Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones"

Transcripción

1 Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal y su Interpretación geométrica Quien tiene un libro y no lo lee, no se diferencia de aquel que no sabe leer Año académico: II Semestre 2010

2 Un problema de máximos de programación lineal Problema 1: Una fábrica de bombones tiene almacenados 500 Kg.. de chocolate, 100 Kg.. de almendras y 85 Kg.. de frutas. Produce dos tipos de cajas: las de tipo A contienen 3 Kg. de chocolote, 1 Kg. de almendras y 1 Kg. de frutas; la de tipo B contiene 2 Kg. de chocolate, 1,5 Kg. de almendras y 1 Kg. de frutas. Los precios de las cajas de tipo A y B son 13 y 13,50, respectivamente. Cuántas cajas de cada tipo debe fabricar para maximizar sus venta? La siguiente tabla resume los datos del problema Designando por x = nº de cajas de tipo A y = nº de cajas de tipo B Función objetivo z = f (x, y) = 13x y Con las restricciones: Caja tipo A Caja tip B Disponibles Chocolate Almendras Frutas Precio en euros que hay que maximizar 3x + 2y 500 (por el chocolate almacenado) x + 1.5y 100 (por la almendra almacenada) x + y 85 (por la fruta almacenada) x 0 y 0

3 En un primer paso representamos la región factible. En un segundo paso obtenemos los vértices de la región factible. R(0, 100/1,5) Finalmente evaluamos la función objetivo z = 13x + 13,50y ; en cada vértice, para obtener el máximo z(p) = ,50. 0 = 1105 Q(55, 30) z(q) = , = 1120 z(r) = , /1,5 = 900 P(85, 0)

4 Un problema de mínimos de programación lineal Problema2: Un grupo local posee dos emisoras de radio, una de FM y otra de AM. La emisora de FM emite diariamente 12 horas de música rock, 6 horas de música clásica y 5 horas de información general. La emisora de AM emite diariamente 5 horas de música rock, 8 horas de música clásica y 10 horas de información general. Cada día que emite la emisora de FM le cuesta al grupo 5000, y cada día que emite la emisora de AM le cuesta al grupo Sabiendo que tiene enlatado para emitir 120 horas de música rock, 180 horas de música clásica y 100 horas de información general, cuántos días deberá emitir con ese material cada una de la emisoras para que el coste sea mínimo, teniendo en cuenta que entre las dos emisoras han de emitir al menos una semana? La siguiente tabla resume los datos del problema Designando por x = nº de días de AM y = nº de días de FM Emisora FM Emisora AM Disponibles Música rock Música clásica Información general Coste en euros Función objetivo z = f (x, y) = 5000x y que hemos de minimizar Con las restricciones: 12x + 5y 120 (por la música rock) 6x + 8y 180 (por la música clásica) 5x + 10y 100 (por la información general) x + y 7 (emitir al menos una semana) x 0 y 0

5 En un primer paso representamos la región factible. En un segundo paso obtenemos los vértices de la región factible. Finalmente evaluamos la función objetivo z = 5000x y en cada vértice, para obtener el mínimo. z(p) = = z(q) = = R(0, 10) S(0, 7) Q(7.37, 6.32 z(r) = = z(s) = = z(t) = = T(7, 0) P(10, 0)

6 Problema 3 La fábrica Gepetto S.L., manufactura muñecos y trenes de madera. Cada muñeco: Produce un beneficio neto de U$3. Requiere 2 horas de trabajo de acabado. Requiere 1 hora de trabajo de carpinteria. Cada tren: Produce un beneficio neto de U$2 Requiere 1 hora de trabajo de acabado. Requiere 1 hora trabajo de carpinteria. Cada semana Gepetto puede disponer de: Todo el material que necesite. Solamente 100 horas de acabado. Solamente 80 horas de carpinteria. También: La demanda de trenes puede ser cualquiera (sin límite). La demanda de muñecos es como mucho 40. Gepetto quiere maximizar sus beneficios. Cuántos muñecos y cuántos trenes debe fabricar?

