CENAFE MATEMÁTICAS POLÍGONOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CENAFE MATEMÁTICAS POLÍGONOS"

Transcripción

1 POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación: Según número de lados. Según su regularidad. Según la amplitud de sus ángulos. Según el número de lados tenemos: Los elementos de un polígono son: vértice, lado, diagonal, ángulo interior, ángulo exterior, radio, apotema, centro. Los polígonos que tienen todos sus lados y ángulos iguales son polígonos regulares. El centro de un polígono regular equidista de los vértices.

2 FIGURAS PLANAS FUNDAMENTALES 1. Triángulo Un triángulo es una poligonal cerrada con tres lados y tres ángulos. La suma de sus ángulos es 180º. Cada uno de los lados es menor que la suma de los otros dos, esto es a < b + c b < a + c c < a + b De la afirmación anterior se deduce que la diferencia de dos lados es menor que el tercero. Clasificación de triángulos Atendiendo a sus lados tenemos: Triángulos equiláteros Triángulos isósceles Triángulo escaleno Los tres lados son iguales Dos lados son iguales y el tercero es desigual Los tres lados son desiguales

3 Atendiendo a sus ángulos: Acutángulo Rectángulo Obtusángulo Los tres ángulos son agudos Un ángulo es recto(90º) Un ángulo es obtuso (>90º) PERÍMETRO Y ÁREA DEL TRIÁNGULO Perímetro de un triángulo El perímetro de un triángulo es igual a la suma de sus tres lados. Triángulo Equilátero Triángulo Isósceles Triángulo Escaleno Área de un triángulo rectángulo El área de un triángulo rectángulo es igual al producto de los catetos partido por 2.

4 Calcular el área del triángulo rectángulo cuyos catetos miden 3 y 4 cm. 2. CUADRILATEROS: Polígonos de 4 lados. La clasificación más importante de los cuadriláteros atiende al número de pares de lados paralelos. 1. Paralelogramos: los dos pares de lados sean paralelos. Cuadrados, rectángulos, rombos y romboides. a) Rectángulos, que tienen los cuatro ángulos rectos.. b) Romboides, con lados iguales dos a dos y ángulos iguales dos a dos. c) Rombos, con los cuatro lados iguales y los ángulos iguales dos a dos.

5 Cuadrado Perímetro= lado 4 Área= lado al cuadrado o l l Calcular el área y el perímetro de un cuadrado de 5 cm de lado. A = 5 2 = 25 cm 2 Rectángulo Perímetro= h 2 + b 2 Área= b h Calcular el área y el perímetro de un rectángulo de 10 cm de base y 6 cm de altura. P = 2 (10 + 6) = 32 cm A = 10 6 = 60 cm 2 Rombo Perímetro= lado 4 Área= (D d)/2 Calcular el área y el perímetro de un rombo cuyas diagonales miden 30 y 16 cm, y su lado mide 17 cm. P = 4 17 = 68 cm

6 Área del romboide P = 2 (a + b) A = b h Calcular el área y el perímetro de un romboide de 4 y 4.5 cm de lados y 4 cm de altura. P = 2 ( ) = 17 cm A = 4 4 = 16 cm 2 Área del trapecio Perímetro= lado+ lado + lado+lado Área= Calcular el área y el perímetro del siguiente trapecio:

7 TEOREMA DE PITÁGORAS Pitágoras ( c²=a²+b² ) El lado más largo del triángulo se llama "hipotenusa", así que la definición formal es: En un triángulo rectángulo el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los otros dos lados (llamamos "triángulo rectángulo" a un triángulo con un ángulo recto) Entonces, el cuadrado de a (a²) más el cuadrado de b (b²) es igual al cuadrado de c (c²): a 2 + b 2 = c 2 Seguro...? Veamos si funciona con un ejemplo. Un triángulo de lados "3,4,5" tiene un ángulo recto, así que la fórmula debería funcionar. Veamos si las áreas son la misma: = 5 2 Calculando obtenemos: = 25 sí, funciona! Por qué es útil esto? Si sabemos las longitudes de dos lados de un triángulo con un ángulo recto, el Teorema de Pitágoras nos ayuda a encontrar la longitud del tercer lado. ( Pero recuerda que sólo funciona en triángulos rectángulos!)

