f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

Tamaño: px
Comenzar la demostración a partir de la página:

Download "f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t)."

Transcripción

1 Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y z t) = (x + y t x + 2y z t x + 5y 2z 7t). a) Calcular la matriz asociada a f y su forma escalonada reducida de filas. b) Hallar una base ortonormal del núcleo de f c) Hallar una base B de la imagen de f y calcular las coordenadas de f( ) respecto de B. (2 p.) 2) a) Sea U = p(x) = a 0 + a x + + a n x n Π n (R) / p() = p () = 0}. (a) Calcular la dimensión de U. (a2) Para n = 2 hallar una base de U. b) Sea S = u v} una base ortonormal de R 2 y sea A = 2uu t vv t M 2 2 (R). (b) Demostrar que A es simétrica. (b2) Probar que u y v son autovectores de A y determinar el espectro de A. (b) Calcular los valores singulares de A. ( p.) ) Se considera la matriz A = a) Sabiendo que λ = 7 es un autovalor triple de A hallar el espectro de A sin calcular el polinomio característico. b) Probar que A es diagonalizable y calcular una base de R 4 formada por autovectores. c) Calcular el polinomio característico de la matriz A 7I donde I es la matriz identidad. d) Clasificar según los valores de α la forma cuadrática ω α (x) = x t (A + αi)x. (2.5 p.) 4) Se consideran la matriz M y el vector b dados por 2 2 M = 2 2 a) Calcular los valores singulares de M. ; b = 0. b) Calcular la solución en el sentido de mínimos cuadrados del sistema Mx = b.

2 SOLUCIONES PROBLEMA. (a) Dado que la expresión matricial de f es f(x y z t) = la matriz asociada a f es x + y t x + 2y z t x + 5y 2z 7t A = = Para calcular su forma escalonada reducida hacemos operaciones elementales sobre las filas de A: A = 0 2 F2( ) F ( ) x y z t F 2( 2) F 2( ) = rref(a). (b) En primer lugar calculamos una base de Ker (A). Si denotamos A = rref(a) sabemos que Ker (f) = Ker (A) = Ker (A ). Por tanto: } Ker (f) = Ker (A ) = (x y z t) R 4 / x + z + t = 0 y z 2t = 0 = } = (x y z t) R 4 / x = z t y = z + 2t = ( z t z + 2t z t) / z t R} = = z( 0) + t( 2 0 ) / z t R} =< ( 0) ( 2 0 )} >. Por lo tanto la dimensión del núcleo de f es 2 y una base es B = ( 0) ( 2 0 )}. Denotemos v = ( 0) v 2 = ( 2 0 ). Para ortonormalizar la base B utilizamos el procedimiento de ortonormalización de Gram-Schmidt: u = v v = ( ) ( 0) = 0 ; ũ 2 = v 2 v 2 u u = ( 2 0 ) ( u 2 = ( ũ2 ũ 2 = 0 ). ) 0 = ( 2 0 ) ( 0) = (0 ); El conjunto B 2 = u u 2 } = ( ) ( 0 0 )} 2

3 es una base ortonormal del núcleo de f. (c) La imagen de f es el subespacio vectorial de R generado por las columnas de la matriz asociada A es decir: Im (f) =< ( ) ( 2 5) (0 2) ( 7)} >. Para calcular una base de la imagen de f hacemos operaciones elementales para eliminar los vectores linealmente dependientes: F 2( ) F 4() F 2() F 42(2) 0 2 F 2( ) Por tanto dim(im (f)) = 2 y una base de Im (f) es B = ( 0 ) (0 2)}. Por otra parte α = f( ) = ( ) = α( 0 ) + β(0 2) β = En consecuencia f( ) = ( ) B. PROBLEMA 2. (a) Si p(x) = a 0 + a x + a 2 x a n x n entonces p (x) = a + 2a 2 x + + na n x n. Por tanto U se puede escribir como U = p(x) = a 0 + a x + + a n x n Π n (R) / a } 0 + a + + a n = 0. a + 2a na n = 0 Como U está definido por 2 ecuaciones linealmente independientes dim(u) = dim (Π n (R)) 2 = n + 2 = n. (a2) Para n = 2: U = p(x) = a + bx + cx 2 Π 2 (R) / a + b + c = 0 } = b + 2c = 0 a + bx + cx 2 / b = 2c a = c = c 2cx + cx 2 / c R } = c( 2x + x 2 ) / c R } =< 2x + x 2 } >. Por tanto una base de U es B U = 2x + x 2 }. (b) Veamos que A = 2uu t vv t es simétrica: A t = (2uu t vv t ) t = 2(uu t ) t (vv t ) t = 2(u t ) t u t (v t ) t v t = 2uu t vv t = A. (b2) Para probar que u y v son autovectores de A hacemos los productos Au y Av. Tenemos en cuenta que como S = u v} es una base ortonormal se cumplen las siguientes relaciones: Así } = v t u = v u = 0 ; u t v = u v = 0 ; u t u = u u = u 2 = ; v t v = v v = v 2 =. Au = (2uu t vv t )u = 2uu t u vv t u = 2u(u t u) v(v t u) = 2u Av = (2uu t vv t )v = 2uu t v vv t v = 2u(u t v) v(v t v) = v = ( )v.

4 De aquí se deduce que u es un autovector de A asociado al autovalor λ = 2 y v es un autovector de A asociado al autovalor λ 2 =. Como A M 2 2 (R) sus únicos autovalores son 2 y por lo que Sp(A) = 2 }. (b) Los valores singulares de A son las raíces cuadradas positivas de los autovalores de B = A t A. Como A es simétrica y Sp(A) = 2 } se tiene: B = A t A = AA = A 2 = Sp(B) = 2 2 ( ) 2} = 4 }. Por tanto los valores singulares de A son σ = 4 = 2 σ 2 = =. PROBLEMA. (a) Dado que λ = 7 es un autovalor triple de A y A M 4 4 (R) el espectro de A es Sp(A) = λ µ} donde µ es un autovalor simple. Para calcular µ utilizamos que la traza de A es la suma de sus autovalores contados con su multiplicidad. Así tr (A) = λ + µ = 2 + µ = = 9 = µ = 9 2 = 2. Por tanto Sp(A) = 7 2} con m.a. (7) = m.a. ( 2) =. (b) La matriz A es diagonalizable porque es una matriz simétrica real. Para calcular una base de R 4 formada por autovectores de A hallamos una base de cada uno de los subespacios propios V (7) = Ker (A 7I) y V ( 2) = Ker (A + 2I). En primer lugar Esta matriz tiene rango y por tanto A 7I = V (7) = Ker (A 7I) = (x y z t) R 4 / 2x y + 2t = 0} = (x y z t) R 4 / y = 2x + 2t} = = (x 2x + 2t z t) / x z t R} = x( 2 0 0) + z(0 0 0) + t(0 2 0 ) / x z t R} = =< ( 2 0 0) (0 0 0) (0 2 0 )} >.. Para calcular V ( 2) hacemos operaciones elementales en la matriz A + 2I: A + 2I = F 2( 5) F 4( 4) F 2(/9) F F 42( ) F (/9) F 2(2) F ( /2)

5 Por tanto V ( 2) = Ker (A + 2I) = (x y z t) R 4 / x + t = 0 2y + t = 0 z = 0} = = (x y z t) R 4 / x = 2y z = 0 t = 2y} = (2y y 0 2y) / y R} = y(2 0 2) / y R} = =< (2 0 2)} >. Finalmente una base de R 4 formada por autovectores de A es C = ( 2 0 0) (0 0 0) (0 2 0 ) (2 0 2)} (c) Si denotamos p(x) = x 7 entonces A 7I = p(a). Dado que Sp(A) = 7 2} con m.a. (7) = m.a. ( 2) = se tiene que Sp(A 7I) = Sp(p(A)) = p(7) p( 2)} = 0 9} con m.a. (0) = m.a. ( 9) =. Por tanto el polinomio característico de A 7I es q(x) = x (x + 9) = x 4 + 9x. (d) Razonando como antes el espectro de A + αi es Sp(A + αi) = 7 + α 2 + α} con m.a. (7 + α) = m.a. ( 2 + α) =. Como el signo de los autovalores determina la clasificación de la forma cuadrática estudiamos el signo de 7 + α y 2 + α según los distintos valores de α. Es claro que 7 + α > 0 α > 7 y 2 + α > 0 α > 2. Por lo tanto ω α es definida negativa si α < 7; semidefinida negativa si α = 7; indefinida si 7 < α < 2; semidefinida positiva si α = 2; definida positiva si α > 2. PROBLEMA 4. (a) Los valores singulares de M son las raíces cuadradas positivas de los autovalores de M t M M t M = = Calculamos el polinomio característico de M t M: 0 x 0 6 M t M xi = 0 4 x 0 = (4 x) 0 x x 6 0 x = (4 x)(6 x) 6 0 x = (4 x)2 (6 x). F 2() = (4 x) 6 x 6 x 6 0 x Por tanto Sp(A) = 4 6} con m.a. (4) = 2 m.a. (6) = y los valores singulares de M son σ = 6 = 4 σ 2 = σ = 4 = 2. = 5

