Sistemas de Data Warehousing

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sistemas de Data Warehousing"

Transcripción

1 Federación Médica del Interior (FEMI) Sociedad Uruguaya de Informática en la Salud (SUIS) Información en Salud Edición 2009 Sistemas de Data Warehousing Dr. Ing. Adriana Marotta (In.Co - F.Ing - UDELAR) Abril 2009

2 Temas Temario: Introducción. n. Los Sistemas de Data Warehousing. Organización n de los Sistemas de DW. Usando los Sistemas de DW. Factores de éxito, errores y beneficios. Conclusiones, Tendencias y Perspectivas.

3 Motivaciones Problemática planteada: Acceso a Información n para la toma de decisiones. Stock Farmacia Diagnósticos Gestión RRHH? Factores críticos: Tiempo de acceso. Integración Calidad de información.?

4 Motivaciones Los datos existen, pero... No siempre se acceden fácilmente. f No siempre se utilizan. La información n suele ser difícil de obtener: Deben obtenerse los datos: A partir de los cuales se construye la información. n. Que definen el contexto de los anteriores. En un cierto contexto, un ítem puede ser información: n: Dependiendo del tipo de decisiones a tomar. Dependiendo de la persona encargada. Dependiendo de la calidad de su valor.

5 Motivaciones Y los sistemas de información n tradicionales... Orientados a sistemas operacionales. Asociados a procesos productivos. Procesan grandes cantidades de transacciones. Pueden resolver estas necesidades?

6 Motivaciones Sistema orientado a la Producción: Prioridad: tiempo de respuesta a transacciones read-write write. Se manejan datos actuales muy detallados. Estables y de larga vida útil. Sistema orientado a la Decisión: Prioridad: expresividad y eficiencia en consultas complejas. Datos actuales+históricos resumidos. En constante evolución.

7 Conclusión. n. Motivaciones Se trata de sistemas con objetivos diferentes. Se construyen para ser eficientes en sus objetivos. No es posible usarlos para las tareas de otro.

8 Sistemas de Data Warehousing Abordan la problemática planteada: Generar Información n para toma de decisiones. siguiendo los principios: Construir Información n desde datos de la empresa. Integrar diferentes fuentes de datos. Ofrecer al usuario final mecanismos flexibles para el acceso a la información: n: Pre-programada. Libre, exploratoria. A través s de los objetos de su negocio. Observando los datos en formatos especializados.

9 Estructura de Sistemas de DW Pacientes Patología - Construcción interactiva. - Agregación/Desagregación. M E T A D A T A Fecha Analisis Multidimensional (OLAP) Consultas y reportes complejos Data Warehouse Herramientas ETL Búsqueda de correlaciones entre datos. Data Mining Herramientas de exploración y análisis Carga automatizada. Control de Calidad de Datos. Integración de BDs. Históricos Archivos BD-Rel BD-Geo BD-Texto... Bases de datos fuentes

10 Estructura de Sistemas de DW Las Bases de Datos Fuente. Almacenan datos brutos para construir la información. Pueden ser heterogéneas neas. Almacenan ítems de datos detallados. El Data Warehouse. Base (o bases) de datos con el conjunto de información n requerida para toma de decisiones. Incluye tablas con valores tomados de las BD Fuente así como con valores calculados.

11 Estructura de Sistemas de DW Herr. de Extracción n y Transformación n de datos (ETL). Construyen el DW, transformando datos en BD Fuente. Deben resolver problemas técnicos importantes: Acceso a sistemas heterogéneos neos. Ejecución de consultas complejas. Operación n de carga global, combinando el conjunto de las operaciones. La Calidad de los Datos. Es s un aspecto fundamental credibilidad sistema. Se basa en: La consistencia y corrección n clásica de datos. Noción n de PertinenciaP y Relevancia de los datos.

12 Estructura de Sistemas de DW Herramientas de acceso a Información. n. Usadas para explorar la información. n. Tipos de herramientas: Planillas electrónicas. Reportes y consultas interactivas. OLAP (On-Line Analytic Processing): Representan datos como Dimensiones y Medidas. Data Mining: Descubrimiento de correlaciones y patrones en datos.

13 Propiedades de los Sist. DW Un Sistema de DW debería a : Acceder a Bases Fuentes heterogéneas y multiplataforma. Soportar múltiples m tipos de usuarios. Funcionar en forma independiente a los Sistemas de Producción. Soportar configuraciones en red. Ofrecer Interfaces a usuario avanzadas. Soportar Diccionarios de Datos y Metadata.

14 Interfaces avanzadas a usuario Interfaces a usuario especializadas. Por qué? Optimizar el tiempo del usuario. Principio: A cada tipo de usuario o aplicación n se le ofrece la interfaz más m s adecuada.

15 Espacio de Metadata OLAP MDD/DBs DW Metadata BD-Fuentes Directorio Metadata/Repository

16 Organización n de los Sist. DW Cómo se organizan los sistemas DW en la organización n? DW a nivel de la organización n (o conjunto de áreas). Almacena información n con alcance global. Información n integrada y limpia de la organización. n. Centraliza la carga (y controles) desde bases fuentes. Data Marts por área o aplicación. Resuelven requerimientos concretos de áreas o aplicaciones. Basado en datos del DW. Tiene administración n y evolución n relativamente autónoma. P.ej. : Gestión n de Farmacia, Análisis de casos ingresados.

17 Organización n de los Sist. DW Cómo se organizan los sistemas DW en la organización n? Interfaz usuario Data Marts MOLAP... ROLAP Tecnologías de extracción y almacenamiento de info. DW global ETL BDs Fuentes

18 Usando el Sistema de DW Cómo se usa un Sistema de DW? A través s de herramientas de exploración n y análisis de información: n: BDs Escritorio. Planillas Electrónicas. Herramientas de consulta y reportes. OLAPs. Herramientas Estadísticas sticas y de Data Mining. Modelización de Negocios y Simulación.

