GUÍA DE APRENDIZAJE. 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "GUÍA DE APRENDIZAJE. 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por:"

Transcripción

1 GUÍA DE APRENDIZAJE Prof: Víctor Manuel Reyes Feest N 14 Contenido: Aplicación de Derivadas I.-Resuelve los problemas aplicando derivadas. 1. Se hace un cultivo aislado, con esporas de pan en un medio favorable para su proliferación, y el número de esporas en horas esta dado por la siguiente función: a. Qué se puede concluir con respecto a la razón de cambio entre el inicio del cultivo y los 45 minutos siguientes? 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por: a. Cuál es la razón de cambio al inicio del cultivo y 2 horas después? A partir de estos resultados Qué interpretación se puede efectuar en el contexto del problema? 3. Una población es atacada por un cierto virus que produce gripe. A partir del instante en que se detectó, se tomaron medidas para controlarlo. La ecuación que permite calcular el número de personas enfermas es: 627, en días. a. Se establece que cuando la tasa de contagio es de 2,6 í se puede determinar que la propagación del virus ha sido controlada. en qué instante se produce dicho control de la situación? 4. Suponga que el peso en gramos de un tumor cerebral, en el tiempo, está dado por 0,2 4,8, donde está medido en semanas. a. El control del avance del tumor involucra que el esquema convencional debe modificar el tratamiento por uno no tan invasivo cuando la razón de cambio del tumor sea entre los 2,4 "#$ 0 "#$ En qué rango de tiempo ocurre esta modificación en el esquema? $%& $%& y Guía N 14; Aplicaciones de derivadas. 1

2 5. Al nacer un bebé perderá peso normalmente durante unos pocos días, después comenzará a ganarlos. Un modelo para el peso medio de los bebés durante las 2 primeras semanas de vida es: ' 0,015 0,18 3,3, con medido en días a. Indica los rangos de tiempo donde se pueda observar un incremento negativo del peso y el incremento positivo. b. Cuál es el peso mínimo? 6. En una reacción química la cantidad ) (en gramos) de una sustancia producida en horas viene dada por: ) 16 4 ; 0 * + 2 ( en horas) a. Considerando el rango para lo cual está definida la función En qué instante el incremento o razón de cambio de la sustancia es mayor? 7. En cierta parte de la médula ósea roja, cuando el organismo no posee los suficientes anticuerpos, el crecimiento de población de los elementos figurados que ahí se forman en función del tiempo transcurrido en minutos está calculado por: 3200, 77 donde 0 10 a. Indica los puntos críticos, señala los intervalos de crecimiento o decrecimiento de la función. Pueden ser considerando los intervalos y puntos críticos como explicación de las funciones b. Cómo es la razón de cambio de la producción de anticuerpos al inicio, a los 5 minutos y al final de la reacción? 8. La siguiente ecuación muestra la cantidad de metano producido por descomposición bacteriana en el intestino grueso -.., 4. 3, donde -. mide la cantidad de gas producido en centímetros cúbicos y. las horas desde 0 a 4. a. En qué instante se alcanza la producción máxima de gas? b. Cuál es la cantidad máxima de gas producido? Guía N 14; Aplicaciones de derivadas. 2

3 9. Una epidemia está propagándose a través de una ciudad de un país. Las autoridades sanitarias estiman que el número de personas que contraerán la epidemia es una función del tiempo transcurrido, meses, desde que se descubrió la epidemia. La función está dada por 0,0926, 1,2488 3,901514,282, donde es el número de personas enfermas en miles y a. En qué instante se produce el máximo de contagio? b. Indica los tiempos que se incrementa y desacelera la epidemia c. Cuál es el número máximo de personas que se contagian? 10. En una población se está transmitiendo una infección estomacal por bacterias la que se determina a través de la función: / 01112, la que señala el número de personas infectadas días después del comienzo de la epidemia. a. Cuánto es el número de personas infectadas después de 5 días? b. Después de cuantos días el número de infectados es 50 personas? c. Cómo es la tasa de infección en la población en los puntos calculados en la letra b? Analiza y compara. d. Cuando la infección es máxima? e. En el largo plazo qué número de personas deberían estar infectadas por bacterias? 11. La cantidad de miligramos 6, de cierto producto químico en la sangre, horas después de ser inyectado,2 en el tejido muscular es 7428, donde a. Señala cuando y cuál es la concentración máxima del producto químico en la sangre. Guía N 14; Aplicaciones de derivadas. 3