8 Cómo lo uso? Escríbelo como una ecuación: a 2 + b 2 = c 2 Ahora puedes usar álgebra para encontrar el valor que falta, como en estos ejemplos: a 2 + b 2 = c = c = 169 c 2 = 169 c = 169 c = 13 a 2 + b 2 = c b 2 = b 2 = 225 Resta 81 a ambos lados b 2 = 144 b = 144 b = 12

9 Nombre Dibujo Área Perímetro Triángulo P = Suma de los lados P = b + c + d p = semiperímero Cuadrado A = a 2 P = 4 a Rectángulo A = b a P = 2(b + a) Rombo P = 4 a Romboide A = b a P = 2(b + c) Trapecio P = B + c + b + d Trapezoide A = Suma de las áreas de los dos triángulos P = a + b + c + d Polígono regular

10 EJERCICIOS 1. Un campo rectangular tiene 170 m de base y 28 m de altura. Calcular: 1Las hectáreas que tiene. 2El precio del campo si el metro cuadrado cuesta Calcula el número de baldosas cuadradas, de 10 cm, de lado que se necesitan para enlosar una superficie rectangular de 4 m de base y 3 m de altura. 3Hallar el área de un triángulo rectángulo isósceles cuyos lados miden 10 cm cada uno. 4El perímetro de un triángulo equilátero mide 0.9 dm y la altura mide cm. Calcula el área del triángulo. 5Calcula el número de árboles que pueden plantarse en un terreno rectangular de 32 m de largo y 30 m de ancho si cada planta necesita para desarrollarse 4 m². 6El área de un trapecio es 120 m², la altura 8 m, y la base menor mide 10 m. Cuánto mide la otra base? 7Calcular el área de un paralelogramo cuya altura mide 2 cm y su base mide 3 veces más que su altura. 8Calcula el área de un rombo cuya diagonal mayor mide 10 cm y cuya diagonal menor es la mitad de la mayor. 9En el centro de un jardín cuadrado de 150 m de lado hay una piscina también cuadrada, de 25 m de largo. Calcula el área del jardín. 10Calcula el área del cuadrado que resulta de unir los puntos medios de los lados de un rectángulo cuya base y altura miden 8 y 6 cm. 11Cuánto vale el área de la parte subrayada de la figura, si el área del hexágono es de 96 cm². 12Una zona boscosa tiene forma de trapecio, cuyas bases miden 128 m y 92 m. La anchura de la zona mide 40 m. Se construye un paseo de 4 m de ancho perpendicular a las dos bases. Calcula el área de la zona arbolada que queda. 13Un jardín rectangular tiene por dimensiones 30 m y 20 m. El jardín está atravesado por dos caminos perpendiculares que forman una cruz. Uno tiene un ancho de 8 dm y el otro 7 dm. Calcula el área del jardín. 14Dado el cuadrado ABCD, de 4 m de lado, se une E, punto medio del segmento BC, con el vértice D. Calcular el área del trapecio formado. 15Calcula la cantidad de pintura necesaria para pintar la fachada de este edificio sabiendo que se gastan 0.5 kg de pintura por m 2.

11 16Hallar el perímetro y el área de la figura:

1.- LÍNEAS POLIGONALES Y POLÍGONOS.

1.- LÍNEAS POLIGONALES Y POLÍGONOS. 1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:

A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS: TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

El polígono es una porción del plano limitado por una línea poligonal cerrada.

El polígono es una porción del plano limitado por una línea poligonal cerrada. UNIDAD 12: GEOMETRÍA PLANA 12.1. Los polígonos: Elementos El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

13 LONGITUDES Y ÁREAS

13 LONGITUDES Y ÁREAS 1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de

Más detalles

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro.

1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA: *Centro: Punto central.

Más detalles

Polígonos, perímetros y áreas

Polígonos, perímetros y áreas 9 Polígonos, perímetros y áreas Objetivos Antes de empezar En esta quincena aprenderás a: Reconocer, representar e identificar los elementos geométricos que caracterizan a diferentes polígonos. Construir

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

Unidad Didáctica 8. Formas Poligonales

Unidad Didáctica 8. Formas Poligonales Unidad Didáctica 8 Formas Poligonales 1.- Polígonos Es una palabra de origen griego. Se compone de POLI que significa varios, y gono o ángulo. Por lo tanto un polígono es una figura geométrica plana limitada

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJERIIOS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. a) 6 b) 145 15 105 160 130 a) En un triángulo, la suma de las medidas de sus ángulos es 180. p 180 90 6 8 El ángulo mide 8.

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA

RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.

Más detalles

Unidad didáctica 9 Geometría plana

Unidad didáctica 9 Geometría plana Unidad didáctica 9 Geometría plana 1.- Ángulos Un ángulo es la porción de plano limitada por dos semirrectas que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo forman. El vértice

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

Recta, semirrecta y segmento

Recta, semirrecta y segmento TRIÁNGULO CUADRILÁTEROS CIRCUNFERENCIA POLÍGONO Matemáticas del día a día 1 Recta, semirrecta y segmento Recta. Es una sucesión infinita de puntos que tienen la misma dirección. La recta no tiene ni principio

Más detalles

Autor: 2º ciclo de E.P.

Autor: 2º ciclo de E.P. 1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.

Más detalles

Mª Rosa Villegas Pérez

Mª Rosa Villegas Pérez Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

Clasifi cación de polígonos

Clasifi cación de polígonos Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.

CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS

Más detalles

PERÍMETRO Y ÁREA DE UN POLÍGONO

PERÍMETRO Y ÁREA DE UN POLÍGONO PERÍMETRO Y ÁREA DE UN POLÍGONO - Área y perímetro del triángulo - Cálculo del perímetro Es la longitud de su contorno ó la suma de sus lados. P = a + b + c Recuerda: - El perímetro de un triángulo escaleno

Más detalles

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES:

PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: PRESENTACIÓN TODOS LOS APUNTES Y HOJAS DE EJERCICIOS ESTÁN EN EL BLOG QUE HE CREADO PARA MIS CLASES: http://espaiescolar.wordpress.com CONCEPTOS PREVIOS PROPORCIONALIDAD Recta: línea continua formada por

Más detalles

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS

1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS 1º ESO CAPÍTULO 9: LONGITUDES Y ÁREAS LibrosMareaVerde.tk www.apuntesmareaverde.org.es Revisores: Javier Rodrigo y Raquel Hernández Ilustraciones: Banco de Imágenes de INTEF 19 Índice 1. PERÍMETROS Y ÁREAS

Más detalles

Problemas geométricos

Problemas geométricos 8 Problemas geométricos Objetivos En esta quincena aprenderás a: Aplicar las razones trigonométricas para estudiar las relaciones que existen entre los ángulos y los lados de las figuras planas. Calcular

Más detalles

Elementos del cilindro

Elementos del cilindro Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor

Más detalles

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

TEMA 6 SEMEJANZA DE TRIÁNGULOS

TEMA 6 SEMEJANZA DE TRIÁNGULOS Tema 6 Semejanza de triángulos Matemáticas - 4º ESO 1 TEMA 6 SEMEJANZA DE TRIÁNGULOS ESCALAS EJERCICIO 1 : En una fotografía, María y Fernando miden,5 cm y,7 cm, respectivamente; en la realidad, María

Más detalles

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS:

TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: TALLER DE GEOMETRIA GRADO SEXTO SEGUNDO PERIODO 2015 LIC DIANA VIOLETH OLARTE MARIN. Resolver el taller y sustentar POLIGONOS: Un polígono es un figura cerrada formada por segmentos de recta que no se

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

TEMA 6: GEOMETRÍA PLANA

TEMA 6: GEOMETRÍA PLANA TEMA 6: GEOMETRÍA PLANA 1. INTRODUCCIÓN A LA GEOMETRÍA En nuestro entorno podemos visualizar objetos que se relacionan con elementos geométricos: por ejemplo la ventana de nuestra casa tiene forma rectangular.

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental 12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Dos rectas, r y s, pueden tener un punto en común, ninguno o infinitos. Secantes Paralelas Coincidentes. r r

Dos rectas, r y s, pueden tener un punto en común, ninguno o infinitos. Secantes Paralelas Coincidentes. r r GEOMETRÍA 1. Puntos y rectas Los puntos y las rectas son dos de los elementos geométricos fundamentales. Los puntos se nombran con letras mayúsculas: A, B, C, La recta está formada por infinitos puntos

Más detalles

ELEMENTOS BASICOS DE TECNOLOGIA

ELEMENTOS BASICOS DE TECNOLOGIA ELEMENTOS BASICOS DE TECNOLOGIA GEOMETRIA Y MATEMATICA BASICA. POLIGONOS CLASIFICACION DE POLIGONOS POLIGONOS REGULARES POLIGONOS ESTRELLADOS. COCEPTOSINICIALES INICIALES. El punto no tiene dimensiones.

Más detalles

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes:

P RACTICA. 1 Di cuáles de estos triángulos son: 2 Di cómo son, según sus lados y según sus ángulos, los triángulos siguientes: P RCTIC Polígonos: clasificación 1 Di cuáles de estos triángulos son: a) cutángulos. b) Rectángulos. c) Obtusángulos isósceles. B C D G E a) cutángulos: C, F y G. b) Rectángulos: D y E. c) Obtusángulos

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES

TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES TEMA 9: FIGURAS GEOMÉTRICAS ESPACIALES Matías Arce, Sonsoles Blázquez, Tomás Ortega, Cristina Pecharromán 1. INTRODUCCIÓN...1 2. SUPERFICIES POLIÉDRICAS. POLIEDROS...1 3. FIGURAS DE REVOLUCIÓN...3 4. POLIEDROS

Más detalles

Áreas de figuras planas

Áreas de figuras planas Áreas de figuras planas ÁREA DEL TRIÁNGULO El área del triángulo es igual al semiproducto de la base por su altura. b A = b x Ejemplo: 4 cm 15 cm A = 15 x 4 = 30 cm 1 Calcula el área de los siguientes

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.

Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles. FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja

Más detalles

UNIT 1: PERIMETER AND AREA OF SHAPES

UNIT 1: PERIMETER AND AREA OF SHAPES UNIT 1: PERIMETER AND AREA OF SHAPES 1.- LÍNEAS POLIGONALES. POLÍGONO Observa en el ordenador la diferencia entre una línea poligonal abierta y cerrada. Lee la definición de polígono y la diferencia entre

Más detalles

CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O.

CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O. CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O. Tema 1: Números Naturales: Tema 2: Divisibilidad. Tema 3: Fracciones. Tema 4: Números decimales. Tema 5: Números enteros. Tema 6: Iniciación

Más detalles

Triángulos y Cuadriláteros

Triángulos y Cuadriláteros 04 Lección Apertura Matemáticas Triángulos y Cuadriláteros APRENDO JUGANDO Competencia Identifica las características de los triángulos y los cuadriláteros. Diseño instruccional Por la importancia que

Más detalles

Bisectrices. Incentro.

Bisectrices. Incentro. 78 CAPÍTULO 7: GEOMETRÍA DEL PLANO. Matemáticas 3º de ESO 1. LUGARES GEOMÉTRICOS Muchas veces definimos una figura geométrica como los puntos del plano que cumplen una determinada condición. Decimos entonces

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

Geometría. 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento?

Geometría. 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento? Geometría 1 a.- Qué diferencia hay entre una recta y una semirrecta?, y entre una semirrecta y un segmento? 2 a.- Qué originan dos puntos en una recta?. Cuántas rectas pasan por dos puntos?, y por un punto?

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA LONGITUDES Y ÁREAS. 1. Perímetro y área. 1.1. Medidas del rectángulo. 1.2. Medidas del cuadrado. 1.3. Medidas del rombo. 1.4. Medidas del romboide. 1.5. Medidas de un paralelogramo cualquiera. 1.6. Medidas

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano.

Los elementos básicos de la Geometría Plana son el punto, la línea, y el plano. GEOMETRÍA PLANA Dibujo Geométrico La geometría es la parte de las matemáticas que estudia las propiedades y las medidas de las figuras planas y tridimensionales en el espacio. La palabra procede de dos

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

La carrera geométrica

La carrera geométrica La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros

Más detalles

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios.

Ángulos consecutivos, suplementarios, adyacentes, opuestos por el vértice y complementarios. ÁNGULOS Dadas dos semirrectas de origen común (Ox, Oy), no opuestas ni coincidentes, llamaremos ángulo convexo de vértice O, a la intersección del semiplano de borde la recta sostén de Ox, que contiene

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO 8 GEOMETRÍ DEL PLNO EJERIIOS PR ENTRENRSE Ángulos y triángulos 8.6 Halla la medida del ángulo p en el siguiente triángulo. 6 4 180 6 p 4 p 180 6 4 11 8.7 alcula la suma de los ángulos interiores de un

Más detalles

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 12: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 009 TEMA 1: LONGITUDES Y ÁREAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/009 TEMA 1: Longitudes y Áreas. TEMA 1: LONGITUDES Y ÁREAS. 1.

Más detalles

Qué son los cuerpos geométricos?

Qué son los cuerpos geométricos? Qué son los cuerpos geométricos? Definición Los cuerpos geométricos son regiones cerradas del espacio. Una caja de tetrabrick es un ejemplo claro de la figura que en matemáticas se conoce con el nombre

Más detalles

SISTEMASS DE REPRESENTACIÓNN Geometría Básica

SISTEMASS DE REPRESENTACIÓNN Geometría Básica SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,

Más detalles

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos

ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II. Unidad 1: Percibimos y representamos los objetos ESPA: Ámbito Científico Tecnológico Nivel I - Módulo II Unidad 1: Percibimos y representamos los objetos 1.- Descripción de las figuras geométricas en el plano. Clasificación de triángulos y cuadriláteros.

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

Áreas de figuras planas (I) (p. 107)

Áreas de figuras planas (I) (p. 107) Tema 3: Áreas de figuras planas (I) (p. 107) El cálculo del área de regiones planas está en el origen de las matemáticas. (Egipto, el Nilo y sus crecidas). El proceso de medida de áreas es el mismo que

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

Unidad 11. Figuras planas

Unidad 11. Figuras planas Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares

Más detalles

Actividades con Geoplano

Actividades con Geoplano Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO

POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO POLÍGONOS, CIRCUNFERENCIA Y CÍRCULO POLÍGONOS Polígono es la figura plana cerrada formada por n segmentos P 1P,PP3,P3P4,...,PnP1 ( n 3 ) llamados lados, los puntos P,P,... se llaman vértices. 1 Pn El ángulo

Más detalles

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.

Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales. TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.

Más detalles

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro

Cuerpos geométricos. Objetivos. Antes de empezar. 1. Poliedros...pág. 138 Definición Elementos de un poliedro 8 Cuerpos geométricos. Objetivos En esta quincena aprenderás a: Identificar que es un poliedro. Determinar los elementos de un poliedro: Caras, aristas y vértices. Clasificar los poliedros. Especificar

Más detalles

UNIT 1: PERIMETER AND AREA OF SHAPES

UNIT 1: PERIMETER AND AREA OF SHAPES UNIT 1: PERIMETER AND AREA OF SHAPES 1.- LÍNEAS POLIGONALES. POLÍGONO http://recursostic.educacion.es/secundaria/edad/2esomatematicas/2quincena8/index_2quincena8.htm Observa en el ordenador la diferencia

Más detalles

EJERCICIOS MÓDULO 4. 1) Cuántos vértices tendrá un polígono cuyo número de diagonales totales es 9?

EJERCICIOS MÓDULO 4. 1) Cuántos vértices tendrá un polígono cuyo número de diagonales totales es 9? EJERCICIOS MÓDULO 4 1) Cuántos vértices tendrá un polígono cuyo número de diagonales totales es 9? ) Cuántos lados tiene un polígono en el cual la suma de las medidas de los ángulos interiores es cinco

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

Halla los siguientes perímetros y áreas:

Halla los siguientes perímetros y áreas: 73 CAPÍTULO 9: LONGITUDES Y ÁREAS.. Matemáticas 1º y º de ESO 1. TEOREMA DE PITÁGORAS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

Tema 8. Teorema de Pitágoras. Semejanza

Tema 8. Teorema de Pitágoras. Semejanza Material necesario: Escuadra Cartabón Regla Transportador de ángulos Compás Calculadora Libro de texto nuevo!!!!!!!!!!!!!! Tema 8. Teorema de Pitágoras. Semejanza 8.1 Teorema de Pitágoras Página 17 Actividades

Más detalles

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia

Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia Geometría 2D: Preguntas Capítulo Relaciones Geométricas, Perímetro y Circunferencia 1. Cuáles son algunas de las relaciones especiales entre los ángulos? 2. Explique qué es un polígono y cómo determinar

Más detalles

TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013

TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013 TEMARIO PARA EL EXAMEN DE RECUPERACIÓN 4TO AÑO SECUNDARIA 2013 1.- FUNCIONES: Dominio y rango, función real de variable real, operaciones con funciones, composición de funciones. 2.- ÁNGULOS: congruencia

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

Una recta es una línea (de puntos) que no tiene ni principio ni final. Un segmento es la parte de una recta que se encuentra entre 2 puntos.

Una recta es una línea (de puntos) que no tiene ni principio ni final. Un segmento es la parte de una recta que se encuentra entre 2 puntos. RECTAS Y ÁNGULOS RECTAS Una recta es una línea (de puntos) que no tiene ni principio ni final. Un punto divide a una recta en 2 semirrectas. Un segmento es la parte de una recta que se encuentra entre

Más detalles

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.

Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta. CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el

Más detalles

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:

UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de: UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,

Más detalles

Cálculo de perímetros y áreas

Cálculo de perímetros y áreas Cálculo de perímetros y áreas 1. Calcula el perímetro de las siguientes figuras planas: 2. Calcula el perímetro de las siguientes figuras geométricas: 3. La rueda de un triciclo tiene 30 cm de radio. Cuántos

Más detalles

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS

LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS LOS CUERPOS GEOMÉTRICOS POLIEDROS Y CUERPOS REDONDOS Se llaman poliedros todos los cuerpos geométricos que tienen todas sus caras planas. Los cuerpos redondos son aquellos que tienen alguna de sus superficies

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 232 REFLEXIONA Para decidir el tipo de suelo que se pondrá en la Casa de la Cultura, hay varios mosaicos. Estos mosaicos tienen cinco tipos de losetas: Todas estas losetas son cuadriláteros.

Más detalles