19 Usando el Sistema de DW Pacientes Patología - Construcción interactiva. - Agregación/Desagregación. M E T A D A T A Fecha Analisis Multidimensional (OLAP) Consultas y reportes complejos Data Warehouse Herramientas ETL Búsqueda de correlaciones entre datos. Data Mining Herramientas de exploración y análisis Carga automatizada. Control de Calidad de Datos. Integración de BDs. Históricos Archivos BD-Rel BD-Geo BD-Texto... Bases de datos fuentes

20 Herramientas de Consultas y Funcionalidades base: Reportes Construir fácilmente f consultas/reportes complejos. Muy buenos para construir reportes no previstos. Incorporan lenguajes para manejo de datos. Incluyen funciones de todo tipo. Ofrecen diferentes niveles de complejidad orientada a diferentes tipos de usuario: Construcción n de reporte complejo desde cero. Construcción n de reporte en base a moldes. Ejecución n de reportes con variables a llenar. Ejecución n fija de reporte.

21 Funcionalidades base: OLAPs Permiten consultar datos : Interactivamente y en forma eficiente. Usando mecanismos comprensibles para usuarios. Una consulta corresponde a cruzar dimensiones y elegir la medida en el cruzamiento. Funcionalidades adicionales: Visualización n gráfica. Operaciones en línea. l Funcionalidades de herramientas: Integración n con BDs Relacionales. Integración n con herramientas de escritorio y otros sistemas.

22 Motivaciones: Modelos OLAP (o multidimensionales) Facilitar y optimizar la realización n de consultas de tipo cruzamientos. Representar los datos en forma más m s cercana a la intuición n del usuario. Principios generales: La información n se representa como: cuadros de doble o triple entrada. cubos de "n" dimensiones. Una BD-MD incluye varias dimensiones.

23 Modelos OLAP : Ejemplo Análisis de ventas de autos Tabla: MODELO COLOR VOLUME -Ventas MINI VAN BLUE 6 MINI VAN RED 5 MINI VAN WHITE 4 SPORTS COUPE BLUE 3 SPORTS COUPE RED 5 SPORTS COUPE WHITE 5 SEDAN BLUE 4 SEDAN RED 3 SEDAN WHITE 2 Cuadro: M O D E L O Mini Van Coupe Sedan Blue Red White COLOR

24 Modelos OLAP : Ejemplo Agregando una 3a. dimensión: n: M O D E L O Mini Van Coupe Sedan Carr Gleason Clyde VENDEDOR Blue Red White COLOR

25 Modelos OLAP : Ejemplo Agregando una 4a. dimensión: n: M O D E L O Mini Van Coupe Sedan Blue Red White Color Carr Gleason Clyde... Mini Van Coupe Sedan Blue Red White Color Carr Gleason Clyde VENDEDOR Enero... Diciembre

26 Modelos OLAP Los Modelos OLAP constan de: Dimensiones: Dimensiones en el hipercubo. Macro-objetos objetos del problema. Criterios de análisis de los datos. Medidas: Valores en los cruzamientos de las dimensiones. Datos asociados a relaciones entre los objetos del problema. Valores o Indicadores a analizar.

27 Jerarquías: as: Dimensiones Los valores se organizan en jerarquías as (categorías). as). Dimensión: Vendedores REGION Midwest CIUDAD Chicago St. Louis Gary VENDEDOR Clyde Gleason Carr Levi Lucas Bolton

28 Operaciones: Roll-up Consolidación n (Roll-Up). Calcula las medidas en función n de agrupamientos Mini Van Coupe Roll-up (Suma) Sobre Vendedor Mini Van Coupe Sedan Carr Gleason Clyde Sedan Chicago St.Louis Blue Red White White Red Blue

29 Operaciones Multidimensionales Resumen: Slice. Dice. Selecciona dimensiones (y medidas) de trabajo. Selecciona valores en las dimensiones. Rotación. Selecciona el orden de visualización n de las dimensiones. Drill-up/ up/drill-down. Selecciona un nivel de agregación n superior para una o más m dimensiones.

30 Data Mining Objetivos: Explorar BDs buscando relaciones desconocidas entre los datos. Por ejemplo: Relaciones entre enfermedades y decesos. Algunas candidatas a nuevas causas de decesos. Otras podrían ser datos erróneos. Qué incluye? Un conjunto muy amplio y heterogéneo de técnicas t y herramientas.

31 Data Mining Los programas de Data Mining: Analizan un conjunto de datos y generan Modelos. Reglas. Árboles de Decisión. Clusters. Ecuaciones. Pueden estudiar varias dimensiones de datos simultáneamente y descubrir los que tienen comportamiento especial. La iniciativa es del algoritmo y no del usuario.

32 Factores de éxito Un proyecto DW se considera exitoso si: Integra información n heterogénea. De diferentes tipos. De diferentes orígenes. Hace visible y manejable la información útil. Incluye datos de calidad validada. Ofrece acceso directo a usuarios. La cantidad de usuarios y de acceso aumenta.

33 Se debe evitar: Errores a evitar Establecer expectativas demasiados altas. Cargar el DW con todo lo disponible. Elegir un DW manager sin orientación n al negocio. Diseñar el DW igual que un sistema de producción. Ignorar fuentes de datos externas. Ignorar la evolutividad del sistema.

34 Beneficios esperables Se obtiene: Acceso interactivo e inmediato a información estratégica de un área de negocios. Permite toma de decisiones basadas en datos objetivos. Los beneficios aumentan : cuanto más m s importantes son las decisiones. cuanto más m s crítico es el factor tiempo. Capitalización n de datos en bases heterogéneas: Archivos, dbf,, etc.

35 Conclusiones Los Sistemas de DW resultan un aporte importante para la toma de decisiones: Acercan la información n al usuario. Los Sistemas DW permiten revalorizar los datos en la empresa: Integran datos en diferentes formatos. Los Sistemas DW no son productos monolíticos sino composición n de soluciones técnicas. t Construcción n del Diccionario de Datos, Diseño o de Base de Datos, Conectividad, Control de calidad de datos, etc.

36 Tendencias y Perspectivas Área en evolución: Sistemas, Metodologías, etc. Acceso a Sistemas DW por Web. Tanto por Internet como Intranet. Integración n de información n heterogénea: Geográfica, Texto, Imágenes.

37 Muchas gracias

Capítulo 2 Tecnología data warehouse

Capítulo 2 Tecnología data warehouse Capítulo 2 Tecnología data warehouse El objetivo de éste capítulo es mostrar la tecnología data warehouse (DW) como una herramienta para analizar la información. Este capítulo se encuentra organizado de

Más detalles

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA

MOLAP REALIZADO POR: JOSE E. TABOADA RENNA MOLAP REALIZADO POR: JOSE E. TABOADA RENNA BASE DE DATOS Conjunto de datos estructurados, fiables y homogéneos organizados independientemente en máquina, m accesibles en tiempo real, compatible por usuarios

Más detalles

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4

Definición. Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición Data Warehousing: almacenamiento, transformación y distribución de datos útiles para los responsables de tomar decisiones 9/29/2006 4 Definición (cont.) Un Data Warehouse es una colección de

Más detalles

DATA WAREHOUSE DATA WAREHOUSE

DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE DATA WAREHOUSE Autor: Roberto Abajo Alonso Asignatura: Sistemas Inteligentes, 5º Curso Profesor: José Carlos González Dep. Ing. Sistemas Telemáticos, E.T.S.I. Telecomunicación Universidad

Más detalles

Sistema de análisis de información. Resumen de metodología técnica

Sistema de análisis de información. Resumen de metodología técnica Sistema de análisis de información Resumen de metodología técnica Tabla de Contenidos 1Arquitectura general de una solución de BI y DW...4 2Orígenes y extracción de datos...5 2.1Procesos de extracción...5

Más detalles

Sistemas de Información 12/13 La organización de datos e información

Sistemas de Información 12/13 La organización de datos e información 12/13 La organización de datos e información Departamento Informática e Ingeniería de Sistemas Universidad de Zaragoza (raqueltl@unizar.es) " Guión Introducción: Data Warehouses Características: entornos

Más detalles

Presentación de Pyramid Data Warehouse

Presentación de Pyramid Data Warehouse Presentación de Pyramid Data Warehouse Pyramid Data Warehouse tiene hoy una larga historia, desde 1994 tiempo en el que su primera versión fue liberada, hasta la actual versión 8.00. El incontable tiempo

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 5 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 5 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Data Warehouse Modelo multidimensional Diagrama

Más detalles

CAPÍTULO 2 DATA WAREHOUSES

CAPÍTULO 2 DATA WAREHOUSES CAPÍTULO 2 DATA WAREHOUSES Un Data Warehouse (DW) es un gran repositorio lógico de datos que permite el acceso y la manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones

Más detalles

DATA WAREHOUSING (ENERO DE 2003) Documento creado por Ing. Héctor H. Martínez Orpinel

DATA WAREHOUSING (ENERO DE 2003) Documento creado por Ing. Héctor H. Martínez Orpinel DATA WAREHOUSING (ENERO DE 2003) DEFINICIÓN UN DATA WAREHOUSING ES UN CONJUNTO DE DATOS INTEGRADOS ORIENTADOS A UNA MATERIA, QUE VARIA CON EL TIEMPO Y QUE NO SON TRANSITORIOS, LOS CUALES SOPORTAN EL PROCESO

Más detalles

Aplicaciones e implicaciones de las bases de datos. Introducción a la Informática 2010-2011

Aplicaciones e implicaciones de las bases de datos. Introducción a la Informática 2010-2011 Aplicaciones e implicaciones de las bases de datos Introducción a la Informática 2010-2011 Objetivos Explicar qué es una base de datos y describir su estructura Identificar el tipo de problemas que pueden

Más detalles

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge

INTELIGENCIA DE NEGOCIOS. Business Intelligence. Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Alumno: Toledo Paucar Jorge INTELIGENCIA DE NEGOCIOS Business Intelligence Es un conjunto de conceptos y metodologías para mejorar la toma de decisiones.

Más detalles

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas

Sistemas de Información para la Gestión. Unidad 3 Aplicaciones de Sistemas para la Gestión Unidad 3 Aplicaciones de Sistemas U.N.Sa. Facultad de Cs.Económicas SIG 2010 UNIDAD 3: APLICACIONES DE SISTEMAS Aplicaciones empresariales: Sistemas empresariales. Sistemas de administración

Más detalles

Tecnologías de Información y Comunicación II CLASE 10

Tecnologías de Información y Comunicación II CLASE 10 Tecnologías de Información y Comunicación II CLASE 10 Medidas Una medida es un tipo de dato cuya información es usada por los analistas (usuarios) en sus consultas para medir la perfomance del comportamiento

Más detalles

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012

DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 DISEÑO E IMPLEMENTACIÓN DE SOLUCIONES BUSINESS INTELLIGENCE CON SQL SERVER 2012 FLUJO DE CAPACITACIÓN Prerrequisitos Fundamentos de Programación Sentencias SQL Server 2012 Duración: 12 horas 1. DESCRIPCIÓN

Más detalles

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA

SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA SISTEMAS DE INFORMACION GERENCIAL LIC.PATRICIA PALACIOS ZULETA Qué es inteligencia de negocios? (BI) Business Intelligence es la habilidad para transformar los datos en información, y la información en

Más detalles

Unidad III. Software para la administración de proyectos.

Unidad III. Software para la administración de proyectos. Unidad III Software para la administración de proyectos. 3.1 Herramientas de software para administrar proyectos. El software de administración de proyectos es un concepto que describe varios tipos de

Más detalles

Universidad acional Experimental Del Táchira Decanato de Docencia Departamento de Ingeniería en Informática

Universidad acional Experimental Del Táchira Decanato de Docencia Departamento de Ingeniería en Informática Universidad acional Experimental Del Táchira Decanato de Docencia Departamento de Ingeniería en Informática Metodología Evolutiva Incremental Mediante Prototipo y Técnicas Orientada a Objeto (MEI/P-OO)

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

BUSINESS INTELLIGENCE

BUSINESS INTELLIGENCE BUSINESS INTELLIGENCE PRESENTACIÓN Ramón Díaz Hernández Gerente (1.990) Nuestro Perfil Inversión permanente en formación y nuevas tecnologías. Experiencia en plataforma tecnológica IBM (Sistema Operativo

Más detalles

Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008

Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008 Oracle vs Oracle por Rodolfo Yglesias Setiembre 2008 Introducción Aunque la estrategia de adquisiciones que Oracle ha seguido en los últimos años siempre ha buscado complementar y fortalecer nuestra oferta

Más detalles

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1

ANEXO A - Plan de Proyecto. 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 ANEXO A - Plan de Proyecto 1. - EDT de la solución EDT GENERAL DEL PROYECTO1 2.- Diagrama de Gantt de la Solución DIAGRAMA DE GANTT- FASE INICIAL DOCUMENTACION Y ANALISIS2 DIAGRAMA DE GANTT- FASE FINAL

Más detalles

Resumen General del Manual de Organización y Funciones

Resumen General del Manual de Organización y Funciones Gerencia de Tecnologías de Información Resumen General del Manual de Organización y Funciones (El Manual de Organización y Funciones fue aprobado por Resolución Administrativa SBS N 354-2011, del 17 de

Más detalles

3.3.3 Tecnologías Mercados Datos

3.3.3 Tecnologías Mercados Datos 3.3.3 Tecnologías Mercados Datos TECNOLOGIAS DATAMART: Aspect Data Mart es una solución completa de reportes para la empresa, que le proporciona un mayor entendimiento de las operaciones de sus negocios

Más detalles

El almacén de indicadores de proceso de negocio en ejecución

El almacén de indicadores de proceso de negocio en ejecución X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 El almacén de indicadores de proceso de negocio en ejecución Andrés Boza García 1, Angel Ortiz Bas 1, Llanos Cuenca Gonzalez

Más detalles

Business Intelligence

Business Intelligence 2012 Business Intelligence Agenda Programas Diferencias de OLTP vs OLAP Arquitectura de una solución de BI Tecnologías Microsoft para BI Diferencias entre OLTP v/s OLAP Alineación de Datos OLTP Datos organizados

Más detalles

E-data. Transformando datos en información con Data Warehousing

E-data. Transformando datos en información con Data Warehousing Federico Plancarte Sánchez E-data. Transformando datos en información con Data Warehousing Tema 2 El soporte a la Decisión 2-1 Evolución del soporte a la decisión Diversas categorías del análisis del DS

Más detalles

Quienes Somos? Valor. Estrategia

Quienes Somos? Valor. Estrategia Quienes Somos? STGI nace como la respuesta necesaria al mundo empresarial en consultorías para acceder y gestionar la información, estructurada y no estructurada, con el fin de alcanzar procesos eficientes

Más detalles

Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida

Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida Resumen de la conferencia Día 5-6-2012 17:00h Lugar: Obra Social Ibercaja, Sala De actos, Rambla Ferran 38, 3º, Lleida Ponente: Luis Muñiz Socio Director de Sisconges & Estrategia y experto en Sistemas

Más detalles

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI)

Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) Centro de Investigación y Desarrollo en Ingeniería en Sistemas de Información (CIDISI) OFERTAS TECNOLÓGICAS 1) GESTIÓN ORGANIZACIONAL Y LOGÍSTICA INTEGRADA: TÉCNICAS Y SISTEMAS DE INFORMACIÓN 2) GESTIÓN

Más detalles

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997

Facultad de Ciencias Económicas. Departamento de Sistemas. Asignatura: INTELIGENCIA DE NEGOCIOS. Plan 1997 UNIVERSIDAD DE BUENOS AIRES Facultad de Ciencias Económicas Departamento de Sistemas Asignatura: INTELIGENCIA DE NEGOCIOS Código: 715 Plan 1997 Cátedra: DEPARTAMENTO DE SISTEMAS Carrera: Licenciado en

Más detalles

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009

Licencia GNU FDL. Detalle del cambio. Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Versión incial. 05/11/2009 Licencia GNU FDL Copyright 2009 Ing. Bernabeu Ricardo Dario, Ing. García Mattío Mariano Alberto. Se otorga permiso para copiar, distribuir y/o modificar este documento bajo los términos de la Licencia

Más detalles

Arquitectura de desarrollo Fomento.Net

Arquitectura de desarrollo Fomento.Net Casos de éxito everis Arquitectura de desarrollo Fomento.Net Resumen País: España. Sector: Administración. Perfil del Cliente Subdirección General de Tecnologías y Sistemas de la Información (SGTSI) del

Más detalles

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes Capítulo 4 Arquitectura para análisis de información propuesta 4.1 Arquitectura Zombi es una arquitectura que proporciona de manera integrada los componentes necesarios para el análisis de información

Más detalles

Minería de Procesos. Octubre 2013 Ing. Diego Karbuski

Minería de Procesos. Octubre 2013 Ing. Diego Karbuski Minería de Procesos Octubre 2013 Ing. Diego Karbuski Nuestra Experiencia en los últimos años Modelo de Implantación Tradicional en BPM Este modelo es efectivo? Se conocen los procesos en la organización?

Más detalles

UN PASEO POR BUSISNESS INTELLIGENCE

UN PASEO POR BUSISNESS INTELLIGENCE UN PASEO POR BUSISNESS INTELLIGENCE Ponentes: Agreda, Rafael Chinea, Linabel Agenda Sistemas de Información Transaccionales Qué es Business Intelligence? Usos y funcionalidades Business Intelligence Ejemplos

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Universidad Nacional de Salta Facultad de Ciencias Económicas, Jurídicas y Sociales Sistemas de Información para la Gestión Fundamentos de la Inteligencia de Negocios Administración de Bases de Datos e

Más detalles

OLAP 2 OLAP 1 OLAP 4 OLAP 3 OLAP 5 OLAP 6

OLAP 2 OLAP 1 OLAP 4 OLAP 3 OLAP 5 OLAP 6 OLAP EXPLOTACIÓN UN DW: EXPLOTACIÓN UN DW:... OLAP 1 OLAP 2 EXPLOTACIÓN UN DW: MOLO UN AMBIENTE OLAP EXPLOTACIÓN UN DW: LAS HERRAMIENTAS OLAP PRESENTAN AL USUARIO UNA VISIÓN MULTIDIMENSIONAL LOS DATOS

Más detalles

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask

Comunicación para Tecnimap 2010. Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Comunicación para Tecnimap 2010. EL BI APLICADO AL ANÁLISIS DE LAS VISITAS TURÍSTICAS Contenido: 1. Itourbask como elemento de un Sistema de Gestión de Destino Turístico 2. El Data Mart de Itourbask Autor:

Más detalles

SISTEMA DE INFORMACION GERENCIAL. Lic.Patricia Palacios Zuleta

SISTEMA DE INFORMACION GERENCIAL. Lic.Patricia Palacios Zuleta SISTEMA DE INFORMACION GERENCIAL Lic.Patricia Palacios Zuleta Pentaho Open BI Suite La suite Pentaho cubre principalmente las siguientes áreas: integración de datos, reportes, análisis, alertas y dashboards,

Más detalles

Workflow, Gestión Documental y Tecnologías Web.

Workflow, Gestión Documental y Tecnologías Web. Workflow, Gestión Documental y Tecnologías Web. Nuevo prisma tecnológico en la Automatización de Expedientes 1 Introducción El objeto del presente planteamiento no es otro que abordar la siempre difícil

Más detalles

1 GLOSARIO. Actor: Es un consumidor (usa) del servicio (persona, sistema o servicio).

1 GLOSARIO. Actor: Es un consumidor (usa) del servicio (persona, sistema o servicio). 1 GLOSARIO A continuación se definen, en orden alfabético, los conceptos básicos que se han abordado a lo largo del desarrollo de la metodología para la gestión de requisitos bajo la Arquitectura Orientada

Más detalles

SQL Server Business Intelligence parte 1

SQL Server Business Intelligence parte 1 SQL Server Business Intelligence parte 1 Business Intelligence es una de las tecnologías de base de datos más llamativas de los últimos años y un campo donde Microsoft ha formado su camino a través de

Más detalles

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS

CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS CONSTRUCCION DE INDICADORES DE GESTION Y HERRAMIENTAS OLAP PARA PEQUEÑAS Y MEDIANAS EMPRESAS 1. RESEÑA HISTORICA Las exigencias competitivas del mercado hacen que las organizaciones busquen mecanismos

Más detalles

Concepción - Chile Marcela Varas Universidad de Concepción Chile - 2012

Concepción - Chile Marcela Varas Universidad de Concepción Chile - 2012 Presentación Concepción - Chile www.udec.cl Universidad de Concepción - Chile Estudiantes Universidad de Concepción Departamento de Ingeniería Informática y Ciencias de la Computación Facultad de Ingeniería

Más detalles

REPOSITORIO COR O P R OR O A R T A I T VO V

REPOSITORIO COR O P R OR O A R T A I T VO V REPOSITORIO CORPORATIVO Repositorio Corporativo Que es? Antecedentes? Por que lo necesito? Multiplicidad de sistemas Retraso en obtención de reportes Info 3 Info 2 Info 1 Redundancia Inconsistencia de

Más detalles

Fundamentos de la Inteligencia de Negocios

Fundamentos de la Inteligencia de Negocios Sistemas de Información para la Gestión UNIDAD 2: Infraestructura de Tecnología de la Información Unidad 2 Infraestructura de Tecnología de la Información Estructura de TI y tecnologías emergentes. Estructura

Más detalles

Monitoreo de Plataformas TI. de Servicios

Monitoreo de Plataformas TI. de Servicios Por qué Provectis Infraestructura de Monitoreo de Plataformas TI Administrados de Servidores Administrados de Almacenamiento Administrados de Respaldo y Recuperación Administrados de Plataformas de Escritorio

Más detalles

Estrategias de Mercadeo y Negocios en Internet para PYMES. Intranets

Estrategias de Mercadeo y Negocios en Internet para PYMES. Intranets Estrategias de Mercadeo y Negocios en Internet para PYMES Intranets Agenda Introducción, Conceptos y Niveles Funcionalidades de una Intranet Aplicaciones Mercadeo y Ventas Recursos Humanos Ingeniería Soporte

Más detalles

Consultoría en Automatización de Procedimientos

Consultoría en Automatización de Procedimientos AUTOMATIZACION Como concepto general, la automatización implica la realización de tareas o procedimientos utilizando la tecnología disponible, de forma tal de minimizar los esfuerzos del capital humano.