4 12. El desarrollo de cierta epidemia se caracteriza por tener un comportamiento dado por la función: : 2 que representa la cantidad de personas que adquieren la enfermedad en un tiempo medido en semanas. a. Cuántas personas están contagiadas al comienzo de la epidemia? b. Qué nos indica el valor lim 2>? con respecto a la cantidad de personas contagiadas? c. Compara el incremento de personas que adquieren la epidemia al tiempo 1 semana y luego de 3 meses. 13. El incremento de la población de una bacteria en el oído se determina según la función ,1 2, donde representa el tiempo en horas. a. Determina la cantidad de bacterias en el oído al inicio de la observación y despues de 1 día b. Usando derivadas compara la razón de cambio o incremento de la población por unidad de tiempo en los tiempos analizados en el punto anterior (al inicio y 1 después de un día). Interpreta. c. En el largo plazo Qué cantidad de bacterias sería posible de encontrar? 14. Un biólogo realizó un experimento sobre la cantidad de individuos en una población de paramecium en un medio nutritivo y obtuvo el modelo: ln 25 donde se mide en días y es el número de individuos en el cultivo en miles. a. Indica e interpreta en el contexto del problema el punto crítico de la función. b. Qué cantidad es la población de paramecium es posible de encontrar en el largo plazo? Guía N 14; Aplicaciones de derivadas. 4

5 RESPUESTAS Prof: Víctor Manuel Reyes Feest 1. a. La razón de cambio al inicio es de 900 esporas/hr y a los 45 minutos es 0 esporas/hr. Lo que se puede interpretar que hasta el minuto 45 la población deja de su tendencia de incremento y la población empieza a decrecer. 3. a. La situación se considera controlada al tiempo 1,7 días 5. a. Tiempo en que el crecimiento es negativo de los 0 a los 6 días, a partir de ese momento el peso del bebe comienza a crecer. b. 2,76 kilos 7. a. Dos son los puntos críticos, cuando t =-0,016 y cuando t=0.solo se puede considerar a 0 pues la función está definida solo como 0 10 y en este caso -0,016 no es válido. Averiguando valor de la pendiente >0 podemos concluir que esta función es creciente para sus condiciones. b. La razón de cambio al inicio es de 0 EF (elementos figurados)/hr. A los 5 minutos es de EF/hr y a los 10 minutos es de EF/hr 9. a. Aproximadamente al 7 mes. b. de 0 a 2 meses decrece, de 2 a 7 crece y de 7 a 11meses decrece. c. Aproximadamente personas 11. a. Se produce al tiempo 2,38 horas y una cantidad de 0,17 miligramos. 13. a. Al inicio la población es de 120 bacterias y después de 1 día 193. b. Al inicio el incremento de la población es a razón de 2,45 bacterias/hr y después de 24 horas el incremento es a razón de 3,88 bacterias/hr. c. La población a largo plazo tiende al infinito 2. a. Razón de cambio al inicio es de 300 bact./hr. Mientras a 2 horas después la población está en pleno decrecimiento a razón de bact./hr, lo que implica que ya ha pasado el instante que la población fue máxima. 4. a. Entre la semana 6 y la 12 semana del tratamiento (en la décima semana el tamaño del tumor empieza a decrecer). 6. a. Al inicio de la reacción con una velocidad de 16 grs/hr. 8. a. 2,667 horas b. 12,48 centímetros cúbicos. 10. a. 200 personas. b. La infección alcanza las 50 personas en los días 1,02 y 98,98. c. Al día 1,02 la tasa de incremento se da a una razón de 50 personas/día y al día 98,98 la razón es de -0,49 (lo anterior indica que cerca del día 100 se produce un decrecimiento. d. A los 10 días y el máximo de personas infectadas es de 250. e. Tiende a ser 0 personas contagiadas. 12. a. 125 personas. b. 250 personas. c. La primera semana el incremento es de 52,5 personas/día y a los 3 meses (12 semanas) el incremento es de 7,6x10-6, lo que señala que a ese plazo el incremento es marginal. 14. a. El punto crítico se determina calculando la derivada de la función e igualándola a 0, de esta forma se concluye que esto sucede al cabo de 1 día y que la población es de 1386 individuos. b. Matemáticamente la función puede tender al infinito, sin embargo dentro del contexto del problema es evidente que un cultivo con fines de investigación no se puede desarrollar infinitamente, por lo tanto el límite esta dado por la cantidad de dias que puede tenderse el cultivo, 1 año? puede parecer razonable asi como también 6 meses por ejemplo por señalar un plazo. Guía N 14; Aplicaciones de derivadas. 5

GUÍA DE APRENDIZAJE. 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por:

GUÍA DE APRENDIZAJE. 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por: GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Reyes Feest N 10 Contenido: Derivadas y su aplicación. I.-Resuelve los problemas aplicando derivadas. 1. Se hace un cultivo aislado, con esporas de pan en un

Más detalles

GUÍA DE APRENDIZAJE N 9. Contenido: Función cuadrática & no lineal. 1.- Desarrolla a) Si 3 5 2, encuentra f (-2) 2.- Resolver las ecuaciones: a) 1 9

GUÍA DE APRENDIZAJE N 9. Contenido: Función cuadrática & no lineal. 1.- Desarrolla a) Si 3 5 2, encuentra f (-2) 2.- Resolver las ecuaciones: a) 1 9 GUÍA DE APRENDIZAJE Prof: Víctor Manuel Rees Feest N 9 Contenido: Función cuadrática & no lineal. 1.- Desarrolla a) Si 3 5 2, encuentra f (-2) 2.- Resolver las ecuaciones: a) 1 9 b) 9 c) 7 d) 35 50 0 e)

