALUD CURSO DE ORIENTACIÓN Y NIVELACIÓN AL ESTUDIO UNIVERSITARIO EN CIENCIAS DE LA SALUD UNIVERSIDAD NACIONAL DE CATAMARCA FACULTAD CIENCIAS DE LA SALUD CURSO DE ORIENTACIÓN Y NIVELACIÓN AL ESTUDIO UNIVERSITARIO EN CIENCIAS DE LA SALUD AREA: MATEMÁTICA RESPONSABLES: Lic. Luís A. Berrodo Lic.

Más detalles

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video

a = n Clase 11 Tema: Radicación en los números reales Matemáticas 9 Bimestre: I Número de clase: 11 Esta clase tiene video Matemáticas 9 Bimestre: I Número de clase: Clase Actividad Esta clase tiee video Tema: Radicació e los úmeros reales Lea la siguiete iformació. Si es u úmero etero positivo, etoces la raíz -ésima de u

Más detalles

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN ÁLGEBRA LINEAL TERCER SEMESTRE

UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN ÁLGEBRA LINEAL TERCER SEMESTRE UNIVERSIDAD AUTÓNOMA DE YUCATÁN FACULTAD DE MATEMÁTICAS LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN MATERIA: NIVEL: ÁLGEBRA LINEAL TERCER SEMESTRE Fecha de elaboració: Julio de 1998. Duració: 90 horas,

Más detalles

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales)

Introducción a las Funciones Vectoriales (Funciones de R R n ) 1. Funciones de R en R n (Funciones Vectoriales) Itroducció a las Fucioes Vectoriales (Fucioes de R R 1 Fucioes de R e R (Fucioes Vectoriales Llamaremos fució vectorial de variable real o simplemete fució vectorial, a aquellas co domiio e u subcojuto

Más detalles

Tema 3.- Números Complejos.

Tema 3.- Números Complejos. Álgebra. 2004-2005. Igeieros Idustriales. Departameto de Matemática Aplicada II. Uiversidad de Sevilla. Tema 3.- Números Complejos. Los úmeros complejos. Operacioes. Las raíces de u poliomio real. Aplicacioes

Más detalles

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT

MÉTODOS MATEMÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES. Profesora: Mª Cruz Boscá TEMA 2: ESPACIOS EUCLÍDEOS Y DE HILBERT ÉTODOS ATEÁTICOS ESPACIOS DE HILBERT Y OPERADORES LINEALES Profesora: ª Cruz Boscá TEA : ESPACIOS EUCLÍDEOS Y DE HILBERT Sea u espacio lieal L (X, +, ) sobre el cuerpo k Producto itero o escalar y espacio

Más detalles

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una

Definición Diremos que el cardinal de un conjunto A es n si se puede establecer una Tema 2 Combiatoria 2.1 Pricipios básicos de recueto 2.1.1 Cardial de u cojuto Defiició 2.1.1. Diremos que el cardial de u cojuto A es si se puede establecer ua biyecció f : {1,..., } A. Se deota A. Se

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 5: Series de potecias. Operacioes co series de potecias. Series de potecias Elaborado por los profesores Edgar Cabello y Marcos Gozález Cuado estudiamos las series geométricas, demostramos la

Más detalles

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m

OBTENCIÓN DE FACTORES DE LA FORMA (x m b), DE UN POLINOMIO DE GRADO n m OBTENCIÓN DE FACTORES DE LA FORMA x m b), DE UN POLINOMIO DE GRADO m Ricardo Alberto Idárraga Idárraga Uiversidad de Caldas TEOREMA Método para hallar factores de la forma x m b), com N, m, yb C, de u

Más detalles

MATEMÁTICA LICENCIATURA EN RECURSOS HUMANOS PROFESORA CELIA SÁNCHEZ

MATEMÁTICA LICENCIATURA EN RECURSOS HUMANOS PROFESORA CELIA SÁNCHEZ MATEMÁTICA LICENCIATURA EN RECURSOS HUMANOS PROFESORA CELIA SÁNCHEZ UNIDAD NÚMEROS REALES INTERVALOS ENTORNOS VALOR ABSOLUTO - INECUACIONES MATEMÁTICA PROF. CELIA SÁNCHEZ INTRODUCCIÓN E esta uidad, osotros

Más detalles

Combinatoria. Tema Principios básicos de recuento

Combinatoria. Tema Principios básicos de recuento Tema 4 Combiatoria La combiatoria, el estudio de las posibles distribucioes de objetos, es ua parte importate de la matemática discreta, que ya era estudiada e el siglo XVII, época e la que se platearo

Más detalles