Más detalles

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS

Inteligencia de Negocios Introducción. Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Inteligencia de Negocios Introducción Por Elizabeth León Guzmán, Ph.D. Profesora Ingeniería de Sistemas Grupo de Investigación MIDAS Agenda 1.Introducción 2.Definición 3.ETL 4.Bodega de Datos 5.Data Mart

Más detalles

15.565 Integración de sistemas de información: Factores tecnológicos, organizativos y estratégicos

15.565 Integración de sistemas de información: Factores tecnológicos, organizativos y estratégicos MASSACHUSETTS INSTITUTE OF TECHNOLOGY SLOAN SCHOOL OF MANAGEMENT 15.565 Integración de sistemas de información: Factores tecnológicos, organizativos y estratégicos 15.578 Sistemas de información globales:

Más detalles

Innovación para su Contact Center

Innovación para su Contact Center Innovación para su Contact Center Madrid 29/07/2011 Situación actual Un Contact Center está compuesto de numerosos sistemas y cada uno de ellos cuenta con información propia. Tanto es así, que cada vez

Más detalles

SUPLEMENTO EUROPASS AL TÍTULO

SUPLEMENTO EUROPASS AL TÍTULO SUPLEMENTO EUROPASS AL TÍTULO DENOMINACIÓN DEL TÍTULO Técnico Superior en Desarrollo de Aplicaciones Multiplataforma --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Materia: Inteligencia de negocios

Materia: Inteligencia de negocios Instituto Tecnológico de Durango Departamento de Sistemas y Computación Ingeniería Informática Unidad I. INTRODUCCIÓN A LA INTELIGENCIA DE NEGOCIOS 1 Información Activo más importante de los negocios actuales

Más detalles

DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA

DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA 147 DATA WAREHOUSE PARA LA PRESTACIÓN DEL SERVICIO PÚBLICO DE INFORMACIÓN ESTADÍSTICA RICARDO LUJÁN SALAZAR INSTITUTO NACIONAL DE ESTADÍSTICA, GEOGRAFÍA E INFORMÁTICA (INEGI) MÉXICO 148 Data warehouse

Más detalles

CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER. 40 horas 60 días

CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER. 40 horas 60 días CREACIÓN DE PROYECTOS DE BUSINESS INTELLIGENCE CON SQL SERVER DURACIÓN DÍAS DE CONEXIÓN 40 horas 60 días CONTACTO: formacion@fgulem.es El Campus Virtual ha sido concebido con una metodología dinámica e

Más detalles

INTEGRACION DE BASES DE DATOS EN LA WEB

INTEGRACION DE BASES DE DATOS EN LA WEB 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: INTEGRACION DE BASES DE DATOS EN LA WEB Ingeniería en Tecnologías de la Información y Comunicaciones DSD-1202 SATCA1

Más detalles

Convertimos lo complicado en sencillo, lo fácil en operativo y eliminamos lo ineficaz

Convertimos lo complicado en sencillo, lo fácil en operativo y eliminamos lo ineficaz Convertimos lo complicado en sencillo, lo fácil en operativo y eliminamos lo ineficaz Quiénes somos SDManalytics es una compañía especializada en el análisis de datos y en el desarrollo de soluciones para

Más detalles

ORIENTACIONES SIMCE TIC

ORIENTACIONES SIMCE TIC ORIENTACIONES SIMCE TIC Sistema Nacional de Medición de Competencias TIC en Estudiantes ORIENTACIONES SIMCE TIC Sistema Nacional de Medición de Competencias TIC en Estudiantes INDICE Introducción 7 Prueba

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS

UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS UNIVERSIDAD DE SANTIAGO DE CHILE INGENIERIA COMERCIAL APLICACIÓN COMPUTACIONAL I INTELIGENCIA DE NEGOCIOS Integrante: Profesor: Maximiliano Heise Luis Ríos Fecha de entrega: miércoles 18 de abril de 2012

Más detalles

http://www.statum.biz http://www.statum.info http://www.statum.org

http://www.statum.biz http://www.statum.info http://www.statum.org ApiaMonitor Monitor de Infraestructura BPMS Por: Ing. Manuel Cabanelas Product Manager de Apia Manuel.Cabanelas@statum.biz http://www.statum.biz http://www.statum.info http://www.statum.org Abstract A

Más detalles

Data Warehousing - Marco Conceptual

Data Warehousing - Marco Conceptual Data Warehousing - Marco Conceptual Carlos Espinoza C.* Introducción Los data warehouses se presentan como herramientas de alta tecnología que permiten a los usuarios de negocios entender las relaciones

Más detalles

3.2 Utiliza las TIC para mantener una orientación y desempeño profesional que refleje el esfuerzo por hacer sus tareas con eficiencia y calidad

3.2 Utiliza las TIC para mantener una orientación y desempeño profesional que refleje el esfuerzo por hacer sus tareas con eficiencia y calidad Dimensión Gestión. 3 Utiliza las TIC para gestionar de manera eficiente su trabajo como docente, en el área administrativa, en la gestión de proyectos de innovación pedagógica y apoyando la gestión del

Más detalles

Capítulo 5. Cliente-Servidor.

Capítulo 5. Cliente-Servidor. Capítulo 5. Cliente-Servidor. 5.1 Introducción En este capítulo hablaremos acerca de la arquitectura Cliente-Servidor, ya que para nuestra aplicación utilizamos ésta arquitectura al convertir en un servidor

Más detalles

SISTEMA DE PRODUCCION. Pág. 1

SISTEMA DE PRODUCCION. Pág. 1 SISTEMA DE PRODUCCION Pág. 1 Componentes del sistema de producción La fábrica Máquinas de producción Herramientas Equipo para el movimiento de material Equipo de inspección Sistemas de computadora Distribución

Más detalles

Business Intelligence

Business Intelligence BUSINESS INTELLIGENCE El poder de la información. Business Intelligence Los mercados actuales son cada vez más competitivos, lo que obliga a las empresas a aumentar su capacidad de reacción y adaptación

Más detalles

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Redundancia e inconsistencia de datos: Puesto que los archivos que mantienen almacenada la información son creados por

Más detalles

La Pirámide de Solución de TriActive TRICENTER

La Pirámide de Solución de TriActive TRICENTER Información sobre el Producto de TriActive: Página 1 Documento Informativo La Administración de Sistemas Hecha Simple La Pirámide de Solución de TriActive TRICENTER Información sobre las Soluciones de

Más detalles

Quality Software ERP Red de Aplicaciones Dinámicas (RAD). RAD

Quality Software ERP Red de Aplicaciones Dinámicas (RAD). RAD El objetivo principal de un sistema de información ERP es facilitar el manejo y crecimiento de su empresa, mejorando la eficiencia y rapidez de los procesos internos. Para dar solución en forma integral

Más detalles

Proyecto CAT Centro Atención al Trabajador

Proyecto CAT Centro Atención al Trabajador Proyecto CAT Centro Atención al Trabajador 1 Contenido Antecedentes del Proyecto... 3 Modelo Propuesto... 4 Objetivo general... 6 Objetivos específicos... 6 Alcance... 7 Beneficios Esperados... 7 Entorno

Más detalles

UNIVERSIDAD AUTONOMA DE GUADALAJARA ACP06 ALUMNO: JOSE ANGEL DEHESA JIMENEZ REGISTRO: 1996656 C R M

UNIVERSIDAD AUTONOMA DE GUADALAJARA ACP06 ALUMNO: JOSE ANGEL DEHESA JIMENEZ REGISTRO: 1996656 C R M UNIVERSIDAD AUTONOMA DE GUADALAJARA ACP06 ALUMNO: JOSE ANGEL DEHESA JIMENEZ REGISTRO: 1996656 C R M CONCEPTO: "Customer Relationship Management"), La administración basada en la relación con los clientes.

Más detalles

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 5. Sistemas de Bases de Datos. frente a Sistemas de Ficheros

FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA. Tema 5. Sistemas de Bases de Datos. frente a Sistemas de Ficheros FICHEROS Y BASES DE DATOS (E44) 3º INGENIERÍA EN INFORMÁTICA Tema 5. Sistemas de Bases de Datos frente a Sistemas de Ficheros 1.- Sistemas de Ficheros. 2.- Problemas de los Sistemas de Ficheros. 3.- Sistemas

Más detalles

JASPER SERVER BI INTRODUCCION

JASPER SERVER BI INTRODUCCION INTRODUCCION El proceso de toma de decisiones en toda organización, independientemente de la envergadura de esta no es tarea fácil, puesto que cualquier cambio mal tomado implica un alto riesgo de no aprovechar

Más detalles

Sistemas de Gestión de Documentos Electrónicos de Archivo (SGDEA)

Sistemas de Gestión de Documentos Electrónicos de Archivo (SGDEA) Sistemas de Gestión de Documentos Electrónicos de Archivo (SGDEA) Agenda 1. Introducción 2. Concepto Documento Electrónico 3. A que se le denomina Documento Electrónico 4. Componentes de un Documento Electrónico

Más detalles

Servicio de Gestión de TI

Servicio de Gestión de TI (gestión completa de la infraestructura tecnológica de su organización orientada a la realización de resultados mediante técnicas de inteligencia de negocio) Lo importante es el resultado Las organizaciones

Más detalles

Bases de Datos Heterogéneas

Bases de Datos Heterogéneas Bases de Datos Heterogéneas Autores: Sandra Navarro Carlos Castellano INTRODUCCION A LOS SISTEMAS GESTORES DE BASES DE DATOS El principal criterio que suele utilizarse para clasificar los SGBD es el modelo

Más detalles

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo

CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA. Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo CAPÍTUL07 SISTEMAS DE FILOSOFÍA HÍBRIDA EN BIOMEDICINA Alejandro Pazos, Nieves Pedreira, Ana B. Porto, María D. López-Seijo Laboratorio de Redes de Neuronas Artificiales y Sistemas Adaptativos Universidade

Más detalles

Business Intelligence (Inteligencia de Negocios) Bases de Datos Masivas (11088) Universidad Nacional de Luján

Business Intelligence (Inteligencia de Negocios) Bases de Datos Masivas (11088) Universidad Nacional de Luján Business Intelligence (Inteligencia de Negocios) Bases de Datos Masivas (11088) Universidad Nacional de Luján Qué es Business Intelligence (BI)? Se entiende por Business Intelligence al conjunto de metodologías,

Más detalles

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a:

Estos documentos estarán dirigidos a todas las personas que pertenezcan a equipos de implementación de Oracle BI, incluyendo a: Oracle Business Intelligence Enterprise Edition 11g. A lo largo de los siguientes documentos trataré de brindar a los interesados un nivel de habilidades básicas requeridas para implementar efectivamente

Más detalles

1. Instala sistemas operativos en red describiendo sus características e interpretando la documentación técnica.

1. Instala sistemas operativos en red describiendo sus características e interpretando la documentación técnica. Módulo Profesional: Sistemas operativos en red. Código: 0224. Resultados de aprendizaje y criterios de evaluación. 1. Instala sistemas operativos en red describiendo sus características e interpretando

Más detalles

Aproximación práctica a ITIL. Proyecto VeredaCS. F07.02.01.00.30.r00

Aproximación práctica a ITIL. Proyecto VeredaCS. F07.02.01.00.30.r00 Aproximación práctica a ITIL. Proyecto VeredaCS Introducción En esta presentación pretendemos mostrar una aproximación práctica a la implantación de un modelo de prestación de servicios basado en ITIL

Más detalles

10778 Implementing Data Models and Reports with Microsoft SQL Server 2012

10778 Implementing Data Models and Reports with Microsoft SQL Server 2012 10778 Implementing Data Models and Reports with Microsoft SQL Server 2012 Introducción Inteligencia de negocio (BI) se está convirtiendo incrementalmente importante para compañías de diferentes tamaños

Más detalles

Fundamentos de Ingeniería del Software. Capítulo 2. Introducción a los sistemas de información

Fundamentos de Ingeniería del Software. Capítulo 2. Introducción a los sistemas de información Fundamentos de Ingeniería del Software Capítulo 2. Introducción a los sistemas de información Capítulo 2. Introd. a los SI. Estructura 1. Concepto de sistema. 2. Información y datos. 3. Sistemas de información.

Más detalles

Business Intelligence

Business Intelligence Business Intelligence Definición Business Intelligence es una aproximación estratégica para identificar, vigilar, comunicar y transformar, sistemáticamente, signos e indicadores en información activa en

Más detalles

1. Gestionar el ciclo de vida de las solicitudes de servicio que se reciben de los usuarios de los servicios de TIC.

1. Gestionar el ciclo de vida de las solicitudes de servicio que se reciben de los usuarios de los servicios de TIC. 5.9 OPERACIÓN DE SERVICIOS 5.9.1 Operación de la mesa de servicios 5.9.1.1 Objetivos del proceso General: Establecer y operar un punto único de contacto para que los usuarios de los servicios hagan llegar

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

"Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios

Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios "Diseño, construcción e implementación de modelos matemáticos para el control automatizado de inventarios Miguel Alfonso Flores Sánchez 1, Fernando Sandoya Sanchez 2 Resumen En el presente artículo se

Más detalles

El Software. Es lo que se conoce como el ciclo de vida del software.

El Software. Es lo que se conoce como el ciclo de vida del software. El Software Hace referencia a los programas y toda la información asociada y materiales necesarios para soportar su instalación, operación, reparación, y mejora. Para construir un nuevo elemento software

Más detalles

MINING SOLUTIONS LIMITADA

MINING SOLUTIONS LIMITADA MINING SOLUTIONS LIMITADA Contenido... 1 Resumen Ejecutivo... 3... 4 Nuestros Servicios... 5 Administración de proyectos... 6 Operación y mantenimiento sobre los Sistema de Manejo de la Información Geológica

Más detalles

Sistema de Gestión de Proyectos Estratégicos.

Sistema de Gestión de Proyectos Estratégicos. [Documento versión 2.0 del 24/06/2015] Sistema de Gestión de Proyectos Estratégicos. El sistema de Gestión de Proyectos Estratégicos (GPE), es una poderosa herramienta para administrar y gestionar los

Más detalles

SUPLEMENTO EUROPASS AL TÍTULO

SUPLEMENTO EUROPASS AL TÍTULO SUPLEMENTO EUROPASS AL TÍTULO DENOMINACIÓN DEL TÍTULO Técnico Superior en Desarrollo de Aplicaciones Web --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos

Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos Antecedentes y Fundamentación Un Sistema de Información es un conjunto de componentes que interactúan entre sí, orientado

Más detalles

SAP BusinessObjects Edge BI Standard Package La solución de BI preferida para. Empresas en Crecimiento

SAP BusinessObjects Edge BI Standard Package La solución de BI preferida para. Empresas en Crecimiento SAP BusinessObjects Edge BI Standard Package La solución de BI preferida para Empresas en Crecimiento Portfolio SAP BusinessObjects Soluciones SAP para Empresas en Crecimiento Resumen Ejecutivo Inteligencia

Más detalles

Ventajas del software del SIGOB para las instituciones

Ventajas del software del SIGOB para las instituciones Ventajas del software del SIGOB para las instituciones Podemos afirmar que además de la metodología y los enfoques de trabajo que provee el proyecto, el software, eenn ssi i mi issmoo, resulta un gran

Más detalles

GESTIÓN DE CLÍNICAS COLEGIO OFICIAL DE VETERINARIOS DE BIZKAIA

GESTIÓN DE CLÍNICAS COLEGIO OFICIAL DE VETERINARIOS DE BIZKAIA GESTIÓN DE CLÍNICAS COLEGIO OFICIAL DE VETERINARIOS DE BIZKAIA Memoria del proyecto ÍNDICE 1 - INTRODUCCIÓN... 3 2 - OBJETIVO Y ALCANCE... 4 3 - SOLUCIÓN FUNCIONAL IMPLANTADA... 5 3.1 SENCILLEZ DE USO...

Más detalles

Sistema de gestión de procesos institucionales y documental.

Sistema de gestión de procesos institucionales y documental. [Documento versión 1.7 del 10/10/2015] Sistema de gestión de procesos institucionales y documental. El sistema de gestión de procesos institucionales y documental, es una solución diseñada para mejorar

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Sistemas De InformaciÓn (iit95)

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Sistemas De InformaciÓn (iit95) 1. CÓDIGO Y NÚMERO DE CRÉDITOS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Sistemas De InformaciÓn (iit95) CÓDIGO: FIEC04861 NÚMERO

Más detalles