7 Este problema es un ejemplo típico de un problema de programación lineal (PPL). Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Función Objetivo. En cualquier PPL, la decisión a tomar es como maximizar (normalmente el beneficio) o minimizar (el coste) de alguna función de las variables de decisión. Esta función a maximizar o minimizar se llama función objetivo. El objetivo de Gepetto es elegir valores de x e y para maximizar 3x + 2y. Usaremos la variable z para denotar el valor de la función objetivo. La función objetivo de Gepetto es: Max z = 3x + 2y Restricciones Son desigualdades que limitan los posibles valores de las variables de decisión. En este problema las restricciones vienen dadas por la disponibilidad de horas de acabado y carpintería y por la demanda de muñecos. También suele haber restricciones de signo o no negatividad: x 0 y 0

8 Restricción 1: no más de 100 horas de tiempo de acabado pueden ser usadas. Restricción 2: Restricciones Cuando x e y crecen, la función objetivo de Gepetto también crece. Pero no puede crecer indefinidamente porque, para Gepetto, los valores de x e y están limitados por las siguientes tres restricciones: no más de 80 horas de tiempo de carpinteria pueden ser usadas. Restricción 3: limitación de demanda, no deben fabricarse más de 40 muñecos. Estas tres restricciones pueden expresarse matematicamente por las siguientes desigualdades: Restricción 1: 2 x + y 100 Restricción 2: x + y 80 Restricción 3: x 40 Además, tenemos las restricciones de no negatividad: x 0 e y 0

9 Formulación matemática del PPL Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Muñeco Tren Beneficio 3 2 Acabado Max z = 3x + 2y (función objetivo) 2 x + y 100 (acabado) Carpintería x + y 80 (carpinteria) Demanda 40 x 40 (demanda muñecos) x 0 (restricción de signo) y 0 (restricción de signo)

10 Formulación matemática del PPL Para el problema de Gepetto, combinando las restricciones de signo x 0 e y 0 con la función objetivo y las restricciones, tenemos el siguiente modelo de optimización: Sujeto a (s.a:) Max z = 3x + 2y (función objetivo) 2 x + y 100 (restricción de acabado) x + y 80 (restricción de carpinteria) x 40 (restricción de demanda de muñecos) x 0 (restricción de signo) y 0 (restricción de signo)

11 Región factible La región factible de un PPL es el conjunto de todos los puntos que satisfacen todas las restricciones. Es la región del plano delimitada por el sistema de desigualdades que forman las restricciones. x = 40 e y = 20 está en la región factible porque satisfacen todas las restricciones de Gepetto. Sin embargo, x = 15, y = 70 no está en la región factible porque este punto no satisface la restricción de carpinteria [ > 80]. Restricciones de Gepetto 2x + y 100 (restricción finalizado) x + y 80 (restricción carpintería) x 40 (restricción demanda) x 0 (restricción signo) y 0 (restricción signo)

12 Solución óptima Para un problema de maximización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor máximo. Para un problema de minimización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor mínimo. La mayoría de PPL tienen solamente una solución óptima. Sin embargo, algunos PPL no tienen solución óptima, y otros PPL tienen un número infinito de soluciones. Se puede demostrar que la solución óptima de un PPL está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones) Más adelante veremos que la solución del PPL de Gepetto es x = 20 e y = 60. Esta solución da un valor de la función objetivo de: z = 3x + 2y = = 180 Cuando decimos que x = 20 e y = 60 es la solución óptima, estamos diciendo que, en ningún punto en la región factible, la función objetivo tiene un valor (beneficio) superior a 180.

13 Representación Gráfica de las restricciones Cualquier PPL con sólo dos variables puede resolverse gráficamente. Y 100 2x + y = 100 Por ejemplo, para representar gráficamente la primera restricción, 2x + y 100 : Dibujamos la recta 2x + y = Elegimos el semiplano que cumple la desigualdad: el punto (0, 0) la cumple ( ), así que tomamos el semiplano que lo contiene X

14 Dibujar la región factible Puesto que el PPL de Gepetto tiene dos variables, se puede resolver gráficamente. La región factible es el conjunto de todos los puntos que satisfacen las restricciones: 2 x + y 100 (restricción de acabado) x + y 80 (restricción de carpintería) x 40 (restricción de demanda) x 0 (restricción de signo) y 0 (restricción de signo) Vamos a dibujar la región factible que satisface estas restricciones.

15 Dibujar la región factible Y Restricciones 100 2x + y = x + y 100 x + y x 40 x 0 60 y 0 40 Teniendo en cuenta las restricciones de signo (x 0, y 0), nos queda: X

16 Dibujar la región factible Y 100 Restricciones 80 2 x + y 100 x + y 80 x 40 x 0 y x + y = X

17 Dibujar la región factible Y 100 Restricciones 2 x + y 100 x + y 80 x 40 x 0 y x = X

18 La intersección de todos estos semiplanos (restricciones) nos da la región factible Dibujar la región factible Y x + y = 100 x = x + y = Región Factible X

19 La región factible (al estar limitada por rectas) es un polígono. En esta caso, el polígono ABCDE. Como la solución óptima está en alguno de los vértices (A, B, C, D o E) de la región factible, calculamos esos vértices. Vértices de la región factible Y E D Región Factible 2x + y = 100 C x = 40 x + y = 80 Restricciones 2 x + y 100 x + y 80 x 40 x 0 y 0 A B X

20 Vértices de la región factible Los vértices de la región factible son intersecciones de dos rectas. El punto D es la intersección de las rectas 2x + y = 100 x + y = 80 La solución del sistema x = 20, y = 60 nos da el punto D. Y x + y = 100 E(0, 80) x = 40 D (20, 60) B es solución de x = 40 y = 0 C es solución de x = 40 2x + y = 100 E es solución de x + y = 80 x = A(0, 0) Región Factible C(40, 20) B(40, 0) x + y = X

21 Resolución gráfica Max z = 3x + 2y Y Para hallar la solución óptima, dibujamos las rectas en las cuales los puntos tienen el mismo valor de z (0, 80) (20, 60) La figura muestra estas lineas para z = 0, z = 100, y z = Región Factible (40, 20) (40, 0) (0, 0) z = 0 z = 100 z = 180 X

22 Resolución gráfica Max z = 3x + 2y La última recta de z que interseca (toca) la región factible indica la solución óptima para el PPL. Para el problema de Gepetto, esto ocurre en el punto D (x = 20, y = 60, z = 180). Y (0, 0) (0, 80) (20, 60) Región Factible (40, 20) (40, 0) z = 0 z = 100 z = 180 X

23 Max z = 3x + 2y Resolución analítica Y También podemos encontrar la solución óptima calculando el valor de z en los vértices de la región factible (0, 80) Vértice z = 3x + 2y (0, 0) z = = 0 (40, 0) z = = 120 (40, 20) z = = 160 (20, 60) z = = 180 (0, 80) z = = (20, 60) Región Factible (40, 20) La solución óptima es: x = 20 muñecos y = 60 trenes z = U$ 180 de beneficio (0, 0) (40, 0) X

24 Hemos identificado la región factible para el problema de Gepetto y buscado la solución óptima, la cual era el punto en la región factible con el mayor valor posible de z.

25 Recuerda que: La región factible en cualquier PPL está limitada por segmentos (es un polígono, acotado o no). La región factible de cualquier PPL tiene solamente un número finito de vértices. Cualquier PPL que tenga solución óptima tiene un vértice que es óptimo.

26 Problema 4. Un problema de minimización Dorian Auto; fabrica y vende autos y furgonetas.la empresa quiere emprender una campaña publicitaria en TV y tiene que decidir comprar los tiempos de anuncios en dos tipos de programas: del corazón y fútbol. Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. Un anuncio en el programa de corazón cuesta U$ y un anuncio del fútbol cuesta U$ Dorian Auto quisiera que los anuncios sean vistos por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo.

27 Formulación del problema: Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. Un anuncio en el programa de corazón cuesta U$ y un anuncio del fútbol cuesta U$ Dorian Auto quisiera que los anuncios sean vistos por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo. Corazón (x) Fútbol (y) mujeres 6 3 6x + 3y 30 hombres 2 8 2x + 8y 24 Coste U$ x +100y

28 Formulación del problema: Variables de decisión: x = nº de anuncios en programa de corazón y = nº de anuncios en fútbol Min z = 50x + 100y (función objetivo en ) s.a: 6x + 3y 30 (mujeres) 2x + 8y 24 (hombres) x, y 0 (no negatividad)

29 Dibujamos la región factible. Y 14 Min z = 50 x + 100y s.a. 6x + 3y 30 2x + 8y 24 x, y x + 3y = x + 8y = X

30 Calculamos los vértices de la región factible: El vértice A es solución del sistema 6x + 3y = 30 x = 0 Por tanto, A(0, 10) El vértice B es solución de 6x + 3y = 30 2x + 8y = 24 Por tanto, B(4, 2) Y A La región factible no está acotada Región Factible El vértice C es solución de 2x + 8y = 24 y = 0 Por tanto, C(12, 0) 2 B C X

31 Resolvemos por el método analítico Evaluamos la función objetivo z en los vértices. Vértice A(0, 10) z = 50x + 100y z = = = = Y B(4, 2) C(12, 0) z = = = = 400 z = = = = A(0, 10) Región Factible El coste mínimo se obtiene en B. 4 Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = U$400 (mil ) 2 B(4, 2) C(12, 0) X

32 Resolvemos por el método gráfico Min z = 50 x + 100y Y s.a. 6x + 3y x + 8y 24 x, y 0 12 El coste mínimo se obtiene en el punto B. Z = 600 Z = A(0, 10) Región Factible 4 Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = 400 (mil ) 2 B(4, 2) C(12, 0) X

33 RESOLVER EL SIGUIENTE PROBLEMA DE PL(TAREA) 33 Un fabricante produce mesas (X) y escritorios (Y). Para cada mesa que produce requiere 2 horas y media de montaje, tres horas de pulido y una hora de embalaje. Asimismo, para cada escritorio se requiere una hora de montaje, tres horas de pulido y dos horas de embalaje. Estas secciones presentan las siguientes limitaciones: la unidad de montaje trabaja, como máximo 20 horas al día; la unidad de pulido como máximo 15 horas al día; la unidad de embalaje como máximo 16 horas al día. El fabricante trabaja con un margen de beneficios de U$25 por mesa producida y U$40 por cada escritorio, Plantear el modelo de programación Matemático en el caso que el fabricante pretenda maximizar beneficios. Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

34 Solución óptima Si la región factible es cerrada la solución óptima está en un vértice del polígono (cuando es única) o todo un lado del polígono (infinitas soluciones) Si la región factible es abierta, puede haber solución única (en un vértice), infinitas soluciones (todo un lado) o no tener solución 34 Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

35 35 Número de Soluciones de un PPL Los dos ejemplos anteriores, hasta ahora estudiados tienen, cada uno, una única solución óptima. No en todos los PPL ocurre esto. Se pueden dar también las siguientes posibilidades: Algunos PPL tienen un número infinito de soluciones óptimas (alternativas o múltiples soluciones óptimas). Algunos PPL no tienen soluciones factibles (no tienen región factible). Algunos PPL son no acotados: Existen puntos en la región factible con valores de z arbitrariamente grandes (en un problema de maximización). Veamos un ejemplo de cada caso. Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

36 Número de soluciones de un problema de programación lineal Para un problema de minimización Solución única Solución de arista: infinitas soluciones No hay mínimo 36 Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

37 Para un problema de maximización Solución única Solución de arista: infinitas soluciones No hay máximo 37 Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

38 Número infinito de soluciones óptimas Consideremos el siguiente problema: max z = 3x + 2y Y C s.a: 3x + 2y 120 x + y 50 x, y 0 Cualquier punto (solución) situado en el segmento AB puede ser una solución óptima de z = Región Factible z = 60 B z = 100 z = A 50 X

39 Consideremos el siguiente problema: max z = 3x 1 + 2x 2 s.a: 3x + 2y 120 x + y 50 x 30 y 30 x, y 0 Sin soluciones factibles Y x + y 50 No existe Región Factible x 30 y x + 2y 120 No existe región factible X

40 max z = 2x y s.a: x y 1 2x + y 6 x, y 0 PPL no acotado 6 5 Y Región Factible La región factible es no acotada. Se muestran en el gráfico las rectas de nivel para z = 4 y z = 6. Pero podemos desplazar las rectas de nivel hacia la derecha indefinidamente sin abandonar la región factible. Por tanto, el valor de z puede crecer indefinidamente z = z = 6 5 X

41 Resumen Función objetivo Optimizar (maximizar o minimizar) z = a x + by sujeta a las siguientes restricciones a 1x + b 1 y d 1 a 2 x + b 2 y d a n x + b n y d n Solución posible: cualquier par de valores (x 1, y 1 ) que cumpla todas la restricciones. Al conjunto de soluciones posibles de un problema lineal se le llama región factible. Solución óptima: un par de valores (x 1, y 1 ), si existe, que hace máxima o mínima la función objetivo Tener solución única Tener infinitas soluciones No tener solución Un problema de programación lineal puede:

42 FIN INVESTIGACION DE OPERACIONES JRVA- 2010

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales. UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A Prueba de Acceso a la Universidad. JUNIO 00. Bachillerato de iencias Sociales. El ejercicio presenta dos opciones A y B. El alumno deberá elegir y desarrollar una de ellas sin mezclar contenidos. OPIÓN

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

Teoría Tema 1 Sistema de inecuaciones - Programación lineal

Teoría Tema 1 Sistema de inecuaciones - Programación lineal página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver

Más detalles

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores.

OPCIÓN A. La empresa A (x) tiene 30 trabajadores, la B (y) 20 trabajadores y la C (z) 13 trabajadores. PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA EL ALUMNADO DE BACHILLERATO. 159 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES. JUNIO 16 EXAMEN RESUELTO POR JAVIER SUÁREZ CABALLERO (@javiersc9) OBSERVACIONES IMPORTANTES:

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

Lección 12: Sistemas de ecuaciones lineales

Lección 12: Sistemas de ecuaciones lineales LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9

Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9 IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes:

Programación lineal. En esta Unidad didáctica nos proponemos alcanzar los objetivos siguientes: UNIDAD 3 Programación lineal a programación lineal es parte L de una rama de las matemáticas relativamente joven llamada investigación operativa. La idea básica de la programación lineal es la de optimizar,

Más detalles

FICHA DE TRABAJO Nº 14

FICHA DE TRABAJO Nº 14 Nombre FICHA DE TRABAJO Nº 14 Nº orden Bimestre IV 3ºgrado - sección A B C D Ciclo III Fecha: - 10-1 Área Matemática Tema SEGMENTOS ELEMENTOS FUNDAMENTALES DE LA GEOMETRÍA La geometría se basa en tres

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 5 Nombre: Desigualdades lineales, cuadráticas y valor absoluto Objetivo de la asignatura: En esta sesión el estudiante conocerá las características y métodos de

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A Prueba de Acceso a la Universidad SEPTIEMBRE Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN

Más detalles

Integradora 3. Modelos de Programación Lineal

Integradora 3. Modelos de Programación Lineal Métodos Cuantitativos para la Toma de Decisiones Integradora 3. Modelos de Programación Lineal Objetivo Al finalizar la actividad integradora, serás capaz de: R l bl d PL di d l ét d Resolver problemas

Más detalles

Introducción a la Programación Dinámica. El Problema de la Mochila

Introducción a la Programación Dinámica. El Problema de la Mochila Tema 1 Introducción a la Programación Dinámica. El Problema de la Mochila La programación dinámica no es un algoritmo. Es más bien un principio general aplicable a diversos problemas de optimización que

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA MATEMÁTICA SEMANA 2 ECUACIÓN DE LA RECTA Todos los derechos de autor son de la exclusiva propiedad de IACC o de los otorgantes de sus licencias. No está permitido copiar, reproducir, reeditar, descargar,

Más detalles

5.- Problemas de programación no lineal.

5.- Problemas de programación no lineal. Programación Matemática para Economistas 7 5.- Problemas de programación no lineal..- Resolver el problema Min ( ) + ( y ) s.a 9 5 y 5 Solución: En general en la resolución de un problema de programación

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

Preparando la selectividad

Preparando la selectividad Preparando la selectividad PRUEBA nº 2. Ver enunciados Ver Soluciones Opción A Ver Soluciones Opción B Se elegirá el ejercicio A o el ejercicio B, del que se harán los TRES problemas propuestos. LOS TRES

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

UNIDAD 4 Programación lineal

UNIDAD 4 Programación lineal UNIDD 4 Programación lineal Pág. 1 de 8 1 Un mayorista de frutos secos tiene almacenados 1 800 kilos de avellanas y 420 kilos de almendras para hacer dos tipos de mezclas, que embala en cajas como se indica

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total

III. Escribir las Restricciones en formas de Inecuaciones. A B C X (Grupo 1) Y (Grupo 2) Total EJERCICIOS RESUELTOS DE PROGRAMACIÓN LINEAL. 1. (JUN 02) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y

Más detalles

Tema 3: El Método Simplex. Algoritmo de las Dos Fases.

Tema 3: El Método Simplex. Algoritmo de las Dos Fases. Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo

Más detalles

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO

ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO ESTRUCTURA DEL EXAMEN DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II PARA ALUMNOS DE BACHILLERATO El examen presentará dos opciones diferentes entre las que el alumno deberá elegir una y responder

Más detalles

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.

EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla

Más detalles

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO.

DISTANCIA ENTRE DOS PUNTOS EN EL PLANO CARTESIANO. RAZONAMIENTO Y DEMOSTRACIÓN Determina la distancia entre pares de puntos. Calcula las coordenadas del punto medio del segmento cuyos extremos son dos puntos dados. Halla la pendiente de una recta. COMUNICACIÓN

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

PROBLEMAS DE OPTIMIZACIÓN LINEAL

PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMAS DE OPTIMIZACIÓN LINEAL PROBLEMA DE LA PRODUCCIÓN 1.- Una fábrica elabora dos tipos de productos, A y B. El tipo A necesita 2 obreros trabajando un total de 20 horas, y se obtiene un beneficio

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Rentas Ciertas MATEMÁTICA FINANCIERA. Rentas Ciertas: Ejemplo. Rentas Ciertas. Ejemplo (1) C C C C C

Rentas Ciertas MATEMÁTICA FINANCIERA. Rentas Ciertas: Ejemplo. Rentas Ciertas. Ejemplo (1) C C C C C Rentas Ciertas MATEMÁTICA FINANCIERA RENTAS CIERTAS I Luis Alcalá UNSL Segundo Cuatrimeste 06 A partir de ahora, utilizaremos capitalización compuesta como ley financiera por defecto, salvo que expĺıcitamente

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.

Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones. 10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son

Más detalles

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica

Práctica 2: Análisis de sensibilidad e Interpretación Gráfica Práctica 2: Análisis de sensibilidad e Interpretación Gráfica a) Ejercicios Resueltos Modelización y resolución del Ejercicio 5: (Del Conjunto de Problemas 4.5B del libro Investigación de Operaciones,

Más detalles

Universidad Autónoma de Sinaloa

Universidad Autónoma de Sinaloa Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:

Más detalles

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES

MATEMÁTICASII Curso académico BLOQUE GEOMETRÍA. TEMA 1: VECTORES MATEMÁTICASII Curso académico 2015-2016 BLOQUE GEOMETRÍA. TEMA 1: VECTORES 1.1 VECTORES DEL ESPACIO. VECTORES LIBRES DEL ESPACIO Sean y dos puntos del espacio. Llamaremos vector (fijo) a un segmento orientado

Más detalles

El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán

El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán PROGRAMACIÓN LINEAL El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán a optimizar funciones lineales sujetas a una serie de restricciones

Más detalles

JUNIO Bloque A

JUNIO Bloque A Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.

Más detalles

UNIDAD 5: PROGRAMACIÓN LINEAL

UNIDAD 5: PROGRAMACIÓN LINEAL UNIDAD 5: PROGRAMACIÓN LINEAL ÍNDICE DE LA UNIDAD 1.- INTRODUCCIÓN.... 1 2.- INECUACIONES LINEALES CON DOS INCÓGNITAS... 2 3.- SISTEMAS DE INECUACIONES LINEALES... 3 4.- PROGRAMACIÓN LINEAL. FORMULACIÓN

Más detalles

Se distinguen tres métodos algebraicos de resolución de sistemas:

Se distinguen tres métodos algebraicos de resolución de sistemas: MÉTODOS DE RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES Se distinguen tres métodos algebraicos de resolución de sistemas: Sustitución Igualación Reducción Notas: 1) Es importante insistir en que la solución

Más detalles

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut

Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

Inecuaciones: Actividades de recuperación.

Inecuaciones: Actividades de recuperación. Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles