Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones"

Transcripción

1 Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal y su Interpretación geométrica Quien tiene un libro y no lo lee, no se diferencia de aquel que no sabe leer Año académico: II Semestre 2010

2 Un problema de máximos de programación lineal Problema 1: Una fábrica de bombones tiene almacenados 500 Kg.. de chocolate, 100 Kg.. de almendras y 85 Kg.. de frutas. Produce dos tipos de cajas: las de tipo A contienen 3 Kg. de chocolote, 1 Kg. de almendras y 1 Kg. de frutas; la de tipo B contiene 2 Kg. de chocolate, 1,5 Kg. de almendras y 1 Kg. de frutas. Los precios de las cajas de tipo A y B son 13 y 13,50, respectivamente. Cuántas cajas de cada tipo debe fabricar para maximizar sus venta? La siguiente tabla resume los datos del problema Designando por x = nº de cajas de tipo A y = nº de cajas de tipo B Función objetivo z = f (x, y) = 13x y Con las restricciones: Caja tipo A Caja tip B Disponibles Chocolate Almendras Frutas Precio en euros que hay que maximizar 3x + 2y 500 (por el chocolate almacenado) x + 1.5y 100 (por la almendra almacenada) x + y 85 (por la fruta almacenada) x 0 y 0

3 En un primer paso representamos la región factible. En un segundo paso obtenemos los vértices de la región factible. R(0, 100/1,5) Finalmente evaluamos la función objetivo z = 13x + 13,50y ; en cada vértice, para obtener el máximo z(p) = ,50. 0 = 1105 Q(55, 30) z(q) = , = 1120 z(r) = , /1,5 = 900 P(85, 0)

4 Un problema de mínimos de programación lineal Problema2: Un grupo local posee dos emisoras de radio, una de FM y otra de AM. La emisora de FM emite diariamente 12 horas de música rock, 6 horas de música clásica y 5 horas de información general. La emisora de AM emite diariamente 5 horas de música rock, 8 horas de música clásica y 10 horas de información general. Cada día que emite la emisora de FM le cuesta al grupo 5000, y cada día que emite la emisora de AM le cuesta al grupo Sabiendo que tiene enlatado para emitir 120 horas de música rock, 180 horas de música clásica y 100 horas de información general, cuántos días deberá emitir con ese material cada una de la emisoras para que el coste sea mínimo, teniendo en cuenta que entre las dos emisoras han de emitir al menos una semana? La siguiente tabla resume los datos del problema Designando por x = nº de días de AM y = nº de días de FM Emisora FM Emisora AM Disponibles Música rock Música clásica Información general Coste en euros Función objetivo z = f (x, y) = 5000x y que hemos de minimizar Con las restricciones: 12x + 5y 120 (por la música rock) 6x + 8y 180 (por la música clásica) 5x + 10y 100 (por la información general) x + y 7 (emitir al menos una semana) x 0 y 0

5 En un primer paso representamos la región factible. En un segundo paso obtenemos los vértices de la región factible. Finalmente evaluamos la función objetivo z = 5000x y en cada vértice, para obtener el mínimo. z(p) = = z(q) = = R(0, 10) S(0, 7) Q(7.37, 6.32 z(r) = = z(s) = = z(t) = = T(7, 0) P(10, 0)

6 Problema 3 La fábrica Gepetto S.L., manufactura muñecos y trenes de madera. Cada muñeco: Produce un beneficio neto de U$3. Requiere 2 horas de trabajo de acabado. Requiere 1 hora de trabajo de carpinteria. Cada tren: Produce un beneficio neto de U$2 Requiere 1 hora de trabajo de acabado. Requiere 1 hora trabajo de carpinteria. Cada semana Gepetto puede disponer de: Todo el material que necesite. Solamente 100 horas de acabado. Solamente 80 horas de carpinteria. También: La demanda de trenes puede ser cualquiera (sin límite). La demanda de muñecos es como mucho 40. Gepetto quiere maximizar sus beneficios. Cuántos muñecos y cuántos trenes debe fabricar?

7 Este problema es un ejemplo típico de un problema de programación lineal (PPL). Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Función Objetivo. En cualquier PPL, la decisión a tomar es como maximizar (normalmente el beneficio) o minimizar (el coste) de alguna función de las variables de decisión. Esta función a maximizar o minimizar se llama función objetivo. El objetivo de Gepetto es elegir valores de x e y para maximizar 3x + 2y. Usaremos la variable z para denotar el valor de la función objetivo. La función objetivo de Gepetto es: Max z = 3x + 2y Restricciones Son desigualdades que limitan los posibles valores de las variables de decisión. En este problema las restricciones vienen dadas por la disponibilidad de horas de acabado y carpintería y por la demanda de muñecos. También suele haber restricciones de signo o no negatividad: x 0 y 0

8 Restricción 1: no más de 100 horas de tiempo de acabado pueden ser usadas. Restricción 2: Restricciones Cuando x e y crecen, la función objetivo de Gepetto también crece. Pero no puede crecer indefinidamente porque, para Gepetto, los valores de x e y están limitados por las siguientes tres restricciones: no más de 80 horas de tiempo de carpinteria pueden ser usadas. Restricción 3: limitación de demanda, no deben fabricarse más de 40 muñecos. Estas tres restricciones pueden expresarse matematicamente por las siguientes desigualdades: Restricción 1: 2 x + y 100 Restricción 2: x + y 80 Restricción 3: x 40 Además, tenemos las restricciones de no negatividad: x 0 e y 0

9 Formulación matemática del PPL Variables de Decisión x = nº de muñecos producidos a la semana y = nº de trenes producidos a la semana Muñeco Tren Beneficio 3 2 Acabado Max z = 3x + 2y (función objetivo) 2 x + y 100 (acabado) Carpintería x + y 80 (carpinteria) Demanda 40 x 40 (demanda muñecos) x 0 (restricción de signo) y 0 (restricción de signo)

10 Formulación matemática del PPL Para el problema de Gepetto, combinando las restricciones de signo x 0 e y 0 con la función objetivo y las restricciones, tenemos el siguiente modelo de optimización: Sujeto a (s.a:) Max z = 3x + 2y (función objetivo) 2 x + y 100 (restricción de acabado) x + y 80 (restricción de carpinteria) x 40 (restricción de demanda de muñecos) x 0 (restricción de signo) y 0 (restricción de signo)

11 Región factible La región factible de un PPL es el conjunto de todos los puntos que satisfacen todas las restricciones. Es la región del plano delimitada por el sistema de desigualdades que forman las restricciones. x = 40 e y = 20 está en la región factible porque satisfacen todas las restricciones de Gepetto. Sin embargo, x = 15, y = 70 no está en la región factible porque este punto no satisface la restricción de carpinteria [ > 80]. Restricciones de Gepetto 2x + y 100 (restricción finalizado) x + y 80 (restricción carpintería) x 40 (restricción demanda) x 0 (restricción signo) y 0 (restricción signo)

12 Solución óptima Para un problema de maximización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor máximo. Para un problema de minimización, una solución óptima es un punto en la región factible en el cual la función objetivo tiene un valor mínimo. La mayoría de PPL tienen solamente una solución óptima. Sin embargo, algunos PPL no tienen solución óptima, y otros PPL tienen un número infinito de soluciones. Se puede demostrar que la solución óptima de un PPL está siempre en la frontera de la región factible, en un vértice (si la solución es única) o en un segmento entre dos vértices contiguos (si hay infinitas soluciones) Más adelante veremos que la solución del PPL de Gepetto es x = 20 e y = 60. Esta solución da un valor de la función objetivo de: z = 3x + 2y = = 180 Cuando decimos que x = 20 e y = 60 es la solución óptima, estamos diciendo que, en ningún punto en la región factible, la función objetivo tiene un valor (beneficio) superior a 180.

13 Representación Gráfica de las restricciones Cualquier PPL con sólo dos variables puede resolverse gráficamente. Y 100 2x + y = 100 Por ejemplo, para representar gráficamente la primera restricción, 2x + y 100 : Dibujamos la recta 2x + y = Elegimos el semiplano que cumple la desigualdad: el punto (0, 0) la cumple ( ), así que tomamos el semiplano que lo contiene X

14 Dibujar la región factible Puesto que el PPL de Gepetto tiene dos variables, se puede resolver gráficamente. La región factible es el conjunto de todos los puntos que satisfacen las restricciones: 2 x + y 100 (restricción de acabado) x + y 80 (restricción de carpintería) x 40 (restricción de demanda) x 0 (restricción de signo) y 0 (restricción de signo) Vamos a dibujar la región factible que satisface estas restricciones.

15 Dibujar la región factible Y Restricciones 100 2x + y = x + y 100 x + y x 40 x 0 60 y 0 40 Teniendo en cuenta las restricciones de signo (x 0, y 0), nos queda: X

16 Dibujar la región factible Y 100 Restricciones 80 2 x + y 100 x + y 80 x 40 x 0 y x + y = X

17 Dibujar la región factible Y 100 Restricciones 2 x + y 100 x + y 80 x 40 x 0 y x = X

18 La intersección de todos estos semiplanos (restricciones) nos da la región factible Dibujar la región factible Y x + y = 100 x = x + y = Región Factible X

19 La región factible (al estar limitada por rectas) es un polígono. En esta caso, el polígono ABCDE. Como la solución óptima está en alguno de los vértices (A, B, C, D o E) de la región factible, calculamos esos vértices. Vértices de la región factible Y E D Región Factible 2x + y = 100 C x = 40 x + y = 80 Restricciones 2 x + y 100 x + y 80 x 40 x 0 y 0 A B X

20 Vértices de la región factible Los vértices de la región factible son intersecciones de dos rectas. El punto D es la intersección de las rectas 2x + y = 100 x + y = 80 La solución del sistema x = 20, y = 60 nos da el punto D. Y x + y = 100 E(0, 80) x = 40 D (20, 60) B es solución de x = 40 y = 0 C es solución de x = 40 2x + y = 100 E es solución de x + y = 80 x = A(0, 0) Región Factible C(40, 20) B(40, 0) x + y = X

21 Resolución gráfica Max z = 3x + 2y Y Para hallar la solución óptima, dibujamos las rectas en las cuales los puntos tienen el mismo valor de z (0, 80) (20, 60) La figura muestra estas lineas para z = 0, z = 100, y z = Región Factible (40, 20) (40, 0) (0, 0) z = 0 z = 100 z = 180 X

22 Resolución gráfica Max z = 3x + 2y La última recta de z que interseca (toca) la región factible indica la solución óptima para el PPL. Para el problema de Gepetto, esto ocurre en el punto D (x = 20, y = 60, z = 180). Y (0, 0) (0, 80) (20, 60) Región Factible (40, 20) (40, 0) z = 0 z = 100 z = 180 X

23 Max z = 3x + 2y Resolución analítica Y También podemos encontrar la solución óptima calculando el valor de z en los vértices de la región factible (0, 80) Vértice z = 3x + 2y (0, 0) z = = 0 (40, 0) z = = 120 (40, 20) z = = 160 (20, 60) z = = 180 (0, 80) z = = (20, 60) Región Factible (40, 20) La solución óptima es: x = 20 muñecos y = 60 trenes z = U$ 180 de beneficio (0, 0) (40, 0) X

24 Hemos identificado la región factible para el problema de Gepetto y buscado la solución óptima, la cual era el punto en la región factible con el mayor valor posible de z.

25 Recuerda que: La región factible en cualquier PPL está limitada por segmentos (es un polígono, acotado o no). La región factible de cualquier PPL tiene solamente un número finito de vértices. Cualquier PPL que tenga solución óptima tiene un vértice que es óptimo.

26 Problema 4. Un problema de minimización Dorian Auto; fabrica y vende autos y furgonetas.la empresa quiere emprender una campaña publicitaria en TV y tiene que decidir comprar los tiempos de anuncios en dos tipos de programas: del corazón y fútbol. Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. Un anuncio en el programa de corazón cuesta U$ y un anuncio del fútbol cuesta U$ Dorian Auto quisiera que los anuncios sean vistos por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo.

27 Formulación del problema: Cada anuncio del programa del corazón es visto por 6 millones de mujeres y 2 millones de hombres. Cada partido de fútbol es visto por 3 millones de mujeres y 8 millones de hombres. Un anuncio en el programa de corazón cuesta U$ y un anuncio del fútbol cuesta U$ Dorian Auto quisiera que los anuncios sean vistos por lo menos 30 millones de mujeres y 24 millones de hombres. Dorian Auto quiere saber cuántos anuncios debe contratar en cada tipo de programa para que el coste de la campaña publicitaria sea mínimo. Corazón (x) Fútbol (y) mujeres 6 3 6x + 3y 30 hombres 2 8 2x + 8y 24 Coste U$ x +100y

28 Formulación del problema: Variables de decisión: x = nº de anuncios en programa de corazón y = nº de anuncios en fútbol Min z = 50x + 100y (función objetivo en ) s.a: 6x + 3y 30 (mujeres) 2x + 8y 24 (hombres) x, y 0 (no negatividad)

29 Dibujamos la región factible. Y 14 Min z = 50 x + 100y s.a. 6x + 3y 30 2x + 8y 24 x, y x + 3y = x + 8y = X

30 Calculamos los vértices de la región factible: El vértice A es solución del sistema 6x + 3y = 30 x = 0 Por tanto, A(0, 10) El vértice B es solución de 6x + 3y = 30 2x + 8y = 24 Por tanto, B(4, 2) Y A La región factible no está acotada Región Factible El vértice C es solución de 2x + 8y = 24 y = 0 Por tanto, C(12, 0) 2 B C X

31 Resolvemos por el método analítico Evaluamos la función objetivo z en los vértices. Vértice A(0, 10) z = 50x + 100y z = = = = Y B(4, 2) C(12, 0) z = = = = 400 z = = = = A(0, 10) Región Factible El coste mínimo se obtiene en B. 4 Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = U$400 (mil ) 2 B(4, 2) C(12, 0) X

32 Resolvemos por el método gráfico Min z = 50 x + 100y Y s.a. 6x + 3y x + 8y 24 x, y 0 12 El coste mínimo se obtiene en el punto B. Z = 600 Z = A(0, 10) Región Factible 4 Solución: x = 4 anuncios en pr. corazón y = 2 anuncios en futbol Coste z = 400 (mil ) 2 B(4, 2) C(12, 0) X

33 RESOLVER EL SIGUIENTE PROBLEMA DE PL(TAREA) 33 Un fabricante produce mesas (X) y escritorios (Y). Para cada mesa que produce requiere 2 horas y media de montaje, tres horas de pulido y una hora de embalaje. Asimismo, para cada escritorio se requiere una hora de montaje, tres horas de pulido y dos horas de embalaje. Estas secciones presentan las siguientes limitaciones: la unidad de montaje trabaja, como máximo 20 horas al día; la unidad de pulido como máximo 15 horas al día; la unidad de embalaje como máximo 16 horas al día. El fabricante trabaja con un margen de beneficios de U$25 por mesa producida y U$40 por cada escritorio, Plantear el modelo de programación Matemático en el caso que el fabricante pretenda maximizar beneficios. Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

34 Solución óptima Si la región factible es cerrada la solución óptima está en un vértice del polígono (cuando es única) o todo un lado del polígono (infinitas soluciones) Si la región factible es abierta, puede haber solución única (en un vértice), infinitas soluciones (todo un lado) o no tener solución 34 Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

35 35 Número de Soluciones de un PPL Los dos ejemplos anteriores, hasta ahora estudiados tienen, cada uno, una única solución óptima. No en todos los PPL ocurre esto. Se pueden dar también las siguientes posibilidades: Algunos PPL tienen un número infinito de soluciones óptimas (alternativas o múltiples soluciones óptimas). Algunos PPL no tienen soluciones factibles (no tienen región factible). Algunos PPL son no acotados: Existen puntos en la región factible con valores de z arbitrariamente grandes (en un problema de maximización). Veamos un ejemplo de cada caso. Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

36 Número de soluciones de un problema de programación lineal Para un problema de minimización Solución única Solución de arista: infinitas soluciones No hay mínimo 36 Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

37 Para un problema de maximización Solución única Solución de arista: infinitas soluciones No hay máximo 37 Copyright (c) 2004 Brooks/Cole, a division of Thomson Learning, Inc.

38 Número infinito de soluciones óptimas Consideremos el siguiente problema: max z = 3x + 2y Y C s.a: 3x + 2y 120 x + y 50 x, y 0 Cualquier punto (solución) situado en el segmento AB puede ser una solución óptima de z = Región Factible z = 60 B z = 100 z = A 50 X

39 Consideremos el siguiente problema: max z = 3x 1 + 2x 2 s.a: 3x + 2y 120 x + y 50 x 30 y 30 x, y 0 Sin soluciones factibles Y x + y 50 No existe Región Factible x 30 y x + 2y 120 No existe región factible X

40 max z = 2x y s.a: x y 1 2x + y 6 x, y 0 PPL no acotado 6 5 Y Región Factible La región factible es no acotada. Se muestran en el gráfico las rectas de nivel para z = 4 y z = 6. Pero podemos desplazar las rectas de nivel hacia la derecha indefinidamente sin abandonar la región factible. Por tanto, el valor de z puede crecer indefinidamente z = z = 6 5 X

41 Resumen Función objetivo Optimizar (maximizar o minimizar) z = a x + by sujeta a las siguientes restricciones a 1x + b 1 y d 1 a 2 x + b 2 y d a n x + b n y d n Solución posible: cualquier par de valores (x 1, y 1 ) que cumpla todas la restricciones. Al conjunto de soluciones posibles de un problema lineal se le llama región factible. Solución óptima: un par de valores (x 1, y 1 ), si existe, que hace máxima o mínima la función objetivo Tener solución única Tener infinitas soluciones No tener solución Un problema de programación lineal puede:

42 FIN INVESTIGACION DE OPERACIONES JRVA- 2010

Universidad de Managua Curso de Programación Lineal

Universidad de Managua Curso de Programación Lineal Universidad de Managua Curso de Programación Lineal Profesor: MSc. Julio Rito Vargas Avilés. Objetivos y Temáticas del Curso Estudiantes: Facultad de CE y A Año académico: III Cuatrimestre 2014 ORIENTACIONES

Más detalles

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc.

PROGRAMACIÓN LINEAL. Su empleo es frecuente en aplicaciones de la industria, la economía, la estrategia militar, etc. PROGRAMACIÓN LINEAL La programación lineal da respuesta a situaciones en las que se exige maximizar o minimizar funciones que se encuentran sujetas a determinadas limitaciones, que llamaremos restricciones.

Más detalles

UNIDAD 6.- PROGRAMACIÓN LINEAL

UNIDAD 6.- PROGRAMACIÓN LINEAL UNIDAD 6.- PROGRAMACIÓN LINEAL 1. INECUACIONES LINEALES CON DOS INCÓGNITAS Una inecuación de primer grado con dos incógnitas es una inecuación que en forma reducida se puede expresar de la siguiente forma:

Más detalles

MÉTODO GRÁFICO. PROFESORA: LILIANA DELGADO HIDALGO

MÉTODO GRÁFICO. PROFESORA: LILIANA DELGADO HIDALGO MÉTODO GRÁFICO PROFESORA: LILIANA DELGADO HIDALGO Liliana.delgado@correounivalle.edu.co Este método grafica las restricciones y la función objetivo del modelo en un plano cartesiano. Para poder representar

Más detalles

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO

UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO INVESTIGACIÓN DE OPERACIONES Laboratorio #1 GRAFICA DE REGIONES CONVEXAS Y SOLUCIÓN POR MÉTODO GRÁFICO DE UN PROBLEMA DE PROGRAMACIÓN

Más detalles

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices

Segmentos del borde o frontera Lados o aristas Intersecciones de éstos Vértices UNIDAD 4: PROGRAMACIÓN LINEAL 1 SISTEMAS DE INECUACIONES LINEALES CON DOS INCÓGNITAS RECINTOS CONVEXOS La solución de un sistema de inecuaciones lineales (SIL) con dos incógnitas viene representada por

Más detalles

Universidad de Managua Al más alto nivel

Universidad de Managua Al más alto nivel Universidad de Managua Al más alto nivel Profesor: MSc. Julio Rito Vargas Avilés. Curso de Programación Lineal MÉTODO GRÁFICO PARA PROBLEMAS DE PROGRAMACIÓN LINEAL Estudiantes: Facultad de Ciencias Económicas

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Fundamentos de Investigación de Operaciones Investigación de Operaciones de Modelos de LP 25 de julio de 2004. Descripción del Método ualquier problema de Programación Lineal de sólo 2 variables puede

Más detalles

APUNTE: Introducción a la Programación Lineal

APUNTE: Introducción a la Programación Lineal APUNTE: Introducción a la Programación Lineal UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática Carreras: Lic. en Administración Profesor: Prof. Mabel Chrestia Semestre: do Año: 06 Definición La

Más detalles

Programación Lineal. El modelo Matemático

Programación Lineal. El modelo Matemático Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)

Más detalles

EJERCICIOS PROGRAMACIÓN LINEAL

EJERCICIOS PROGRAMACIÓN LINEAL EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Presentación del Programa de Investigación de Operaciones Estudiantes:

Más detalles

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.

PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL. PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de

Más detalles

se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.

se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles. TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias

Más detalles

Introducción a la programación lineal

Introducción a la programación lineal Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una

Más detalles

R E S O L U C I Ó N. a) Lo primero que hacemos es dibujar el recinto y calcular los vértices del mismo

R E S O L U C I Ó N. a) Lo primero que hacemos es dibujar el recinto y calcular los vértices del mismo Sea el sistema de inecuaciones siguiente: x + y 12;3 y x; x 1; y 1 a) Represente gráficamente la región factible y calcule sus vértices b) En qué punto de esa región, F( x, y) = 25x + 2 y alcanza el máximo?

Más detalles

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO

PROGRAMACIÓN LINEAL MÉTODO GRÁFICO 1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los

Más detalles

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales

Programación lineal 2º curso de Bachillerato Matemáticas aplicadas a las ciencias sociales PROGRAMACIÓN LINEAL Índice: 1. Origen de la programación lineal------------------------------------------------------------- 1 2. Inecuaciones lineales. Interpretación geométrica -----------------------------------------

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

Problemas de programación lineal.

Problemas de programación lineal. Matemáticas 2º Bach CCSS. Problemas Tema 2. Programación Lineal. Pág 1/12 Problemas de programación lineal. 1. Unos grandes almacenes encargan a un fabricante pantalones y chaquetas deportivas. El fabricante

Más detalles

EJERCICIO DE MAXIMIZACION

EJERCICIO DE MAXIMIZACION PROGRAMACION LINEAL Programación lineal es una técnica matemática que sirve para investigar, para así, hallar la solución a un problema dado dentro de un conjunto de soluciones factibles y es la operación

Más detalles

TEMA 2: PROGRAMACIÓN LINEAL.

TEMA 2: PROGRAMACIÓN LINEAL. TEMA : PROGRAMACIÓN LINEAL.. 1. INTRODUCCIÓN. La Programación Lineal (PL) puede considerarse como uno de los grandes avances científicos habidos durante la primera mitad del siglo XX y sin duda es una

Más detalles

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como:

Dakota quiere maximizar el ingreso total por que se han comprado ya los recursos. Definiendo las variables de decisión como: UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES LABORATORIO #7 ANALISIS DE SENSIBILIDAD Y DUALIDAD DE UN PPL I.

Más detalles

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12

Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental. Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Modelos de Programación Lineal: Resolución gráfica y Teorema fundamental Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Resolución gráfica de problemas de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción A Reserva 2, Ejercicio

Más detalles

PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD)

PROBLEMAS DE PROGRAMACIÓN LINEAL (SELECTIVIDAD) (3 puntos) Una fábrica produce dos tipos de relojes: de pulsera, que vende a 90 euros la unidad, y de bolsillo, que vende a 120 euros cada uno. La capacidad máxima diaria de fabricación es de 1000 relojes,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

UNIDAD 4 Programación Lineal

UNIDAD 4 Programación Lineal MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:

Más detalles

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0

a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0 Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le

Más detalles

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2

ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2 INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.

Más detalles

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:

UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATMÁTICAS APLICADAS A LAS CINCIAS SOCIALS JRCICIO Nº páginas 2 Tablas OPTATIVIDAD: L ALUMNO/A DBRÁ SCOGR UNO D LOS DOS BLOQUS Y DSARROLLAR LAS

Más detalles

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato

Matemáticas aplicadas a las CC.SS. II 2º Bachillerato 4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación

Más detalles

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA

Facultad de Farmacia. Grado en Nutrición Humana y Dietética. Depto. de Estadística e Investigación Operativa ESTADÍSTICA Facultad de Farmacia Grado en Nutrición Humana y Dietética Depto. de Estadística e Investigación Operativa ESTADÍSTICA TEMA 6: Introducción a la Programación Lineal GRUPO C y E. Curso 2015-2016 Profesor:

Más detalles

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1

Z Optima X 1 + X 2 5 Z 1 -X 1 + 2X Región factible. Figura 1 Método Gráfico El procedimiento geométrico, es únicamente adecuado para resolver problemas muy pequeños (con no más de dos variables debido al problema de dimensionalidad). Este método provee una gran

Más detalles

PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas:

PROGRAMACIÓN LINEAL. Para resolver estos problemas la investigación de operaciones los agrupa en dos categorías básicas: PROGRAMACIÓN LINEAL INTRODUCCIÓN La Investigación de Operaciones o Investigación Operativa, es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística y algoritmos con objeto

Más detalles

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.

EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos. EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo

Más detalles

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios

Facultad de Ciencias Económicas, Jurídicas y Sociales - Métodos Cuantitativos para los Negocios Ubicación dentro del Programa Unidad III UNIDAD II: PROGRAMACIÓN LINEAL 1. Característica. Formulación matemática de un problema de programación lineal. Planteo e interpretación de un sistema de inecuaciones.

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

Prof. Pérez Rivas Lisbeth Carolina

Prof. Pérez Rivas Lisbeth Carolina Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística

Más detalles

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son:

Un sistema de ecuaciones diferenciales son aquellas que tienen varias posibilidades para su solución. Estas son: Unidad X: Programación lineal (continuación) Objetivo específico: Entender ampliamente el fenómeno del comportamiento de los modelos matemáticos para la resolución de problemas enfocados a las ecuaciones

Más detalles

Resolución. Resolución gráfica de problemas de optimización

Resolución. Resolución gráfica de problemas de optimización Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema

Más detalles

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y.

En primer lugar voy a trasladar el enunciado a lenguaje matemático. Me fijo en lo que me preguntan: a una variable la llamo x y a otra y. PROGRAMACIÓN LINEAL EJERCICIO TIPO Una confitería se elaboran tartas de nata y de manzana. Cada tarta de nata requiere medio kilo de azúcar y 8 huevos; y una de manzana, 1 kg de azúcar y 6 huevos. En la

Más detalles

PROGRAMACIÓN LINEAL. 1. Introducción

PROGRAMACIÓN LINEAL. 1. Introducción PROGRAMACIÓN LINEAL 1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver problemas

Más detalles

Opción A. Alumno. Fecha: 23 Noviembre 2012

Opción A. Alumno. Fecha: 23 Noviembre 2012 Fecha: 3 Noviembre 0 Opción A Alumno. Ejercicio nº.- a) Resuelve el siguiente sistema, utilizando el método de Gauss: +=3 3+ = 3 3+3=9 +4 4= 3 3 3 3 4+ 5 0 0 0 3 3 9 5 0 0 0 5 0 0 3 0 6 5 0 0 0 Rango A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 3: PROGRAMACIÓN LINEAL Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 2, Ejercicio

Más detalles

Jesús Getán y Eva Boj. Marzo de 2014

Jesús Getán y Eva Boj. Marzo de 2014 Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza

Más detalles

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías

Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Breeding Manufacturing Inc. Mezcla de productos 2 La Breeding Manufacturing Inc., fabrica y vende dos tipos de

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN

EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN EJERCICIOS DE PROGRAMACIÓN LINEAL. RECUPERACIÓN 1.- Ejemplo resuelto Un herrero dispone de 80 kg. de acero y 120 kg. de aluminio quiere hacer bicicletas de paseo y de montaña que quiere vender, respectivamente

Más detalles

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales.

UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones. especiales. UNIDAD 4 SOLUCIÓN GRÁFICA DE PROBLEMAS DE P. L. de dos dimensiones especiales. Investigación de operaciones Introducción Después de construir modelos matemáticos de programación lineal, necesitamos desarrollar

Más detalles

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución:

Programación lineal. 1. Dibuja la región del plano definida por las siguientes inecuaciones: x 0, 0 y 2, y + 2x 4. Solución: 1 LRJS05 1. Dibuja la región del plano definida por las siguientes inecuaciones: 0, 0 y 2, y + 2 4 Representando las rectas asociadas a cada una de las inecuaciones dadas se obtiene la región sombreada

Más detalles

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL

TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL TEMA 4: INECUACIONES Y PROGRAMACIÓN LINEAL 1. Sistemas de inecuaciones lineales con dos incógnitas (Recuerda: Si multiplicamos o dividimos por un número negativo los dos miembros de una inecuación, debemos

Más detalles

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos

Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos

Más detalles

Introducción a Programación Lineal

Introducción a Programación Lineal Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 18 Programación Lineal ICS 1102 Optimización Profesor : Claudio Seebach 4 de octubre de 2005

Más detalles

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla

Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.

Más detalles

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES

MATEMÁTICAS 1º BACHILLERATO Curso EJERCICIOS RESUELTOS DE INECUACIONES MATEMÁTICAS 1º BACHILLERATO Curso 9-1 EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES A. Inecuaciones lineales con una incógnita x x1 x3 > 1 3 4 x x1 x3 4( x ) 3( x1) 6( x3) 1

Más detalles

Formulación de un Modelo de Programación Lineal

Formulación de un Modelo de Programación Lineal Formulación de un Modelo de Programación Lineal Para facilitar el planteamiento del modelo matemático general de la PL considere el siguiente problema: La planta HBB fabrica 4 productos que requieren para

Más detalles

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.

Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para

Más detalles

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX

PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla

Más detalles

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades

Proteinas Hidratos Grasas Coste/kg A B MATEMATIZACIÓN DEL PROBLEMA. A B Necesidades PROGRAMACIÓN LINEAL 1. Imaginemos que las necesidades semanales mínimas de una persona en proteínas, hidratos de carbono y grasas son, respectivamente, 8, 12 y 9 unidades. Supongamos que debemos obtener

Más detalles

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015

PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 1. (S2015) Un heladero artesano elabora dos tipos de helados A y B que vende cada día. Los helados tipo A llevan 1 gramo de nata

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

UNIDAD II. PROGRAMACIÓN LINEAL

UNIDAD II. PROGRAMACIÓN LINEAL UNIDAD II. PROGRAMACIÓN LINEAL OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Introducción

Más detalles

Con (0,0 ) no podem os probar porque es tá en la pr opia recta, por lo que probamos con (1,0) 1-0 = 1>0. Obteniendo la nueva zona coloreada.

Con (0,0 ) no podem os probar porque es tá en la pr opia recta, por lo que probamos con (1,0) 1-0 = 1>0. Obteniendo la nueva zona coloreada. Ejercicios resueltos Bloque V. Programación Lineal Tema 4: Resolución gráfica V.4-1 Resolver gráficamente el siguiente modelo de Programación Lineal: Maximizar f ( xy, ) = - y 6 x - y ³ 0 xy, ³ 0 Representamos

Más detalles

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4

UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica

Más detalles

EJERCICIO A. Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: x + y 5 x + 3y 9 x 0, y 0

EJERCICIO A. Problema 1. Se considera la región factible dada por el siguiente conjunto de restricciones: x + y 5 x + 3y 9 x 0, y 0 Baremo: Se elegirá el EJERCICIO A o el EJERCICIO B, del que sólo se harán tres de los cuatro problemas. Cada problema se puntuará de 0 a 3,3. La calificación final será la suma de 0,1 más la suma de las

Más detalles

MÉTODO DEL DUAL (TEORIA DE DUALIDAD)

MÉTODO DEL DUAL (TEORIA DE DUALIDAD) MÉTODO DEL DUAL (TEORIA DE DUALIDAD) Todo problema de programación lineal tiene asociado con él otro problema de programación lineal llamado DUAL. El problema inicial es llamado PRIMO y el problema asociado

Más detalles

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker

Universidad del Rosario Economía Matemática II Taller 8 - Kuhn Tucker . En los siguientes problemas de optimización: Universidad del Rosario Economía Matemática - 202-II Taller 8 - Kuhn Tucker a. Dibuje el conjunto K de puntos factibles y las curvas de nivel de la función

Más detalles

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2

Por Sustitución: y= 2x+6 x + 3 (2x+6) = 4 x + 6x + 18 = 4 7x = -14 x= -2 y=2 (-2)+6 y=2. Por Igualación: 6x+18=4-x 7x=-14 x= -2 y=2 (-2)+6 y=2 Tema 5: Sistemas de Ecuaciones y de Inecuaciones. Programación lineal. 5.1 Sistemas de dos ecuaciones con dos incógnitas. Un sistema de dos ecuaciones con dos incógnitas es de la forma: Un par de valores

Más detalles

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015

Introducción a la Programación Lineal. Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Introducción a la Programación Lineal Juan Pablo Cobá Juárez Pegueros Investigación de Operaciones Ingeniería Mecánica Facultad de Ingeniería 2015 Historia La investigación de Operaciones se caracteriza

Más detalles

EL PROBLEMA DE TRANSPORTE

EL PROBLEMA DE TRANSPORTE 1 EL PROBLEMA DE TRANSPORTE La TÉCNICA DE TRANSPORTE se puede aplicar a todo problema físico compatible con el siguiente esquema: FUENTES DESTINOS TRANSPORTE DE UNIDADES Donde transporte de unidades puede

Más detalles

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA

INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA INGENIERÍA DE SISTEMAS INVESTIGACIÓN OPERATIVA Sesión 4 Objetivos: Aplicar el método simplex a la solución de problemas reales. Contenido: Introducción al método Simplex Requerimiento del método Simplex

Más detalles

Esterilización 1 4. Envase 3 2

Esterilización 1 4. Envase 3 2 9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado

Más detalles

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2

1 + r, y = y 1 + ry Si P es el punto medio del segmento P 1 P 2, entonces x = x 1 + x 2 2 CAPÍTULO 5 Geometría analítica En el tema de Geometría Analítica se asume cierta familiaridad con el plano cartesiano. Se entregan básicamente los conceptos más básicos y los principales resultados (fórmulas)

Más detalles

Teoría Tema 1 Sistema de inecuaciones - Programación lineal

Teoría Tema 1 Sistema de inecuaciones - Programación lineal página 1/6 Teoría Tema 1 Sistema de inecuaciones - Programación lineal Índice de contenido Cómo resolver sistemas de inecuaciones lineales con dos incógnitas?...2 Un ejemplo...4 página 2/6 Cómo resolver

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Módulo Programación lineal. 3 Medio Diferenciado

Módulo Programación lineal. 3 Medio Diferenciado Módulo Programación lineal 3 Medio Diferenciado Profesor: Galo Páez Nombre: Curso :. Sabemos que una ecuación lineal de dos variables tiene la forma con ó y representa siempre una recta en el plano. Ahora

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos.

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis, y programación lineal resueltos. Análisis, y programación lineal resueltos. Problema 1: Se considera la función f(x) = ax 3 + b ln x siendo a y b parámetros reales. Determina los valores de a y bsabiendo que f(1) = 2 y que la derivada

Más detalles

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:

Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos: INECUACIONES. Una inecuación es una desigualdad algebraica en la que sus dos miembros aparecen ligados por uno de estos signos:, se lee" menor que",se lee" menor o igual que",se lee" mayor que",se lee

Más detalles

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A

El ejercicio presenta dos opciones, A y B. El alumno deberá elegir y desarrollar una de ellas, sin mezclar contenidos. OPCIÓN A Prueba de Acceso a la Universidad. JUNIO 00. Bachillerato de iencias Sociales. El ejercicio presenta dos opciones A y B. El alumno deberá elegir y desarrollar una de ellas sin mezclar contenidos. OPIÓN

Más detalles

EL PROBLEMA GENERAL DE OPTIMIZACION

EL PROBLEMA GENERAL DE OPTIMIZACION EL PROBLEMA GENERAL DE OPTIMIZACION Terminología Tipos de soluciones Resultados teóricos sobre existencia y unicidad de soluciones Método gráfico de resolución Problemas de optimización Este tipo de problemas

Más detalles

ANEXO C: ALGORITMOS DE INTERSECCIÓN

ANEXO C: ALGORITMOS DE INTERSECCIÓN ANEXO C: ALGORITMOS DE INTERSECCIÓN El corazón de cualquier modelo de trazado de rayos es el de los algoritmos de la intersección entre los rayos y los objetos del ambiente. En un proceso general de trazado

Más detalles

T7. PROGRAMACIÓN LINEAL

T7. PROGRAMACIÓN LINEAL T7. PROGRAMACIÓN LINEAL MATEMÁTICAS PARA 4º ESO MATH GRADE 10 (=1º BACHILLERATO EN ATLANTIC CANADA) CURRÍCULUM MATEMÁTICAS NOVA SCOTIA ATLANTIC CANADA TRADUCCIÓN: MAURICIO CONTRERAS PROGRAMACIÓN LINEAL

Más detalles

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte

Club GeoGebra Iberoamericano. 9 INECUACIONES 2ª Parte 9 INECUACIONES 2ª Parte INECUACIONES INTRODUCCIÓN Los objetivos de esta segunda parte del tema serán la resolución de inecuaciones con GeoGebra y la aplicación que tiene este software para la representación

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Lección 12: Sistemas de ecuaciones lineales

Lección 12: Sistemas de ecuaciones lineales LECCIÓN 1 Lección 1: Sistemas de ecuaciones lineales Resolución gráfica Hemos visto que las ecuaciones lineales de dos incógnitas nos permiten describir las situaciones planteadas en distintos problemas.

Más detalles

Antecedentes. Ejemplos de Optimización en Procesos Agrícolas. Planificación v/s Operación. Planificación, Operación y Control en el negocio agrícola

Antecedentes. Ejemplos de Optimización en Procesos Agrícolas. Planificación v/s Operación. Planificación, Operación y Control en el negocio agrícola Ejemplos de Optimización en Procesos Agrícolas Pedro Traverso Profesor Asociado Escuela de Administración Pontifica Universidad Católica de Chile Ingeniero Agrónomo PUC MBA, PUC M.Sc. Ingeniería Industrial

Más detalles

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.

Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

Práctica N 6 Modelos de Programación Lineal Entera

Práctica N 6 Modelos de Programación Lineal Entera Práctica N 6 Modelos de Programación Lineal Entera 6.1 Una empresa textil fabrica 3 tipos de ropa: camisas, pantalones y shorts. Las máquinas necesarias para la confección deben ser alquiladas a los siguientes

Más detalles

Problemas de Transbordo

Problemas de Transbordo Universidad Nacional de Ingeniería UNI-Norte Problemas de Transbordo III Unidad Temática MSc. Ing. Julio Rito Vargas II semestre 2008 El problema de transbordo Un problema de transporte permite sólo envíos

Más detalles

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO

. Universidad Tecnológica Nacional - Facultad Regional Rosario. Álgebra y Geometría Analítica EL PLANO . Universidad Tecnológica Nacional - Facultad Regional Rosario Álgebra y Geometría Analítica EL PLANO Autores: Lic. Martha Fascella Ing. Ricardo F. Sagristá 0 Contenido EL PLANO... 3.- Definición del plano

Más detalles

PROGRAMACIÓN LINEAL. MATEMÁTICAS aplicadas a las CC.SS. II Alfonso González IES Fernando de Mena Dpto. de Matemáticas

PROGRAMACIÓN LINEAL. MATEMÁTICAS aplicadas a las CC.SS. II Alfonso González IES Fernando de Mena Dpto. de Matemáticas PROGRAMACIÓN LINEAL Los estadounidenses George B. Dantzig (1914-2005), considerado padre de la Programación Lineal, y John Von Neumann (1903-1957), y el ruso Leonid Kantoróvich (1912-1986), tres de los

Más detalles

El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán

El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán PROGRAMACIÓN LINEAL El estudio de la programación lineal y sus aplicaciones serán el hilo conductor de la unidad. Los alumnos aprenderán a optimizar funciones lineales sujetas a una serie de restricciones

Más detalles

Programación Lineal (PL)

Programación Lineal (PL) Programación Lineal (PL) Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la siguiente situación. El objetivo es Optimizar, una función objetivo, lo cual implica

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A Prueba de Acceso a la Universidad SEPTIEMBRE Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0

EJERCICIO 1. Max Z = 6 x x 2 s.r. (1) 4 x x 2 12 (2) 2 x x 2 16 (3) 2 x 1 6 x 1, x 2 0 Considere el Programa Lineal siguiente: EJERCICIO Max Z 6 x + 9 x 2 s.r. () 4 x + 6 x 2 2 (2) 2 x + 8 x 2 6 (3) 2 x 6 x, x 2 0 (.a) 3 2 0 2 3 4 5 6 7 8 El Problema tiene una Región Factible delimitada

Más detalles