Más detalles

GUÍA DE APRENDIZAJE N 6. Contenido: Funciones no lineales. 1.- Desarrolla a) Si ( ) = , encuentra f (-2) 2.- Resolver las ecuaciones: a) + 1 = 9

GUÍA DE APRENDIZAJE N 6. Contenido: Funciones no lineales. 1.- Desarrolla a) Si ( ) = , encuentra f (-2) 2.- Resolver las ecuaciones: a) + 1 = 9 GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Rees Feest N Contenido: Funciones no lineales. 1.- Desarrolla a) Si ( ) = 5 +, encuentra f (-).- Resolver las ecuaciones: a) + 1 = 9 b) + =9 c) + =7 d) + 5 +

Más detalles

GUÍA DE APRENDIZAJE N 7. Contenido: Función exponencial y logarítmica. 1. Dada la función exponencial, y su gráfica

GUÍA DE APRENDIZAJE N 7. Contenido: Función exponencial y logarítmica. 1. Dada la función exponencial, y su gráfica GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Reyes Feest N 7 Contenido: Función exponencial y logarítmica. 1. Dada la función exponencial, y su gráfica 6 y 5 4 3 1 x 1 1 3 4 5 6 7 8 1 Determina: a. Dominio

Más detalles

5 GUÍA DE APRENDIZAJE Contenido: Función

5 GUÍA DE APRENDIZAJE Contenido: Función Prof: Víctor Manuel Reyes Feest 5 GUÍA DE APRENDIZAJE Contenido: Función 1.-En diferentes instantes en la vida de un niño, el número medio de millones de glóbulos rojos por mm 3 de sangre, está dado por

Más detalles

La función exponencial: La función exponencial: OBJETIVO: Función exponencial. Elementos de la función exponencial.

La función exponencial: La función exponencial: OBJETIVO: Función exponencial. Elementos de la función exponencial. -0-0 SESIÓN CONTENIDOS: Función eponencial. Elementos de la función eponencial. Gráfico de funciones eponenciales en el plano cartesiano. OBJETIVO: Determina intervalos de crecimiento decrecimiento, dominio

Más detalles

Tabla III ln

Tabla III ln Crecimiento y decrecimiento exponencial Existe una gran variedad de problemas de aplicación relacionados con las funciones exponenciales y logarítmicas. ntes de tomar en consideración estas aplicaciones,

Más detalles

UNIDAD 8 Funciones. Características

UNIDAD 8 Funciones. Características Pág. de 5 I. Interpretas una función dada gráficamente y analizas los aspectos más relevantes de ella (dominio, recorrido, crecimiento, máximos y mínimos )? Observa la gráfica y contesta las cuestiones:

Más detalles

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio

Más detalles

GUÍA DE APRENDIZAJE N 5. Contenido: Par ordenado, función lineal y pendiente. a) b) c) d) e) f)

GUÍA DE APRENDIZAJE N 5. Contenido: Par ordenado, función lineal y pendiente. a) b) c) d) e) f) GUÍA DE APRENDIZAJE Prof: Víctor Manuel Reyes Feest N 5 Contenido: Par ordenado, función lineal y pendiente. 1. Reflexiona y señala cuál de las siguientes gráficas corresponden a una función a) b) c) d)

Más detalles

LA DERIVADA UNA RAZÓN DE CAMBIO. Antes de este concepto recordemos el concepto de función lineal.

LA DERIVADA UNA RAZÓN DE CAMBIO. Antes de este concepto recordemos el concepto de función lineal. LA DERIVADA UNA RAZÓN DE CAMBIO Antes de este concepto recordemos el concepto de función lineal. Una función lineal es una relación entre dos variables x y y que cumplen la igualdad y mx b con m y b parámetros,

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

Ejercicios de exámenes anteriores. 4. (10 puntos c/u). Determine el conjunto solución de las siguientes ecuaciones

Ejercicios de exámenes anteriores. 4. (10 puntos c/u). Determine el conjunto solución de las siguientes ecuaciones Ejercicios de eámenes anteriores. 1) Determinar el conjunto solución del siguiente sistema de ecuaciones. 3 y 3y 5 y y 3 y 1 y 1 10 4 3 ) (5 puntos) Cual debe ser el valor en para que la ecuación tenga

Más detalles

Forma de las funciones exponenciales (Crecientes, Decrecientes)

Forma de las funciones exponenciales (Crecientes, Decrecientes) Función exponencial Forma de las funciones exponenciales (Crecientes, Decrecientes) La aparición de las funciones exponenciales surge naturalmente cuando se estudian diversos fenómenos relacionados con

Más detalles

EL PROBLEMA DE LA TANGENTE

EL PROBLEMA DE LA TANGENTE EL PROBLEMA DE LA TANGENTE El problema de definir la tangente a una curva y f (x) en un punto P ( x, y ) ha llevado al concepto de la derivada de una función en un punto P ( x, y ). Todos sabemos dibujar

Más detalles

UNIDAD 4 Funciones. Características

UNIDAD 4 Funciones. Características UNIDAD Funciones. Características. Autoevaluación Pág. 1 de 6 I. Interpretas una función dada gráficamente y analizas los aspectos más relevantes de ella (dominio, recorrido, crecimiento, máximos y mínimos

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al

Más detalles

GUIA PARA EXAMEN EXTRAORDINARIO ASIGNATURA: MATEMATICAS IV

GUIA PARA EXAMEN EXTRAORDINARIO ASIGNATURA: MATEMATICAS IV GUIA PARA EXAMEN EXTRAORDINARIO ASIGNATURA: MATEMATICAS IV 1.- DADA LA SIGUIENTE FUNCION f() = 3 2 + 2 5, EVALUA LOS SIGUIENTES VALORES DE X: a) f(2) = b) f( + 5) = c) f( 3) = 2.- DE LAS SIGUIENTES GRAFICAS

Más detalles

TEMA 9: DERIVADAS 1. TASA DE VARIACIÓN MEDIA

TEMA 9: DERIVADAS 1. TASA DE VARIACIÓN MEDIA TEMA 9:. TASA DE VARIACIÓN MEDIA La siguiente gráfica representa la temperatura en el interior de la Tierra en función de la profundidad. Vemos que la gráfica es siempre creciente, es decir, a medida que

Más detalles

Documento 6 : Modelos exponenciales

Documento 6 : Modelos exponenciales Unidad 4: Funciones reales de una variable real Tema: Modelos cuadráticos. Capacidades. C..: Manejar conceptos y propiedades de las funciones exponenciales y logarítmicas y resolver situaciones problemáticas

Más detalles

GUÍA DE APRENDIZAJE. b) Qué cantidad de sustancia A será necesario administrar en una solución fisiológica de 350 ml?

GUÍA DE APRENDIZAJE. b) Qué cantidad de sustancia A será necesario administrar en una solución fisiológica de 350 ml? GUÍA DE APRENDIZAJE Prof: Víctor Manuel Reyes Feest N 6 Contenido: Razones, proporción y porcentaje. 1) Determina si alguna de las tablas siguientes corresponden a magnitudes proporcionales. En caso afirmativo

Más detalles

Funciones exponencial y logarítmica

Funciones exponencial y logarítmica Capítulo 5 Funciones exponencial y logarítmica 5.1. Introducción Dos de la funciones más importantes que se presentan en el estudio de las aplicaciones de la matemática son la función exponencial y = a

Más detalles

TALLER 1B TALLER: FUNCIONES

TALLER 1B TALLER: FUNCIONES UNIVERSIDAD DEL VALLE Matematica Fundamental (111007M) Profesor: Alvaro Ortiz TALLER 1B TALLER: FUNCIONES 1. Bajo ciertas condiciones, si dos padres con ojos de color café tienen exactamente 3 hijos, la

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio

Derivadas y razones de cambio. Tangentes. Derivadas Relaciones de cambio Velocidades. Derivadas y razones de cambio y razones de cambio y razones de cambio Tangentes Notas de clase Resumen Cálculo I - A1234 1/5 y razones de cambio y razones de cambio Tangentes Si una curva C tiene la ecuación y = f (x) y quiere hallar

Más detalles

TEMA 7: FUNCIONES. 7.1 Características e interpretación de una función

TEMA 7: FUNCIONES. 7.1 Características e interpretación de una función TEMA 7: FUNCIONES 7.1 Características e interpretación de una función 1. Un ciclista decide salir de ruta y durante un tiempo pedalea por un camino hasta que llega a una zona de descanso en donde se detiene

Más detalles

Determinación de la constante de enfriamiento de un líquido.

Determinación de la constante de enfriamiento de un líquido. Determinación de la constante de enfriamiento de un líquido. Laboratorio de Física: 1210 Unidad 3 Temas de interés. 1. Medidas directa e indirectas. 2. Regresión lineal. 3. Análisis gráfico mediante cambio

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una

Más detalles

INTERPRETACION GEOMETRICA DE LA DERIVADA

INTERPRETACION GEOMETRICA DE LA DERIVADA INTRODUCCIÓN A LAS DERIVADAS CON ESTA EXPRESIÓN SE CALCULA: a) La pendiente ( m ) de la recta secante a la función al cambiar. b) La velocidad o cambio promedio de la función al cambiar. c) El cociente

Más detalles

2. La función exponencial natural En los ejercicios anteriores has trabajado con la función exponencial x

2. La función exponencial natural En los ejercicios anteriores has trabajado con la función exponencial x Concepto clave 2. La función eponencial natural En los ejercicios anteriores has trabajado con la función eponencial f ( ) ca, en la cual c es una constante y a es cualquier cantidad mayor que uno o mayor

Más detalles

Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1

Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1 Matemáticas Primer Examen Parcial, 18 de Noviembre de 2004, Prueba 1 Ejercicio 1: Estudiar el dominio, asíntotas, signo, crecimiento, decrecimiento, máximos y mínimos relativos de la función f(x) = e 2x

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

EJERCICIOS UNIDADES 6 y 7: DERIVADAS Y APLICACIONES

EJERCICIOS UNIDADES 6 y 7: DERIVADAS Y APLICACIONES IES Padre Poveda (Guadi) EJERCICIOS UNIDADES 6 y 7: DERIVADAS Y APLICACIONES + a) (15 puntos) Estudie la continuidad y la derivabilidad de f b) (1 punto) Halle las ecuaciones de las asíntotas de esta función

Más detalles

Observando la gráfica anterior, responder:

Observando la gráfica anterior, responder: 1. Un ciclista decide salir de ruta y durante un tiempo pedalea por un camino hasta que llega a una zona de descanso en donde se detiene para comer. A continuación, sigue avanzando durante otro rato más,

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

8Soluciones a los ejercicios y problemas

8Soluciones a los ejercicios y problemas PÁGINA 38 Pág. P RACTICA Interpretación de gráficas Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los meses. Estas son las gráficas de la longitud y del peso de David

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 0 REFLEXIONA Y RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la

Más detalles

Ecuaciones diferenciales ordinarias

Ecuaciones diferenciales ordinarias Tema 9 Ecuaciones diferenciales ordinarias Versión: 13 de mayo de 29 9.1 Introducción El objetivo de este tema es exponer muy brevemente algunos de los conceptos básicos relacionados con las ecuaciones

Más detalles

Práctica 3 1. Universidad Internacional de las Américas Prof.Francisco Herrera Práctica 3, Curso Matemática 1 1

Práctica 3 1. Universidad Internacional de las Américas Prof.Francisco Herrera Práctica 3, Curso Matemática 1 1 Práctica 3, Curso Matemática 1 1 Práctica 3 1 I) Conteste cada una de las siguientes preguntas 1) Sea f : { 1 2, 0} R es una función dada por f(x) = x 2 + 1 entonces el ámbito es 2) Si {0, 3, 6} representa

Más detalles

13 INICIACIÓN A LA DERIVADA

13 INICIACIÓN A LA DERIVADA INICIACIÓN A LA DERIVADA EJERCICIS PRPUESTS. Halla la tasa de variación media de la función f() en los siguientes intervalos. a) [, 4] b) [6, 7] En cuál de ellos la función f crece o decrece, en media,

Más detalles

UNIDAD 7: CINÉTICA DE REACCIÓN GUIA DE PROBLEMAS

UNIDAD 7: CINÉTICA DE REACCIÓN GUIA DE PROBLEMAS ASIGNAURA : Ingeniería de Procesos III (ICL 34) UNIDAD 7: CINÉICA DE REACCIÓN GUIA DE PROBLEMAS. Con los siguientes datos experimentales que describen la pérdida de caroteno en zanahorias a 35 C: iempo

Más detalles

EJERCICIOS RESUELTOS DE CINÉTICA

EJERCICIOS RESUELTOS DE CINÉTICA UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE QUÍMICA CÁTEDRA: QUÍMICA II EJERCICIOS RESUELTOS DE CINÉTICA Profesora Neida Núñez Maracaibo, Agosto 2015 Ejercicios de Cinética

Más detalles

EJERCICIOS RESUELTOS DE MATEMATICA Matemática Básica y Matemática para Ciencias de la Salud

EJERCICIOS RESUELTOS DE MATEMATICA Matemática Básica y Matemática para Ciencias de la Salud 2013 EJERCICIOS RESUELTOS DE MATEMATICA Matemática Básica y Matemática para Ciencias de la Salud Claudio Gaete Peralta Claudio Gaete Peralta matematica53.webnode.cl CLAUDIO GAETE PERALTA TABLA DE CONTENIDOS

Más detalles

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1

1. Calcula la tasa de variación media de las siguientes funciones en los intervalos que se indican. 1 6 Derivadas CRITERIOS DE EVALUACIÓN ACTIVIDADES DE EVALUACIÓN A. Calcular la tasa de variación media de una función en un intervalo.. Calcula la tasa de variación media de las siguientes funciones en los

Más detalles

UNIDAD III. Ecuaciones diferenciales homogéneas

UNIDAD III. Ecuaciones diferenciales homogéneas UNIDAD III Ecuaciones diferenciales homogéneas 16 UNIDAD 3 ECUACIONES DIFERENCIALES HOMOGÉNEAS Funciones homogénea. Una función, 0, e homogénea de grado n en sus argumentos si cumple: λ,λ λ, Ejemplo 1.

Más detalles

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S)

ACTIVIDAD DE APRENDIZAJE APRENDIZAJE(S) ESPERADO(S) ACTIVIDAD DE APRENDIZAJE Sigla Curso MAT0 Nombre Curso Cálculo I Créditos 10 Hrs. Semestrales Totales 5 Requisitos MAT00 o MAT001 Fecha Actualización Escuela o Programa Transversal Programa de Matemática

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 4

UNIDADES TECNOLÓGICAS DE SANTANDER GUÍA DE ESTUDIO No. 4 UNIDAD ACADÉMICA UNIDAD TEMÁTICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: CALCULO DIFERENCIAL DERIVADAS Y APLICACIONES COMPETENCIA Interpretar la noción de derivada como razón de cambio y desarrollar

Más detalles

Razón de Cambio Promedio:

Razón de Cambio Promedio: NOTA: En este PDF encontrará los siguientes temas que debe estudiar para la clase: Aplicaciones de la Derivada a Funciones Económicas, Razón de Cambio Promedio, Razón de Cambio Instantánea, Razones Relacionadas,

Más detalles

GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15

GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15 GUIA DE TRABAJO PRACTICO Nº 5 PAGINA Nº 86 GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 5 OBJETIVOS: Lograr que el Alumno: Interprete las Funciones Eponenciales Distinga Modelos Matemáticos epresados mediante

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN El dominio de la función f(x) x / x es: a) + b) c) [0, ) 9 El período de la función f(x) cos (x + π) es: a) π b) π c) π/ Una sustancia radiactiva

Más detalles

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 18

MATE Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 18 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 18 P. Vásquez (UPRM) Conferencia 2 / 18 MATE 3031 Derivadas y razones de cambio En esta sección se discutirá como hallar la pendiente de una recta

Más detalles

MATE 3172: SEGUNDO EXAMEN PARCIAL SEMESTRE2 AÑO

MATE 3172: SEGUNDO EXAMEN PARCIAL SEMESTRE2 AÑO MATE 3172: SEGUNDO EXAMEN PARCIAL SEMESTRE2 AÑO 2013-2014 1. Determine los interceptos y las asíntota de la gráfica de la función racional dada por. intercepto-x intercepto-y asíntota horizontal asíntota

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 75 REFLEIONA RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la

Más detalles

Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD

Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD UNIDAD Página 9 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Tasa de variación media Calcula la tasa de variación media de esta función en los intervalos: a) [, 0] b) [0, ] c) [, 5] 0 5 f (0) f ( ) a)

Más detalles

TEMA 7: INICIACIÓN AL CÁLCULOS DE DERIVADAS. APLICACIONES

TEMA 7: INICIACIÓN AL CÁLCULOS DE DERIVADAS. APLICACIONES TEMA 7: INICIACIÓN AL CÁLCULOS DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA: T.V.M. 1- Calcula la tasa de variación media de esta función en los intervalos: a) [-2, 0] b) [0,2] c) [2, 5] 2- Halla

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver

Más detalles

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla:

La producción de acero en Monterrey N.L. (México) en millones de toneladas, durante el año de 1992 a partir del mes de enero se muestra en la tabla: El objetivo al estudiar el concepto razón de cambio, es analizar tanto cuantitativa como cualitativamente las razones de cambio instantáneo y promedio de un fenómeno, lo cual nos permite dar solución a

Más detalles

TEMA 7. FUNCIONES. - Variables dependiente e independiente.

TEMA 7. FUNCIONES. - Variables dependiente e independiente. TEMA 7. FUNCIONES 7.1. Definiciones. - Función. - Variables dependiente e independiente. - Imagen y antiimagen. - Interpretación de gráficas. - Dominio y recorrido. 7.2. Propiedades de las funciones. -

Más detalles

Razón de cambio. En Física Si f(t) = s es la función de posición de una partícula que se mueve en línea recta, s representa la velocidad

Razón de cambio. En Física Si f(t) = s es la función de posición de una partícula que se mueve en línea recta, s representa la velocidad Razón de cambio Si x cambia de x 1 a x tenemos que x = x x 1 y el cambio correspondiente en y es: y = f(x ) f(x 1 ) El cociente de las diferencias y x = f(x ) f(x 1 ) se llama razón de cambio promedio

Más detalles

PRÁCTICA PARA: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN DIVERSIFICADA A DISTANCIA

PRÁCTICA PARA: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN DIVERSIFICADA A DISTANCIA Ministerio de Educación Pública Dirección de Gestión y Evaluación de la Calidad Departamento de Evaluación Académica y Certificación PRÁCTICA PARA: BACHILLERATO POR MADUREZ SUFICIENTE BACHILLERATO DE EDUCACIÓN

Más detalles

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA

GESTIÓN ACADÉMICA GUÍA DIDÁCTICA PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la

Más detalles

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).

Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración). representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)

Más detalles

Caso Práctico 2. El Biogás. Caso Práctico 2 1

Caso Práctico 2. El Biogás. Caso Práctico 2 1 Caso Práctico 2 El Biogás Caso Práctico 2 1 Caso Práctico 2 Biogás OBJETIVOS Objetivo Estimar la generación de biogás, metano, dióxido de carbono y compuestos orgánicos que no sean metano, o NMOC (Non-methane

Más detalles

Boletín 6: Funciones -4º ESO- Ejercicio nº 1.- Observa la gráfica de la función y responde:

Boletín 6: Funciones -4º ESO- Ejercicio nº 1.- Observa la gráfica de la función y responde: Boletín 6: Funciones -4º ESO- Ejercicio nº 1.- Observa la gráfica de la función y responde: a) Cuál es su dominio de definición? Y su recorrido? b) Cuáles son los puntos de corte con los ejes? c) Para

Más detalles

2 o Bachillerato. Métodos Matemáticos. Prof. Jorge Rojo Carrascosa

2 o Bachillerato. Métodos Matemáticos. Prof. Jorge Rojo Carrascosa QUÍMICA 2 o Bachillerato Métodos Matemáticos Prof. Jorge Rojo Carrascosa Índice general 1. MÉTODOS MATEMÁTICOS PARA QUÍMICA 2 1.1. FACTORES DE CONVERSIÓN.................... 2 1.2. VECTORES................................

Más detalles

GUÍA DE APRENDIZAJE N 5. Contenido: Par ordenado, función lineal y pendiente. a) b) c) d) e) f)

GUÍA DE APRENDIZAJE N 5. Contenido: Par ordenado, función lineal y pendiente. a) b) c) d) e) f) GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Rees Feest Primer semestre 0 N Contenido: Par ordenado, función lineal pendiente.. Refleiona señala cuál de las siguientes gráficas corresponden a una función

Más detalles

Modelos de Enfermedades II

Modelos de Enfermedades II CURSO: APLICACIÓN DE LA DINÁMICA DE SISTEMAS A LA EPIDEMIOLOGÍA (2 de febrero al 3 de marzo 217) Modelos de Enfermedades II Fernando Morilla Dpto de Informática y Automática, UNED Contenido Modelo SIR

Más detalles

Análisis Matemático I (Biólogos)

Análisis Matemático I (Biólogos) Análisis Matemático I (Biólogos) Primer cuatrimestre 006 Práctica : Función logarítmica y función exponencial Notación: Indicaremos con log x al logaritmo de x en base 10, y con ln x al logaritmo de x

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Estadística Descriptiva Es una etapa de la metodología estadística,

Más detalles

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas

El problema de la velocidad. Derivada de una función. Ejemplos de derivadas El problema de la velocidad. Derivada de una función. Ejemplos de derivadas Un problema relativo a velocidad Sea un proyectil lanzado verticalmente desde el suelo a una velocidad de 45 metros por segundo.

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

Por qué utilizar la Fuerza Impulsora en Cinética Química? Cálculo a partir de la presión total

Por qué utilizar la Fuerza Impulsora en Cinética Química? Cálculo a partir de la presión total Por qué utilizar la Fuerza Impulsora en Cinética Química? Cálculo a partir de la presión total Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología

Más detalles

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica.

El estudio del movimiento de los cuerpos generalmente se divide en dos fases, por conveniencia: la cinemática y la dinámica. Tema 1: Cinemática. Introducción. Describir el movimiento de objetos es una cuestión fundamental en la mecánica. Para describir el movimiento es necesario recurrir a una base de conceptos o ideas, sobre

Más detalles

Cinética de una reacción química. Cálculo de la fuerza impulsora a partir del volumen de valorante

Cinética de una reacción química. Cálculo de la fuerza impulsora a partir del volumen de valorante Cinética de una reacción química. Cálculo de la fuerza impulsora a partir del volumen de valorante Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología

Más detalles

Funciones y Función lineal

Funciones y Función lineal Profesorado de Nivel Medio Superior en Biología Funciones Función lineal Analicemos los siguientes ejemplos: 1) El gráfico que figura más abajo muestra la evolución de la presión arterial de un paciente

Más detalles

GUÍA DE APRENDIZAJE N 5. Contenido: Par ordenado, función lineal y pendiente. a) b) c) d) e) f)

GUÍA DE APRENDIZAJE N 5. Contenido: Par ordenado, función lineal y pendiente. a) b) c) d) e) f) GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Rees Feest Primer semestre 0 N 5 Contenido: Par ordenado, función lineal pendiente.. Refleiona señala cuál de las siguientes gráficas corresponden a una función

Más detalles

TEMA 8 - REPRESENTACIÓN DE FUNCIONES

TEMA 8 - REPRESENTACIÓN DE FUNCIONES Ejercicios Selectividad Tema 8 Representación de funciones Matemáticas CCSSII º Bach 1 TEMA 8 - REPRESENTACIÓN DE FUNCIONES EJERCICIO 1 : Julio 10-11. Optativa (1 + 1,5 + 0,5 ptos) 8 Se considera la función

Más detalles

Introducción a la derivación

Introducción a la derivación Introducción a la derivación Concepto de derivada En mucas situaciones interesa conocer cómo es la evolución de los valores de una unción; si crece o decrece, y si lo ace rápida o lentamente. También es

Más detalles

Tema 8: Funciones I. Características.

Tema 8: Funciones I. Características. Tema 8: Funciones I. Características. Iniciamos la primera parte de los dos temas que vamos a dedicar al bloque de análisis, en el cual vamos a conocer y definir el concepto de función y los principales

Más detalles

Cálculo Diferencial Otoño Límites y Continuidad

Cálculo Diferencial Otoño Límites y Continuidad Cálculo Diferencial Otoño 2014 Límites y Continuidad Contenido 2.1 Introducción al concepto de límite de una función. 2.2 Límites unilaterales en funciones algebraicas, compuestas y especiales. 2.3 Técnicas

Más detalles

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y

5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y 5. ANÁLISIS MATEMÁTICO // 5.1. FUNCIONES Y LÍMITES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.1.1. Las magnitudes variables: funciones. 5.1.1. Las magnitudes variables:

Más detalles

y' nos permite analizar el crecimiento o decrecimiento

y' nos permite analizar el crecimiento o decrecimiento http://wwwugres/local/metcuant APLICACIONES DE LAS DERIVADAS La derivada de una función f (), en un punto = a, representa el valor de la pendiente de la recta tangente a dicha función, en el citado punto

Más detalles

1. Crecimiento de una función en un intervalo.

1. Crecimiento de una función en un intervalo. 1. Crecimiento de una función en un intervalo. Definición: Se llama Tasa de Variación Media de una función 𝑦 = 𝑓(𝑥) en un intervalo [𝑎, 𝑏] al cociente: 𝑇. 𝑉. 𝑀. [𝑎, 𝑏] = 𝑓 𝑏 𝑓(𝑎) 𝑏 𝑎 También se puede expresar

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Funciones 008 EJERCICIO 1A f definida mediante 1 f ( ) 1 a) (05 puntos) Determine los puntos de corte con los ejes b) (1 punto) Estudie su curvatura c) (1 punto) Determine sus asíntotas d) (05 puntos)

Más detalles

Colegio Cristo Rey Matemáticas Aplicadas a las Ciencias Sociales I Temas 9 y 10. Derivadas y aplicaciones. x 3x. x x x. x 2

Colegio Cristo Rey Matemáticas Aplicadas a las Ciencias Sociales I Temas 9 y 10. Derivadas y aplicaciones. x 3x. x x x. x 2 Colegio Cristo Re Matemáticas Aplicadas a las Ciencias Sociales I Temas 9. Derivadas aplicaciones. Halla la derivada de estas funciones: a) f ln f ' ln ln 4 b) f f ' 4 c) f f ' ln d) f log f ' 4 4 ln e)

Más detalles

ESTUDIO LOCAL DE LA FUNCIÓN

ESTUDIO LOCAL DE LA FUNCIÓN ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E1100 A) Primer parcial 1) Si se lanza verticalmente un objeto hacia arriba desde el nivel del suelo, con una velocidad inicial de 0 pies/s, entonces

Más detalles

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. FUNCIONES DE UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Una de las primeras necesidades que surgen en las Ciencias Experimentales es la de poder expresar, aproximadamente,

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.

Más detalles

TEMA 1: FUNCIONES DE UNA VARIABLE y MODELOS DE CRECIMIENTO

TEMA 1: FUNCIONES DE UNA VARIABLE y MODELOS DE CRECIMIENTO MATEMÁTICAS 1 er curso de Ciencias Ambientales TEMA 1: FUNCIONES DE UNA VARIABLE y MODELOS DE CRECIMIENTO 1. El modelo exponencial: si una población, inicialmente con N 0 individuos, crece un α% cada año,

Más detalles

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial

1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial . Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:

Más detalles

Análisis Matemático I (Lic. en Cs. Biológicas)

Análisis Matemático I (Lic. en Cs. Biológicas) Análisis Matemático I (Lic. en Cs. Biológicas) Curso de Verano 2017 Práctica 5: Regla de L Hospital - Estudio de funciones Ejercicio 1. Decidir si las siguientes funciones satisfacen las hipótesis del

Más detalles

1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2.

1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. Ejercicios y Problemas. Capítulo III 1. Una variable aleatoria X sigue una distribución binomial con parámetros m = 3 y p =0.2. (a) Calcular P (X = 0), P (X = 1), P (X = 2), P (X = 3), utilizando la función

Más detalles

Sistema de Capitalización Continua MATEMÁTICA FINANCIERA. Derivación del factor de capitalización continua

Sistema de Capitalización Continua MATEMÁTICA FINANCIERA. Derivación del factor de capitalización continua Sistema de MATEMÁTICA FINANCIERA SISTEMA DE CAPITALIZACIÓN CONTINUA Luis Alcalá UNSL Segundo Cuatrimeste 06 La TEA equivalente a una tasa nominal fija, aumenta a medida que aumentamos la frecuencia de

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Funciones 008 EJERCICIO 1A f definida mediante 1 f ( ) 1 a) (05 puntos) Determine los puntos de corte con los ejes b) (1 punto) Estudie su curvatura c) (1 punto) Determine sus asíntotas d) (05 puntos)

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer examen parcial del curso Cálculo de una variable Grupo: Once Período: Inicial del año 000 Prof: Rubén D. Nieto C. PUNTO 1.

Más detalles

3. RELACION ENTRE DOS CONJUNTOS DE DATOS.

3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. RELACION ENTRE DOS CONJUNTOS DE DATOS. 3. 1 Introducción En la búsqueda de mejoras o en la solución de problemas es necesario, frecuentemente, investigar la relación entre variables. Para lo cual existen

Más detalles

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS

I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS I E S CARDENAL CISNEROS -- DEPARTAMENTO DE MATEMÁTICAS APLICACIÓN DE LAS DERIVADAS Dada la función f() = + 1 + 4. Calcular la tangente a la gráfica de la función en el punto =. La fórmula de la recta tangente

Más detalles