6 (b) La la solución en el sentido de mínimos cuadrados del sistema Mx = b es la solución del sistema M t Mx = M t b. Ya hemos calculado M t M en el apartado anterior. M t M = ; M t b = 2 2 = Por tanto el sistema resulta: x y z = 5 0x + 6z = 5 4y = 6x + 0z = De la primera y la tercera ecuaciones se obtiene que x = /2 z = 0. De la segunda obtenemos y = /4. Por tanto la solución de mínimos cuadrados es x y = /2 /4. z 0 6

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d).

L(a, b, c, d) = (a + c, 2a 2b + 2c + d, a c, 4a 4b + 4c + 2d). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 1 18 de enero de 1 (5 p. 1 Para cada α R se considera el siguiente subespacio de R 4 : U α =

Más detalles

Soluciones a los ejercicios del examen final C =. 1 0

Soluciones a los ejercicios del examen final C =. 1 0 Universidade de Vigo Departamento de Matemática Aplicada II E T S E de Minas Álgebra Lineal Curso 205/6 de enero de 206 Soluciones a los ejercicios del examen final Se considera el subespacio U {X M 2

Más detalles

0 a b X = b c 0. f X (A) = AX XA.

0 a b X = b c 0. f X (A) = AX XA. Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Industriales Álgebra Lineal Convocatoria de Junio 8 de Junio de 2007 (3 ptos.). Sea V = {A M 3 3 (R) / A t = A}. (a) Demostrar que toda

Más detalles

Soluciones a los ejercicios del examen final

Soluciones a los ejercicios del examen final Álgebra Lineal Curso 206/7 6 de junio de 207 Soluciones a los ejercicios del examen final Se considera la aplicación lineal L : R 3 R 3 definida por L(x, y, z) = (z x, x + y + z, x y 3z). a) Hallar la

Más detalles

TEMA V. Espacios vectoriales

TEMA V. Espacios vectoriales TEMA V. Espacios vectoriales 1 1. Demostrar que cada uno de los siguientes conjuntos tiene estructura de espacio vectorial sobre el cuerpo de los reales: a El conjunto (R 2, +,, R. b El conjunto (R 3,

Más detalles

ESPACIOS VECTORIALES Y APLICACIONES LINEALES

ESPACIOS VECTORIALES Y APLICACIONES LINEALES Departamento de Matemática Aplicada II E.E.I. ÁLGEBRA Y ESTADÍSTICA Boletín n o (010-011 ESPACIOS VECTORIALES Y APLICACIONES LINEALES 1. En el espacio vectorial ordinario R 4 estudiar cuáles de los siguientes

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 27 de junio de 2014 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final 7 de junio de 4 APELLIDOS, NOMBRE: DNI: irma Primer parcial Ejercicio Consideremos matrices A m m, B, C n n, Pruebe que bajo la hipótesis de que las inversas

Más detalles

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA

TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA ESCUELA ESTUDIOS DE TÉCNICA SUPERIOR DE INGENIERÍA INFORMÁTICA DEPARTAMENTO DE INGENIERÍA INFORMÁTICA MATEMÁTICA APLICADA I ÁLGERA LINEAL OLETINES DE PROLEMAS Curso 8-9 Sistemas de ecuaciones lineales.

Más detalles

ÁLGEBRA LINEAL II Práctica

ÁLGEBRA LINEAL II Práctica ÁLGEBRA LINEAL II Práctica 2.1-2.2 Espacios Euclídeos. Ortogonalidad (Curso 2011 2012) 1. Se considera un espacio euclídeo de dimensión 3, y en él una base {ē 1, ē 2, ē 3 } tal que el módulo de ē 1 y el

Más detalles

Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre

Álgebra. Ingeniería Industrial. Curso 2006/2007 Examen de Septiembre Álgebra. Ingeniería Industrial. Curso / Examen de Septiembre OBSERVACIONES: Cada hoja entregada debe contener el nombre, apellidos y número de identificación escrito de forma clara. No mezclar ejercicios

Más detalles

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012

2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 2. Problemas. Espacios Vectoriales. Álgebra Lineal- Propedéutico Mayo de 2012 1. En R 2 se define la suma: (a 1, b 1 ) + (a 2, b 2 ) = (a 1 + a 2, b 1 + b 2 ) y el producto por un escalar: λ(a, b) = (0,

Más detalles

Soluciones de la hoja de diagonalización MATEMÁTICAS I

Soluciones de la hoja de diagonalización MATEMÁTICAS I Soluciones de la hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y, en caso afirmativo, hallar una matriz A tal que f(x) Ax, así como los subespacios

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009 6. Sean a y b dos números reales. En el espacio P 1 de los polinomios de grado menor o igual que

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 8-9.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Químicas FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina si cada

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 007-008 1.- En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) = Ax, así como los subespacios vectoriales

Más detalles

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas

FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas EXÁMENES DE MATEMÁTICAS Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha 5 de julio de 99. Dada la aplicación lineal: T

Más detalles

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas...

6.5.7 Orientación de un espacio vectorial eucĺıdeo Producto vectorial Diagonalización de formas bilineales simétricas... Contents 6 Formas Bilineales y Producto Escalar 3 6.1 Formas bilineales............................... 3 6.1.1 Matriz de una forma bilineal....................... 4 6.1. Formas bilineales simétricas.......................

Más detalles

ÁLGEBRA Algunas soluciones a la Práctica 8

ÁLGEBRA Algunas soluciones a la Práctica 8 ÁLGEBRA Algunas soluciones a la Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 24 25 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la

Más detalles

AUTOVALORES Y AUTOVECTORES

AUTOVALORES Y AUTOVECTORES 12 de Julio de 2011 AUTOVALORES Y AUTOVECTORES (Clase 01) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela 1 Puntos a tratar 1. Valores y vectores propios 2.

Más detalles

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios

Diagonalización. Tema Valores y vectores propios Planteamiento del problema Valores y vectores propios 61 Matemáticas I : Álgebra Lineal Tema 6 Diagonalización 61 Valores y vectores propios 611 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial

Más detalles

Formas canónicas reales

Formas canónicas reales Capítulo 7 Formas canónicas reales Introducción Sea V un espacio vectorial sobre C, f End(V y M B (f = A M(n n Sea λ = a + bi es una autovalor complejo de f de multiplicidad m Para tal autovalor complejo

Más detalles

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución:

1. W = {(x, y, z) x + y + z =0} 2. W = {(x, y, z) x 2 + y 2 + z 2 =1} Solución: ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Fundamentos Matemáticos de Ingeniería T. I. Electrónica y Eléctrica Primer Parcial (--4), primera parte. PROBLEMA A)[ puntos] Indica razonadamente cuál de los

Más detalles

ÁLGEBRA LINEAL I Práctica 5

ÁLGEBRA LINEAL I Práctica 5 ÁLGEBRA LINEAL I Práctica 5 Espacios vectoriales (Curso 2014 2015) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

Hoja de diagonalización MATEMÁTICAS I

Hoja de diagonalización MATEMÁTICAS I Hoja de diagonalización MATEMÁTICAS I 9- - En los siguientes casos estudiar si f es una aplicación lineal y en caso afirmativo hallar una matriz A tal que f(x) Ax así como los subespacios vectoriales N(f)

Más detalles

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 6 Espacios euclídeos 6.1 Producto escalar. Espacio euclídeo Se llama producto escalar sobre un espacio vectorial real V a cualquier aplicación

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.

Más detalles

Tema 11.- Autovalores y Autovectores.

Tema 11.- Autovalores y Autovectores. Álgebra 004-005 Ingenieros Industriales Departamento de Matemática Aplicada II Universidad de Sevilla Tema - Autovalores y Autovectores Definición, propiedades e interpretación geométrica La ecuación característica

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2009 2010) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando

ÁLGEBRA LINEAL. EXAMEN FINAL 18 de Enero de b) (0, 5 puntos) Estudia si la siguiente afirmación es verdadera o falsa, justificando ÁLGEBRA LINEAL EXAMEN FINAL 8 de Enero de Apellidos y Nombre: Duración del examen: 3 horas Publicación de notas: enero Revisión de Examen: feb Ejercicio. ( puntos a (, puntos Estudia si la siguiente afirmación

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 2 de julio de 2012 Duración del examen: 3 horas Fecha publicación notas: 11 de julio ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 2 de julio de 22 Duración del examen: 3 horas Fecha publicación notas: de julio Fecha revisión examen: 3 de julio Apellidos: Nombre: Grupo: Titulación: ESCRIBA EL APELLIDO

Más detalles

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE:

Álgebra Lineal - Grado de Estadística. Examen final 26 de junio de 2013 APELLIDOS, NOMBRE: Álgebra Lineal - Grado de Estadística Examen final de junio de APELLIDOS, NOMBRE: DNI: Firma Primer parcial Ejercicio ( Sea A una matriz simétrica definida positiva de orden n y v R n Pruebe que la matriz

Más detalles

Relación 1. Espacios vectoriales

Relación 1. Espacios vectoriales MATEMÁTICAS PARA LA EMPRESA Curso 2007/08 Relación 1. Espacios vectoriales 1. (a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy) Demuestra que IR

Más detalles

1.- Definir: Vectores linealmente dependientes y Sistemas ligados.

1.- Definir: Vectores linealmente dependientes y Sistemas ligados. Prueba de Evaluación Continua Grupo B 23-03-11 1- Definir: Vectores linealmente dependientes Sistemas ligados Demostrar que un conjunto de vectores son linealmente dependientes si sólo si uno de ellos

Más detalles

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de (

Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 12 de marzo de ( Álgebra Lineal y Geometría I. Prueba 3. Grupo A. 2 de marzo de 208. Apellidos: Nombre: DNI: Ejercicio.-(4 puntos) Se considera la matriz siguiente: A = 2 0 3 0 2. Calcule W = null(a 2I), W 2 = null(a 4I)

Más detalles

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha:

PRUEBA DE DIAGONALIZACIÓN CURSO Apellidos: Nombre: Grupo: Fecha: Tipo 1 Apellidos: Nombre: Grupo: Fecha: 1.- Sea f una transformación lineal de un espacio vectorial V de dimensión n. Sea B una base de V. Sea A la matriz asociada a f respecto de la base B. Señala, sin

Más detalles

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5

1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: (1 i)(2 i)(i 3) ; 344 ( i) 231 i(1 + i) 5 1.5.1 Complejos 1. Efectuar las siguientes operaciones, expresando el resultado en forma binómica: i 1 ; 2 + i ; 2i 2 i 1 + i +i; 5 (1 i)(2 i)(i 3) ; i344 +( i) 231 ; (1 + i) 5 + 1 (1 i) 5 1 ; 2. Usar,

Más detalles

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009

MATEMÁTICAS I 2º EXAMEN PARCIAL 12 junio de 2009 Sólo una respuesta a cada cuestión es correcta. Respuesta correcta: 0.2 puntos. Respuesta incorrecta: -0.1 puntos Respuesta en blanco: 0 puntos 1.- Un sistema generador G de R 3 : a) Está constituido por

Más detalles

6.8. Descomposición mediante valores singulares. v 2 =

6.8. Descomposición mediante valores singulares. v 2 = 68 Descomposición mediante valores singulares Los valores singulares de una matriz m n Supongamos que A es una matriz real cualquiera Los autovalores de A T A tienen la siguiente propiedad A T Ax = λx

Más detalles

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso

SOLUCIONES. ÁLGEBRA LINEAL Y GEOMETRÍA (Examen Ordinario : ) Grado en Matemáticas Curso ÁLGEBRA LINEAL Y GEOMETRÍA Eamen Ordinario : 6--7 Grado en Matemáticas Curso 6-7 SOLUCIONES Dados tres puntos distintos alineados A, A, A A R, al número real r tal que A A = r A A lo llamaremos raón simple

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

Aplicaciones Lineales. Diagonalización de matrices.

Aplicaciones Lineales. Diagonalización de matrices. Tema 2 Aplicaciones Lineales. Diagonalización de matrices. 2.1. Definiciones y propiedades Nota 2.1.1. En este tema trabajaremos con los Espacios Vectoriales R n y R m definidos sobre el cuerpo R. Definición

Más detalles

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] =

ÁLGEBRA LINEAL. EXAMEN EXTRAORDINARIO 5 de Julio de T (e 1 ) = e 1 e 2 + 2e 3 T (e 2 ) = e 1 + 2e 2 3e 3. [T (e 1 ) T (e 2 )] = ÁLGEBRA LINEAL EXAMEN EXTRAORDINARIO 5 de Julio de Apellidos y Nombre: Ejercicio. Sea T : R R 3 una transformación lineal definida como: T (e ) = e e + e 3 T (e ) = e + e 3e 3 donde {e, e }, {e, e, e 3}

