Mosaicos regulares del plano

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mosaicos regulares del plano"

Transcripción

1 Mosaicos regulares del plano Máster Universitario de formación de Profesorado Especialidad Matemáticas Begoña Hernández Gómez 1 Begoña Soler de Dios 2 Beatriz Carbonell Pascual

2

3 1 o PARTE Nuestro número de mosaico es el 5, que tiene esta forma: El motivo mínimo es el siguiente: Nuestro mosaico está formado por 36 repeticiones de este motivo mínimo coloreadas de diferente manera. Hemos encontrado dos tipos de coloreado. El primero, es el que hemos presentado anteriormente como el motivo mínimo; fondo de color rosa palo, figura geométrica en morado y punto en verde. El segundo es con fondo morado, forma geométrica en rosa palo y punto en marrón. Se observa en la siguiente figura: Nuestro motivo mínimo tiene forma cuadrada. Si considerásemos el mosaico como una matriz, tendría 6 filas y 8 columnas. Cada uno de los elementos serían motivos mínimos coloreados de tipo 1, como el motivo mínimo (a partir de ahora ET1) y elementos de tipo 2, los coloreados como en la segunda figura (a partir de ahora ET2), y además con giros, tanto en el eje x (en plano como rotara en el papel) y en el eje z (un giro de 180 o sería como la imagen de

4 2 un espejo). Consideraremos que las imágenes mostradas en este apartado no tienen aplicado ningún ángulo de giro, se describirá cada uno de los giros en ángulos con dirección en sentido horario. Por ejemplo esta imagen sería un ET1 X180 o : Caracterizar todos los movimientos diferentes que hay en el mosaico: Las características de los movimientos del mosaico están descritas en la siguiente tabla, donde cada celda es un elemento del mosaico:

5 3 Una vez analizado el mosaico elemento por elemento, si tomamos como partida el elemento 3,4: Se realizaría un giro de 90 o grados, respecto del punto origen y se tomaría la segunda coloración, obteniendo el elemento (4,4): Se realiza otro giro de 90 o desde el la esquina superior y se obtiene el cuadrado central formado por los elementos (3,3), (3,4), (4,3) y (4,4): Finalmente, se realiza una simetría con respecto al eje x, obteniendo:

6 4 Es decir, nuestro mosaico presenta ejes de simetría perpendiculares (color rojo) y ejes de simetría con deslizamiento (naranja). También presenta dos tipos de centros de rotación ya que hay giros de orden cuatro (90 o ) (color verde) que están en la intersección de los ejes de deslizamiento y de orden dos (180 o )(rosa) que están en el cruce de los ejes de reflexión. Tiene dos vectores de traslación perpendiculares que unen los centros de rotación de orden 4 y pasan por los de orden 2 (en la direcciones de los ejes de deslizamiento a 45 o ). Por lo tanto está generado por dos traslaciones, una simetría y un giro de orden 4. A partir de nuestro mosaico podemos observar que ningún centro de orden cuatro pasa nunca por un eje de simetría, lo que no ocurre con los centros de orden dos:

7 En la figura que aparece a continuación vamos a representar un paralelogramo fundamental con los centros y con los ejes de simetría junto con algunos ejes de simetría con deslizamiento. 5

8 2 o PARTE Construir un mosaico, que sea visualmente diferente del anterior, cuyo sistema generador sea p.6 y trama de triángulo equilátero. Este mosaico debe tener un motivo mínimo irregular. Explicar cómo se ha creado el motivo mínimo mediante transformaciones de una celda de la trama de polígonos subyacente. El mosaico se puede hacer a mano o usando un programa informático. Para realizar nuestro mosaico vamos a utilizar el programa de software libre Geogebra y también Photoshop. A partir del triángulo equilátero que tesela el plano vamos a crear el motivo mínimo mediante transformaciones. Empezamos con el triángulo equilátero que tenemos indicado como trama: Modificamos la pieza inicial realizando un saliente y hacemos que encaje con la pieza adyacente girando la pieza 300 o con centro o:

9 7 En el otro lado del triángulo realizamos un entrante y hacemos que encaje con la pieza adyacente de la misma forma que antes: Finalmente hacemos otro entrante y realizando un giro de 180 o en el centro del lado que queda libre (o ) obtenemos nuestra figura ya que se tiene que cubrir todo el plano: Obtenemos el siguiente triángulo: Para generar nuestro mosaico siguiendo el sistema generador p6 con la trama de triángulos equiláteros, hay que realizar giros de 60 o (orden seis) con centro en el vértice del triángulo hasta formar un hexágono como se muestra en la Figura 0-1:

10 8 Figura 0-1: Hexágono Una vez construido el primer hexágono, mediante giros de 180 o (orden dos) respecto al punto medio del lado de la base de los triángulos equiláteros, se crea el primer triángulo para generar, a partir de nuevos giros de 60 o, otros hexágonos como se puede observar en la Figura 0-2: Figura 0-2: Mosaico Realizando este mismo proceso se puede crear un mosaico del tamaño que se desee. En el caso de la Figura 0-3, se ha generado y cortado para que la trama sea más complicada de

11 9 encontrar. Figura 0-3: Mosaico

12 10 Para que este mosaico sea posible, se utilizado el programa Photoshop para realizar los giros del sistema generador como se puede ver en la Figura 0-4. Figura 0-4: Photoshop Es decir, tiene centros de giro de orden 6 (60 o ) formando una trama hexagonal (de triángulos equiláteros), centros de giro de orden 3 (120 o ) en los vértices de la trama hexagonal y centros de giro de orden 2 (180 o ) en los puntos medios de los lados de la trama hexagonal. El mosaico no presenta reflexiones ni deslizamientos formando los vectores de translación ángulos de 60 o y siendo su módulo la longitud de las diagonales de los hexágonos de la trama.

Mosaicos y frisos. Adela Salvador

Mosaicos y frisos. Adela Salvador Mosaicos y frisos Adela Salvador Isometrías en el plano Traslación Giro Simetría Simetría con deslizamiento Traslaciones La traslación queda definida al conocer el vector de traslación Busca dos vectores

Más detalles

6. Mosaicos y movimientos. en el plano

6. Mosaicos y movimientos. en el plano 6. Mosaicos y movimientos en el plano Ámbito científico 1. Mosaicos 2. Módulos planos 3. Diseña mosaicos 4. Ejemplos de mosaicos 5. Ejemplos de tramas 6. Mosaicos semiregulares I 7. Libro de espejos 8.

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 5: Transformaciones geométricas planas. Orientación espacial Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 5: Transformaciones geométricas planas. Orientación espacial 1 Transformaciones geométricas 2 ISOMETRÍAS EN LIBROS DE PRIMARIA Cuáles de

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

RECURSOS DIDÁCTICOS: MATERIALES EN GENERAL

RECURSOS DIDÁCTICOS: MATERIALES EN GENERAL Pág. 1 Libro de espejos Se pueden utilizar espejos corrientes, o mejor aún, de un material comercializado de las mismas características, pero que no es de cristal, para mirar en lugar de para mirarse.

Más detalles

SABEN LAS ABEJAS MATEMÁTICAS?

SABEN LAS ABEJAS MATEMÁTICAS? SABEN LAS ABEJAS MATEMÁTICAS? A lo largo de los años se ha utilizado la geometría con fines decorativos. Vasijas, tejidos, suelos, muros, puertas, ventanales han sido decorados con diseños geométricos

Más detalles

unidad 11 Transformaciones geométricas

unidad 11 Transformaciones geométricas unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:

Más detalles

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt 1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En

Más detalles

Movimientos en el plano y mosaicos

Movimientos en el plano y mosaicos Matemáticas de Nivel II de ESPA: Movimientos en el plano - 1 Movimientos en el plano y mosaicos En esta unidad se presenta la utilidad de la geometría para ornamentar objetos y espacios en las actividades

Más detalles

POLIEDROS. Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

POLIEDROS. Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD SLUINES LS EJERIIS E L UNI Pág. 1 Página 207 PRTI 1 Reproduce sobre papel cuadriculado el paralelogramo (,,, ). a) Somételo a una traslación de vector t 1. b) Traslada la figura obtenida, ', mediante t

Más detalles

TESELAS. Alumno: Fecha

TESELAS. Alumno: Fecha Llamamos mosaico o tesela al recubrimiento que hacemos en el plano mediante polígonos y que cumple dos condiciones: No deben superponerse los polígonos No deben dejar huecos. MOSAICOS REGULARES Fíjate

Más detalles

Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares.

Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares. Una actividad muy relacionada con la anterior consiste en la generación de mosaicos por medio de polígonos regulares. Actividad 1 (Polígonos regulares): En esta primera actividad los y las estudiantes

Más detalles

Polígonos regulares, el triángulo de Sierpinski y teselados

Polígonos regulares, el triángulo de Sierpinski y teselados Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Capítulo 11 Transformaciones Isométricas E l estudio de los movimientos en el plano y el espacio han sido muy importantes en nuestra historia, ya que gracias a ellos hemos aprendido a comprender como se

Más detalles

EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

[MATEMÁTICAS DE LA VIDA COTIDIANA]

[MATEMÁTICAS DE LA VIDA COTIDIANA] MOSAICOS, FRISOS Y ROSETONES Una tesela es una pieza que en unión de otras idénticas es capaz de rellenar el plano, de tal manera que no se solapen, y que no existan fisuras entre ellas. El dibujo que

Más detalles

Poliedros Regulares Convexos

Poliedros Regulares Convexos Poliedros Regulares Convexos Características y relaciones entre ellos AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 besode@alumni.uv.es Poliedros Regulares

Más detalles

TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS

TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS INTRODUCCIÓN En los capítulos anteriores hemos estudiado algunas de las herramientas disponibles en GeoGebra, con las que podemos realizar numerosas aplicaciones,

Más detalles

Slide 1 / 174. Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia

Slide 1 / 174. Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia Slide 1 / 174 Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia Slide 2 / 174 Nueva Jersey, Centro de Enseñanza y Aprendizaj Matemáticas Iniciativa Progresista Este material está

Más detalles

CUERPOS EN EL ESPACIO

CUERPOS EN EL ESPACIO CUERPOS EN EL ESPACIO 1. Poliedros. 2. Fórmula de Euler. 3. Prismas. 4. Paralelepípedos. Ortoedros. 5. Pirámides. 6. Cuerpos de revolución. 6.1. Cilindros. 6.2. Conos. 6.3. Esferas. 6.4. Coordenadas geográficas.

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Nombre: Curso: Fecha: -

Nombre: Curso: Fecha: - 1 Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM-4 Guía 4: Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza

Más detalles

MATEMÁTICA MÓDULO 1 Eje temático: Geometría

MATEMÁTICA MÓDULO 1 Eje temático: Geometría MATEMÁTICA MÓDULO 1 Eje temático: Geometría 1. CRITERIOS DE CONGRUENCIA Dos triángulos son congruentes cuando sus lados y ángulos correspondientes son congruentes entre sí. Como los elementos primarios

Más detalles

Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento.

Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. Qué entendemos por Mosaico? Se denomina mosaico a un recubrimiento del plano mediante piezas llamadas teselas sin dejar huecos y sin solapamiento. En otro lenguaje, formar un mosaico es embaldosar una

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

Seminario de problemas-eso. Curso Hoja 10

Seminario de problemas-eso. Curso Hoja 10 Seminario de problemas-eso. Curso 011-1. Hoja 10 5. Dado un triángulo cualquiera, demuestra que es posible recubrir el plano con infinitos triángulos iguales al dado, de forma que estos triángulos no se

Más detalles

Decoramos el aula con figuras que tienen patrones geométricos

Decoramos el aula con figuras que tienen patrones geométricos SEXTO GRADO - UNIDAD 1 - SESIÓN 10 Decoramos el aula con figuras que tienen patrones geométricos En esta sesión, se espera que los niños y las niñas aprendan a identificar el patrón de formación geométrico

Más detalles

MECANO. Alumno: Fecha. 28 cm. 22 cm. 8 tiras. 6 cm 4 cm 20 cm. 8 tiras. 8 cm. 16 cm. 4 cm 3 cm 3 cm 14 cm. 12 cm. 7 cm 4 cm

MECANO. Alumno: Fecha. 28 cm. 22 cm. 8 tiras. 6 cm 4 cm 20 cm. 8 tiras. 8 cm. 16 cm. 4 cm 3 cm 3 cm 14 cm. 12 cm. 7 cm 4 cm 4R 2A 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 4 cm 32 cm 4 cm 6 cm 4 cm 4 cm 6 cm 4 cm 28 cm V2 B2 4 cm 7 cm 7 cm 4 cm 22 cm 4 cm 6 cm 8 tiras 6 cm 4 cm 20 cm B1 2R 18 cm 16 cm 8 tiras A 4 cm 3 cm 3 cm 4 cm

Más detalles

Mosaicos con pattern blocks

Mosaicos con pattern blocks Taller: Mosaicos con pattern blocks Mosaicos con pattern blocks Juan Vicente Riera¹; Maria Àngels Rueda²; Daniel Ruiz-Aguilera¹ email: jvicente.riera@uib.es; manangels@gmail.com; daniel.ruiz@uib.es ¹Universitat

Más detalles

Decoramos el aula con figuras que tienen patrones geométricos

Decoramos el aula con figuras que tienen patrones geométricos SEXTO GRADO - Unidad 1 - Sesión 10 Decoramos el aula con figuras que tienen patrones geométricos En esta sesión, se espera que los niños y las niñas aprendan a identificar el núcleo de un patrón geométrico

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

Transformaciones isométricas

Transformaciones isométricas Tema 4: Geometría Contenido: Criterios de congruencia de triángulos Nivel: 1 Medio Transformaciones isométricas 1. Transformaciones isométricas Una transformación isométrica es un movimiento en que se

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente

Más detalles

POLIEDROS. ÁREAS Y VOLÚMENES.

POLIEDROS. ÁREAS Y VOLÚMENES. 7. POLIEDROS. ÁREAS Y VOLÚMENES. EN ESTA UNIDAD VAS A APRENDER CUERPOS GEOMÉTRICOS POLIEDROS POLIEDROS REGULARES PRISMAS PIRÁMIDES CARACTERÍSTICAS DEFINICIÓN ELEMENTOS DEFINICIÓN ELEMENTOS - Tetaedro.

Más detalles

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...

Más detalles

ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras.

ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. ISOMETRÍAS EN EL PLANO ISOMETRÍA ( MOVIMIENTO): transformación que conserva la forma y el tamaño de las figuras. Hay dos tipos de isometrías: Isometría directa: mantiene el sentido de giro de las agujas

Más detalles

LOS ESGRAFIADOS SEGOVIANOS

LOS ESGRAFIADOS SEGOVIANOS Seminario Estalmat 11 de diciembre de 2010 LOS ESGRAFIADOS SEGOVIANOS Sonia González Pascual TESELACIONES Una teselación es una forma de llenar un plano repitiendo una figura sin que se superpongan ni

Más detalles

Guía para el estudiante

Guía para el estudiante Guía realizada por Bella Peralta C. Magister en Educación Matemática bellaperaltamath@gmail.com bperalta@colegioscompartir.org Nombre: Fecha: Curso: Con el desarrollo de esta guía aprenderás a identificar

Más detalles

PÁGINA 217 PARA EMPEZAR. Vamos a mover un mosaico de la Alhambra

PÁGINA 217 PARA EMPEZAR. Vamos a mover un mosaico de la Alhambra 11 Soluciones a las actividades de cada epígrafe PÁGIN 217 PR EMPEZR Vamos a mover un mosaico de la lhambra Imagina que pones encima un papel transparente y lo calcas (si en vez de imaginarlo, lo haces,

Más detalles

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES

ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES OBJETIVO 1 ELEMENTOS DE UN POLIEDRO. PRINCIPALES POLIEDROS REGULARES NOMBRE: CURSO: ECHA: CONCEPTO DE POLIEDRO Vértice Arista Cara Un poliedro es un cuerpo geométrico cuyas caras son polígonos. Los elementos

Más detalles

12Direcciones de internet

12Direcciones de internet 12Direcciones de internet En la dirección http://www.nucleogestion.8m.com/hall.htm se puede pasear libremente por el museo virtual de Escher. Se puede entrar en la sala que se desee haciendo clic sobre

Más detalles

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales

TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano

Más detalles

Como es habitual, retocaremos a nuestro gusto el estilo de los objetos gráficos.

Como es habitual, retocaremos a nuestro gusto el estilo de los objetos gráficos. 3. Creación de recursos estáticos 3.5 Estrellas Objetivos Usaremos GeoGebra para crear un generador de combinaciones lineales de dos vectores independientes. El efecto de estas combinaciones lineales se

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Guía del docente. 1. Descripción curricular:

Guía del docente. 1. Descripción curricular: Guía del docente. 1. Descripción curricular: - Nivel: NM1, Iº medio. - Subsector: Matemática. - Unidad temática: Transformaciones isométricas. - Palabras claves: Geometría; Área; Figuras geométricas; Mosaicos;

Más detalles

1. Dualidad de poliedros. 2. Prismas y antiprismas. 3. Estructuras espaciales. 4. Secciones y simetrías de poliedros. 5. Macizamiento del espacio

1. Dualidad de poliedros. 2. Prismas y antiprismas. 3. Estructuras espaciales. 4. Secciones y simetrías de poliedros. 5. Macizamiento del espacio 5. Poliedros Matemáticas 2º ESO 1. Dualidad de poliedros 2. Prismas y antiprismas 3. Estructuras espaciales 4. Secciones y simetrías de poliedros 5. Macizamiento del espacio 6. Coordenadas en el espacio

Más detalles

Problemas de demostración

Problemas de demostración Problemas de demostración AUTOR: Begoña Soler de Dios 1 Máster en Profesor de Educación Secundaria Esp. Matemáticas 1 besode@alumni.uv.es Problemas de demostración 1. Dados una circunferencia, un triángulo

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas

Tutorial MT-m1. Matemática Tutorial Nivel Medio. Transformaciones isométricas 12345678901234567890 M ate m ática Tutorial MT-m1 Matemática 2006 Tutorial Nivel Medio Transformaciones isométricas Matemática 2006 Tutorial Transformaciones isométricas Marco Teórico El proceso de llevar

Más detalles

GeoGebra. Municipalidad de Vicente López Secretaría de Educación y CIIE de Vicente López Centro de Capacitación, Información e Investigación Educativa

GeoGebra. Municipalidad de Vicente López Secretaría de Educación y CIIE de Vicente López Centro de Capacitación, Información e Investigación Educativa Municipalidad de Vicente López Secretaría de Educación y CIIE de Vicente López Centro de Capacitación, Información e Investigación Educativa GeoGebra Agustín Carrillo de Albornoz Torres Universidad de

Más detalles

Análisis de Diseños. Reconocimiento de Isometrías

Análisis de Diseños. Reconocimiento de Isometrías Análisis de Diseños. Reconocimiento de Isometrías Este tema está pensado para que construyas el siguiente conocimiento matemático: Revisar los conocimientos anteriores sobre isometrías del plano y del

Más detalles

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante

Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante Caracterización de la parábola como lugar geométrico plano 1 Ficha del estudiante Actividad 1 LA DEFINICIÓN DE PARÁBOLA A PARTIR DE SU PROPIEDAD FOCO DIRECTRIZAS Una parábola es el lugar geométrico determinado

Más detalles

GEOGEBRA. Ejercicio 1. Localización del baricentro de un triángulo

GEOGEBRA. Ejercicio 1. Localización del baricentro de un triángulo 1 GEOGEBRA Ejercicio 1 Localización del baricentro de un triángulo En un triángulo, una mediana es el segmento que une un vértice con el punto medio del lado opuesto. Las tres medianas de un triángulo

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

MOSAICOS CON GEOGEBRA

MOSAICOS CON GEOGEBRA MOSAICOS CON GEOGEBRA FRANCISCO FERNÁNDEZ IES Padre Manjón (Granada) Este taller pone en acción las competencias básicas (digital, cultural y artística) y coadyuva a que el alumnado las vaya alcanzando.

Más detalles

Sorprende por sus propiedades, y por lo inesperado de los resultados que se obtienen al cortarla convenientemente.

Sorprende por sus propiedades, y por lo inesperado de los resultados que se obtienen al cortarla convenientemente. CON UNA TIRA DE PAPEL CINTA DE MÖBIUS Una tira de Möbius se hace fácilmente con una tira lisa de papel corriente: primero se da media vuelta a la tira y después se unen los extremos para obtener un anillo

Más detalles

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS

Cuerpos geométricos son porciones de espacio limitadas por superficies planas o curvas. CUERPOS GEOMÉTRICOS PRISMAS PIRÁMIDES CILINDROS CONOS ESFERAS UNIDAD DIDÁCTICA CUERPOS GEOMÉTRICOS 1. CUERPOS GEOMÉTRICOS En nuestro entorno observamos continuamente objetos de diversas formas: pelotas, botes, cajas, pirámides, etc. Todos estos objetos son cuerpos

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Perímetros y áreas CONTENIDOS PREVIOS 132 MATEMÁTICAS 1. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. CONVIENE QUE

Perímetros y áreas CONTENIDOS PREVIOS 132 MATEMÁTICAS 1. ESO MATERIAL FOTOCOPIABLE SANTILLANA EDUCACIÓN, S. L. CONVIENE QUE CONTENIDOS PREVIOS Sepas lo que es el perímetro de un polígono. 9 cm 4 cm 8 cm 10 cm 1 cm prenderás a medir perímetros de polígonos y a calcular la longitud de una circunferencia. Perímetro = 8 + 1 + 10

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3.

2 Traslaciones. Unidad 13. Movimientos en el plano. Frisos y mosaicos ESO. Página 172. que transforma H 3 en H 1? a) Son traslaciones H 1, H 2 y H 3. Unidad 13. Movimientos en el plano. Frisos y mosaicos a las Enseñanzas plicadas 3 Traslaciones Página 17 1. El mosaico de la derecha se llama multihueso. H 1, H, H 3 y H 4 son huesos. Se pueden estudiar

Más detalles

Sistema Diédrico (II). Superficies poliédricas y radiadas. Desarrollos

Sistema Diédrico (II). Superficies poliédricas y radiadas. Desarrollos Sistema Diédrico (II). Superficies poliédricas y radiadas. Desarrollos Cuando realizamos el desarrollo de una superficie estamos representando la verdadera magnitud de esta, lo que nos permitirá aplicar

Más detalles

A continuación mostraremos algunos aspectos teóricos que son necesarios para la comprensión de los temas y desarrollo de las clases.

A continuación mostraremos algunos aspectos teóricos que son necesarios para la comprensión de los temas y desarrollo de las clases. VI. RECURSOS MATEMÁTICOS Y NOCIONES TEÓRICAS A continuación mostraremos algunos aspectos teóricos que son necesarios para la comprensión de los temas y desarrollo de las clases. Tangram. Es un juego chino

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

C onstrucción de triángulos

C onstrucción de triángulos C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Trabajo de Investigación Cuerpos Geométricos

Trabajo de Investigación Cuerpos Geométricos Saint George s College Área de Matemáticas y sus Aplicaciones Tercera Unidad Trabajo de Investigación Cuerpos Geométricos Integrantes: -Stefan Jercic -Ignacio Larrain -Cristian Majluf Curso: 10 E Profesora:

Más detalles

UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10

UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso NIVEL: 3º DE PRIMARIA TEMAS: 5-10 UNIDAD DIDÁCTICA: RECTAS Y ÁNGULOS TEMPORALIZACIÓN: 11-11/14-12 Curso 2013-14 NIVEL: 3º DE PRIMARIA TEMAS: 5-10 OBJETIVOS DIDÁCTICOS CONTENIDOS Reconocer líneas rectas, líneas curvas abiertas y cerradas,

Más detalles

La carrera geométrica

La carrera geométrica La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

6. FORMAS Y SUPERFICIES

6. FORMAS Y SUPERFICIES 6. FORMAS Y SUPERFICIES Figuras planas: los polígonos Las figuras planas limitadas sólo por líneas rectas se llaman polígonos. Las figuras planas limitadas por curvas o por rectas y curvas, no son polígonos.

Más detalles

Visualización y Realismo: Problemas Capítulo 2

Visualización y Realismo: Problemas Capítulo 2 Visualización y Realismo: Problemas Capítulo 2 Carlos Ureña Almagro Curso 2011-12 1 Problema 2.1 Calcula los coeficientes de la ecuación implícita de la recta que pasa por los puntos p 0 y p 1 Y p 0 p

Más detalles

Geometría. Cuerpos Geométricos. Trabajo

Geometría. Cuerpos Geométricos. Trabajo Geometría Cuerpos Geométricos Trabajo CUERPOS GEOMÉTRICOS 1. Clasifique los cuerpos geométricos. Dos grupos de sólidos geométricos del espacio presentan especial interés: 1.1. Poliedros: Aquellos cuerpos

Más detalles

Definición y Clasificación de Polígonos. Definición

Definición y Clasificación de Polígonos. Definición Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono

Más detalles

Polígonos y Poliedros

Polígonos y Poliedros 09 Lección Apertura Matemáticas Polígonos y s Competencia Socializa sus ideas y llega a acuerdos con los que asimila conceptos relacionados con polígonos y poliedros. Diseño instruccional El maestro aclarará

Más detalles

Figura plana Área Ejemplo Cuadrado. Área =

Figura plana Área Ejemplo Cuadrado. Área = ersión: Septiembre 01 Áreas y volúmenes Por Sandra Elvia Pérez Márquez Áreas de figuras planas Las aplicaciones de las figuras planas requieren, por lo general, conocer (o calcular) dos características

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

Clasifi cación de polígonos

Clasifi cación de polígonos Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Transformaciones Isométricas Taller de trabajo para el autoaprendizaje Pilar Peña Rincón Objetivos Al final de esta guía de trabajo se pretende que seas capaz de: Identificar y definir los tipos de simetría

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 4: Figuras geométricas Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 4: Figuras geométricas 1 Conceptos geométricos En la clase de matemáticas, y en los textos escolares, encontramos expresiones tales como:

Más detalles

Dibujo y geometría descriptiva II 2014

Dibujo y geometría descriptiva II 2014 ` CONTENIDO 1. Conceptos básicos Cuerpos geométricos Intersección 2. Intersección entre planos y sólidos. 3. Intersección de plano con prisma 4. Intersección de plano con cilindro. 5. Intersección de sólido

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante

Con punto fijo Rotaciones Simetría Axial Sin punto fijo Traslaciones Reflexión Deslizante Eje: Geometría, FASCÍCULO 12 Transformaciones Rígidas y Homotecias En el Fascículo 11 vimos que podemos pensar que hay 4 clases de transformaciones rígidas clasificadas de la siguiente manera (pensamos

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

Se dan cinco baldosas que rellenan el plano. Deducir de que poligono regular o combinación de regulares salen.

Se dan cinco baldosas que rellenan el plano. Deducir de que poligono regular o combinación de regulares salen. Se dan cinco baldosas que rellenan el plano. educir de que poligono regular o combinación de regulares salen. RG educción geométrica de baldosas. 2008-2009 Se dan cinco baldosas que rellenan el plano.

Más detalles

Conceptos geométricos II

Conceptos geométricos II Conceptos geométricos II Ángulo Ángulos Consecutivos Ángulos Alternos y Ángulos Correspondientes Polígono Polígono Regular Polígono Irregular Triángulo Cuadrilátero Superficie Círculo Superficie reglada

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. La circunferencia (p. 31) El cerebro humano es muy bueno

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

APLICACIÓN DE LAS FUNCIONES AL ESTUDIO DE MOSAICOS Y POLIEDROS

APLICACIÓN DE LAS FUNCIONES AL ESTUDIO DE MOSAICOS Y POLIEDROS APLICACIÓN DE LAS FUNCIONES AL ESTUDIO DE MOSAICOS Y POLIEDROS 1. Introducción La investigación que se presenta a continuación tiene su origen en mi función de director de trabajos de investigación realizados

Más detalles

FIGURAS, ÁREAS Y PERÍMETROS

FIGURAS, ÁREAS Y PERÍMETROS FIGURAS, ÁREAS Y PERÍMETROS 05 Identifica propiedades de las figuras geométricas, de área y de perímetro y utiliza modelos con los que representa información matemática. Para hablar de áreas y perímetros,

Más detalles

Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría.

Trabajo 2. Jonathan A. Trejos O. El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Trabajo Jonathan A. Trejos O. 1 Primer problema El primer problema es uno típico de teoría de números, en el cual se puede apreciar la simetría. Enunciado 1 Halle y pruebe una bonita fórmula para el producto

Más detalles