Más detalles

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO

APUNTES DE MATEMÁTICAS UNIVERSIDAD DE SEVILLA GRADOS EN ECONOMÍA Y ADMINISTRACIÓN DE EMPRESAS PRIMER CURSO APUNTES E MATEMÁTICAS EXÁMENES RESUELTOS E MATEMÁTICAS I EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA GRAOS EN ECONOMÍA Y AMINISTRACIÓN E EMPRESAS PRIMER CURSO Jesús Muñoz San Miguel http://www.personal.us.es/jmiguel

Más detalles

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES

EJERCICIOS DE ÁLGEBRA LINEAL TEMA 1 ESPACIOS VECTORIALES EJERCICIOS DE ÁLGEBRA LINEAL TEMA ESPACIOS VECTORIALES Formas reducidas y escalonada de una matriz SISTEMAS DE ECUACIONES LINEALES ) Encuentre una sucesión de matrices elementales E, E,..., E k tal que

Más detalles

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1

Álgebra Lineal. Maestría en Ciencias Matemáticas. x y + z = 1 x y z = 3 2x y z = 1. x + y + 2z = 1 4x 2ty + 5z = 2 x y + tz = 1 Álgebra Lineal Maestría en Ciencias Matemáticas Resuelva el siguiente sistema usando la factorización LU o P T LU (según sea el caso) x y + z = x y z = 3 2x y z = 2 Calcule A usando el algoritmo de Gauss-Jordan:

Más detalles

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K

Sesión 18: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K Sesión 8: Diagonalización (I) Método práctico para diagonalizar una matriz cuadrada A M nxn K ) Calculamos los valores propios de A y sus multiplicidades algebraicas con: d A λ = det A λi nxn = Si d A

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n A = a 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

1. DIAGONALIZACIÓN DE ENDOMORFISMOS

1. DIAGONALIZACIÓN DE ENDOMORFISMOS . DIAGONALIZACIÓN DE ENDOMORFISMOS. Se considera la matriz: A ( 2 3 4 3 con coecientes en R. Hallar los valores propios, los vectores propios y una matriz P que permita la diagonalización de A. Calcular

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2016 2017) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva

A = [a 1 a 2 a 3. El sistema Ax = c tiene infinitas soluciones N. Existe un único vector x tal que T (x) = c X. T es suprayectiva Asignatura: ÁLGEBRA LINEAL Fecha: 6 de Julio de Fecha publicación notas: 6 de Julio de Fecha revisión examen: de Julio de Duración del examen: horas y media APELLIDOS Y NOMBRE: DNI: Titulación:. ( punto:,

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2015 2016) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2016 2017) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía 3ª Prueba de Evaluación Continua 7 05 12 (Grupo C) Espacio vectorial 1. a) Definir vectores linealmente dependientes en un espacio vectorial V. u,u,,u de un espacio vectorial V son b) Demostrar que si

Más detalles

Examen Final Soluciones (3 horas) 8 de julio de 2015

Examen Final Soluciones (3 horas) 8 de julio de 2015 Álgebra Lineal I Examen Final Soluciones (3 horas) 8 de julio de 2015 1. Siete personas suben en un ascensor en la planta baja de un edificio de cinco pisos. Cada una de ellas se apea en alguna de las

Más detalles

AUTÓNOMA DE MADRID. Dpto. Análisis Económico: Economía Cuantitativa UNIVERSIDAD. Soluciones de los ejercicios de Álgebra Lineal.

AUTÓNOMA DE MADRID. Dpto. Análisis Económico: Economía Cuantitativa UNIVERSIDAD. Soluciones de los ejercicios de Álgebra Lineal. Soluciones de los ejercicios de Álgebra Lineal Curso 016/017 Versión 4-1-017 Índice general 1. Espacios vectoriales 1.1. Cuestiones test................................. 1.. Problemas.....................................

Más detalles

ÁLGEBRA LINEAL I Práctica 7

ÁLGEBRA LINEAL I Práctica 7 ÁLGEBRA LINEAL I Práctica 7 Endomorfismos (Curso 2017 2018) 1. Dada la matriz: 3 2 0 0 0 1 0 0 0 0 A = 0 0 1 0 0. 0 0 0 1 0 0 0 0 1 1 (a) Estudiar si es triangularizable por semejanza. (b) Hallar sus autovalores

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases...

Álgebra Lineal Grupo A Curso 2011/12. Espacios vectoriales. Bases... Álgebra Lineal Grupo A Curso 2011/12 Espacios vectoriales. Bases 61) Dados los vectores v 1,v 2,...,v n linealmente independientes, probar que también lo son los vectores u 1 = v 1 u 2 = v 1 + v 2... u

Más detalles

MATRICES Y SISTEMAS DE ECUACIONES

MATRICES Y SISTEMAS DE ECUACIONES MATRICES Y SISTEMAS DE ECUACIONES Definición Una matriz real de orden m n es una tabla ordenada de m n números reales a 11 a 12 a 1n a A = 21 a 22 a 2n a m1 a m2 a mn en la cual las líneas horizontales

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN BOLETÍN DE PROBLEMAS DE E.T.S. DE INGENIERÍA INFORMÁTICA BOLETÍN DE PROBLEMAS DE ÁLGEBRA LINEAL para las titulaciones de INGENIERÍAS TÉCNICAS EN INFORMÁTICA DE SISTEMAS Y GESTIÓN 1. Matrices y determinantes Ejercicio 1.1 Demostrar

Más detalles

Soluciones de los problemas de álgebra lineal

Soluciones de los problemas de álgebra lineal Soluciones de los problemas de álgebra lineal HOJA :. a. a. b,d 4. b,c. b. (a) 4A +C t = 6 6 µ 6 4 7 6, (b) (BA) t C = 7 6 0 8 4 µ (c) B + AC = 0 9 4, (d) CA =, 0 µ (e) (B I) =, (f) (CA) = 6 4 0 6 8 7

Más detalles

Tema 1: Espacios vectoriales

Tema 1: Espacios vectoriales PROBLEMAS DE MATEMÁTICAS Parte I: Álgebra Primero de Ingeniería Química FACULTAD DE CIENCIAS QUÍMICAS Departamento de Matemáticas Universidad de Castilla-La Mancha Tema 1: Espacios vectoriales 1 Determina

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2008 2009) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o L. A. D. E. Curso 2008/09 Relación 1. Espacios Vectoriales 1. a) En IR 2 se consideran las operaciones habituales: (x, y) + (x, y ) = (x + x, y + y ) λ(x, y) = (λx, λy)

Más detalles

Aplicaciones bilineales y formas cuadráticas (Curso )

Aplicaciones bilineales y formas cuadráticas (Curso ) ÁLGEBRA Práctica 8 Aplicaciones bilineales y formas cuadráticas (Curso 2008 2009) 1. Comprobar si las siguientes aplicaciones son o no bilineales y en las que resulten serlo, dar la matriz que las representa

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Álgebra Lineal y Geometría I. 1 o Matemáticas

Álgebra Lineal y Geometría I. 1 o Matemáticas Álgebra Lineal y Geometría I. o Matemáticas Grupo - ( de diciembre de 27) APELLIDOS NOMBRE Instrucciones. Durante la realización del examen se podrá utilizar exclusivamente material de escritura. Ningún

Más detalles

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos.

Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Tema 2. Aplicaciones lineales. Diagonalización de endomorfismos. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada

Más detalles

1.5.3 Sistemas, Matrices y Determinantes

1.5.3 Sistemas, Matrices y Determinantes 1.5.3 Sistemas, Matrices y Determinantes 24. Sean las matrices 3 0 4 1 A= 1 2 B = 0 2 1 1 C = 1 4 2 3 1 5 1 5 2 D = 1 0 1 E = 3 2 4 6 1 3 1 1 2 4 1 3 a Calcular cuando se pueda: 3C D, ABC, ABC, ED, DE,

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Matemáticas para la Empresa

Matemáticas para la Empresa Matemáticas para la Empresa 1 o D.C.E. 1 o L.A.D.E. Curso 2008/09 Relación 2. Aplicaciones Lineales. Diagonalización. Formas Cuadráticas 1. Estudia si son lineales las aplicaciones siguientes: a) La aplicación

Más detalles

Examen de Admisión a la Maestría / Doctorado 24 de Junio de 2016

Examen de Admisión a la Maestría / Doctorado 24 de Junio de 2016 Examen de Admisión a la Maestría / Doctorado 4 de Junio de 6 Nombre: Instrucciones: En cada reactivo seleccione la respuesta correcta encerrando en un círculo la letra correspondiente. Puede hacer cálculos

Más detalles

Tema 6: Espacios euclídeos

Tema 6: Espacios euclídeos Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 6: Espacios euclídeos Ejercicios 1 Demuestra que la aplicación < A, B >= traza(ab t ), A, B M m n (R), es un producto escalar sobre

Más detalles

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n =

Examen Final Ejercicio único (3 horas) 20 de enero de n(n 1) 2. C n,3 = n(n 3) n = Álgebra Lineal I Examen Final Ejercicio único (3 horas) 0 de enero de 014 1. Sea P un polígono regular de n lados. (i) Cuántas diagonales tiene el polígono?. Las diagonales son segmentos que unen pares

Más detalles

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta.

A d) Estudiar la diagonalización del endomorfismo T. Es posible encontrar una base de vectores propios de R 2 [x]? Razonar la respuesta. Universidad de Oviedo Ejercicio.5 puntos Se consideran las aplicaciones lineales T : R [x] R y T : R R [x] de las que se conoce la matriz A asociada a T en las bases canónicas de R [x] y R y la matriz

Más detalles

Aplicaciones lineales (Curso )

Aplicaciones lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones lineales (Curso 2004 2005) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales:

Ejercicio 2 (Examen de septiembre de 2009) Razona cuáles de los siguientes conjuntos son subespacios vectoriales: Ejercicio 1 De los siguientes subconjuntos de R 3 decida cuales son subespacios y cuales no: a) U 1 = {(x,y,z) / x = 1 = y+z} b) U 2 = {(x,y,z) / x+3y = 0,z 0} c) U 3 = {(x,y,z) / x+2y+3z= 0 = 2x+y} d)

Más detalles

Aplicaciones Lineales (Curso )

Aplicaciones Lineales (Curso ) ÁLGEBRA Práctica 6 Aplicaciones Lineales (Curso 2010 2011) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales determinar cuáles son homomorfismos monomorfismos epimorfismos o

Más detalles

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D.

102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. 102 EJERCICIOS DE ALGEBRA LINEAL por Francisco Rivero Mendoza Ph.D. Tema 1. Espacios Vectoriales. 1. Dar la definición de cuerpo. Dar tres ejemplos de cuerpos. Dar un ejemplo de un cuerpo finito 2. Defina

Más detalles

Tema 7 (Resultados).- Matrices simétricas reales y formas cuadráticas.

Tema 7 (Resultados).- Matrices simétricas reales y formas cuadráticas. Ingenierías: Aeroespacial, Civil y Química Matemáticas I - Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 7 (Resultados)- Matrices simtricas reales y

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Águeda Mata y Miguel Reyes, Dpto de Matemática Aplicada, FI-UPM 1 Tema 4: Aplicaciones lineales Ejercicios 1 Estudia la linealidad de las siguientes aplicaciones: (a) f : R R 3, definida por f(x, y) =

Más detalles

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06

PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 2005/06 PROBLEMAS DE ÁLGEBRA LINEAL INGENIERÍA DE TELECOMUNICACIONES - E.T.S.I.T. CURSO 200/06 1. Utilizar el método de eliminación de Gauss para resolver el sistema de ecuaciones lineales siguiente: 2 x 1 2 x

Más detalles

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas.

Tema II. Capítulo 5. Aplicaciones bilineales y formas cuadráticas. Tema II Capítulo 5 Aplicaciones bilineales y formas cuadráticas Álgebra Departamento de Métodos Matemáticos y de Representación UDC 5 Aplicaciones bilineales y formas cuadráticas o simplemente f( x, ȳ)

Más detalles

Cuestiones de Álgebra Lineal

Cuestiones de Álgebra Lineal Cuestiones de Álgebra Lineal Algunas de las cuestiones que aparecen en esta relación están pensadas para ser introducidas en un plataforma interactiva de aprendizaje de modo que los parámetros a, b que

Más detalles

1. Ejercicios unidad temática 1

1. Ejercicios unidad temática 1 . Ejercicios unidad temática.. Ejercicios a resolver en clase Ejercicio.. Sean las matrices: B = a. Hallar B, B 5, B 2 y B 2. b. Hallar C 2, C 5, C, C 2 y C 2. y C = Ejercicio.2. Sean dos matrices A, B

Más detalles

ÁLGEBRA LINEAL I Práctica 6

ÁLGEBRA LINEAL I Práctica 6 ÁLGEBRA LINEAL I Práctica 6 Aplicaciones Lineales (Curso 2012 2013) 1. De las siguientes aplicaciones definidas entre espacios vectoriales reales, determinar cuáles son homomorfismos, monomorfismos, epimorfismos

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles