Curso: IN56A-1 Semestre: Primavera 2008 Profesores: Gonzalo Maturana Jorge Montecinos Prof. Auxiliar: Rodrigo Moser PAUTA CONTROL Nº 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso: IN56A-1 Semestre: Primavera 2008 Profesores: Gonzalo Maturana Jorge Montecinos Prof. Auxiliar: Rodrigo Moser PAUTA CONTROL Nº 1"

Transcripción

1 P1 PAUTA CONTROL Nº 1 Cuso: IN56A-1 Tiempo: 90 min. a) El objetivo de esta medida es loga que la inflación, que se ha mantenido muy alta, conveja a la meta del 3% anual (el Banco quiee ancla las expectativas de inflación de lago plazo). Un aumento en el difeencial de tasas de inteés podía poduci una depeciación del dóla. b) Llevando el pime cédito a composición continua, %, % Po tanto, es más conveniente toma el cédito del banco B. c) El ol fundamental de la banca es la tansfeencia de iesgos. Los bancos actúan como intemediaios colocando y captando dineo, ganando un spead asociado a su gestión comecial. Debido a esto, un banco debiea esta calzado (en elación a los activos y pasivos) paa evita el iesgo de tasa de inteés. C P C d) Sabemos que en el caso de una pepetuidad: P = ; = 2 P D Po oto lado, = P ; eemplazando se obtiene que: 1+ C C D 1 = D = ( ) e) Cisis Subpime es el nombe que se le ha dado a la actual cisis hipotecaia y financiea. Se oiginó pincipalmente de la siguiente foma: Las tasas de inteés en EEUU se encontaban bajas y po oto lado, los pecios de los inmuebles llevaban unos años subiendo sostenidamente. Esto llevó a muchas pesonas a endeudase paa compa una casa. El poblema fue que se entegaon céditos a pesonas con mal ecod cediticio (subpime), es deci, de alto iesgo. Estos céditos fueon secuitizados y tansfomados en bonos o deivados (con apalancamiento), cuyo valo dependía del pago de los céditos (e indiectamente del pecio de los activos inmobiliaios). Al cae los pecios de las casas, muchos deudoes comenzaon a cae en default, lo que hizo cae el pecio de los deivados expandiéndose así el daño a tavés de los mecados.

2 Cuso: IN56A-1 f) El TED spead es la difeencia ente la tasa intebancaia de 3 meses (LIBOR 3 meses) y la tasa libe de iesgo de los EEUU (Tasa de Política Monetaia). Este es un indicado de liquidez. Mientas mayo es el TED spead, mayo la iliquidez en el mecado, puesto que a los bancos se les encaece el financiamiento y menos se pestan. Una caacteística que ha tenido la actual cisis financiea ha sido que el TED spead se ha mantenido muy alto, evelando a baja disposición de los bancos a pestase ente sí. P2 Considee un bono que tiene un cupón del 7,5% y quedan 3,75 años hasta el vencimiento si los tipos de inteés están al 8% anual (los cupones se pagan semestalmente y el póximo cupón se pagaá dento de tes meses). La TAB 180 de hoy es 8%. a) Calcule el valo al que se tansa el bono. b) Calcule la duación del bono c) Si el pecio al cual se tansa el bono cae un 15%, qué ocuió con su endimiento? Considee ahoa un bono FNR semestal pagaá en 90 días inteeses de 6,5% anuales sobe su valo nominal. d) Calcule el valo al que se tansa el bono. e) Calcule su duación Suponga que el valo pa de cada bono es U$ , peo usted tiene sólo U$ Además, po la egulación en su país usted no puede compa menos de un bono. f) Qué estategia utilizaía paa pode inveti su dineo a pesa de las esticciones del mecado? Cuál seá el endimiento de dicha invesión? Resp.: a), % %, % % b), %, % %

3 , ñ Cuso: IN56A-1 c) %, %,, % d), % % % %, % e), ñ f) Como no podemos compa menos de un bono, lo que debemos hace es vende un instumento y compa oto. Así, necesitamos una combinación de los bonos (A=bono bullet; B= bono FRN) tal que: $. $., % $., % $., La entabilidad debe se del 8% anual paa cumpli con no abitaje. P3 Suponga que actualmente en el mecado la tasa de inteés a un año plazo es de 8% mientas que la tasa a dos años es de 8,3%. Suponga además que se tansan los siguientes bonos del mismo emiso y libes de iesgo: Bono A: estuctua tipo bullet, paga cupones anuales de 9% sobe un nocional de $1.000, matuity de dos años.

4 Cuso: IN56A-1 Bono B: estuctua ceo cupón, matuity de un año. Paga $1.000 a la maduación. Actualmente se tansa a $925,93. a) Cuánto pagaía po el Bono A? Cuál es la entabilidad espeada de este bono? b) A qué pecio vendeía el Bono A en un año más si las tasas no vaiaan? Suponiendo que usted tiene cotes de los bonos A y B tales que cada bono epesenta un 50% de su catea de invesión cuyo valo de mecado es actualmente de $4.050,64: c) Cuál es la duación de su catea? d) Estime cuánto vaiaía el valo de su catea si las tasas de inteés subiean en pomedio 50 bps. Po oto lado, usted tiene pasivos po $4.100 a un plazo pomedio de 4 años. e) Cuál es el iesgo de tasa que usted tiene? f) Qué podía hace paa minimiza este iesgo? Qué condición se tiene que cumpli paa que no exista iesgo de tasa? Resp.: a) b) c) %,%, Paa saca la TIR, se tiene que cumpli que:, %,, % %, % %,%

5 , ñ Cuso: IN56A-1 Además, ñ,,,, ñ d),, %, ñ %, ñ Entonces, utilizando la fómula paa la vaiación de pecios,,,,,,,,, Como tengo 2 bonos de A y 2,187 de B,,,,,, %, %, e) El iesgo de tasa se saca utilizando la fómula. Así,

6 Cuso: IN56A-1,,, Así, el iesgo de tasa aumenta con un aumento en la tasa. f) Algunas medidas posibles paa educi el iesgo de tasas: Reduci la duación de los activos Reduci la duación de los activos e incementa la de los pasivos Altea el leveage y duación de los pasivos. La condición paa que no exista iesgo es que se cumpla que:

SERIE DE NUMEROS INDICES DEL IPC DE LIMA METROPOLITANA ENERO FEBRERO ( Base Dic.2001 = )

SERIE DE NUMEROS INDICES DEL IPC DE LIMA METROPOLITANA ENERO FEBRERO ( Base Dic.2001 = ) CUADO N 1 SEIE DE NUMEOS INES DEL DE LIMA METOPOLITANA ENEO 2001 - FEBEO 2009 ( Base Dic.2001.00 ) Meses 2001 2002 2003 2004 2005 2006 2007 2009 Enero.32 99.48 101.75 104.6 107.77 109.81 110.52 115.11

Más detalles

EJERCICIOS CÁTEDRA 11 AGOSTO

EJERCICIOS CÁTEDRA 11 AGOSTO EJERCICIOS CÁTEDRA 11 AGOSTO Poblema 1 Suponga que used necesia 6.000.000 paa compa un nuevo auomóvil y le ofecen las siguienes alenaivas: Banco A: Tasa de ineés : 1.57% Plazo : 24 meses Impuesos, seguo

Más detalles

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)

Aplicación 2: Diversificación de las inversiones (problema de selección de cartera) Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes

Más detalles

Capítulo 8 Modelo de equilibrio interno y externo: Mundell-Fleming

Capítulo 8 Modelo de equilibrio interno y externo: Mundell-Fleming Capítulo 8 Modelo de equilibio inteno y exteno: Mundell-Fleming 1. Suponga la siguiente economía: Mecado de bienes C = 200 + 0.75 d d = - T I = 200-25 G = 100 T = 100 X = 50 M = 50 DA = C + I + G + X -

Más detalles

CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM

CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM Documento elaboado po Jaime Aguila Moeno Docente áea económica Univesidad del Valle Sede Buga CAPITULO 6 EQUILIBRIO EN EL MERCADO DE BIENES Y SERVICIOS Y EL MERCADO MONETARIO MODELO IS - LM OBJETIVO DEL

Más detalles

N r euros es el precio

N r euros es el precio RETABILIDADES ACTIVOS FIACIEROS Ejemplo 1: Una leta del teoo a doce mee tiene un nominal de 10.000 euo. Ha ido compada po un pecio de 9.500 euo. Cual e el endimiento implícito de dicha leta?. Rendimiento

Más detalles

Interés compuesto. Ejemplo: Supongamos que un capital de $ se deposita en un Banco al 6% anual, durante 3 años, con capitalización

Interés compuesto. Ejemplo: Supongamos que un capital de $ se deposita en un Banco al 6% anual, durante 3 años, con capitalización Inteés compuesto El inteés es compuesto cuando se fija un peíodo de capitalización (mes, timeste, año, etc.) y los inteeses geneados en cada uno de esos peíodos pasan a intega el capital paa el peíodo

Más detalles

CURSO: 1º BACH. MATERÍA: MAT.AP.CC.SS.I TÍTULO: LOGARITMOS. MAT. FINANCIERA NOMBRE: APELLIDOS: Sectores cesta compra básica

CURSO: 1º BACH. MATERÍA: MAT.AP.CC.SS.I TÍTULO: LOGARITMOS. MAT. FINANCIERA NOMBRE: APELLIDOS: Sectores cesta compra básica CURSO: º BACH. MATERÍA: MAT.AP.CC.SS.I CALIFICACIÓN NOMBRE: FECHA: V-06//5 APELLIDOS:. Calcula cuántos años deben pasa paa que un cieto dineo se tiplique al ingesalo en un depósito al 8 % de inteés simple.

Más detalles

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones)

Tema 2 (Parte II) Financiación n externa (Acciones y Obligaciones) Tema 2 (Pate II) Financiación n extena (Acciones y Obligaciones) 2.1. La financiación extena y el sistema financieo 2.2. Emisión de activos financieos negociables 2.3. Las acciones y su valoación 2.4.

Más detalles

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio

Tema 7: El Mercado de divisas y la cobertura del riesgo de cambio TÉCNICAS DE COMERCIO EXTERIOR Tema 7: El Mecado de divisas y la cobetua del iesgo de cambio 7..- Intoducción al mecado de cambios. Convetibilidad : Existe un mecado libe que define su pecio. Resticciones

Más detalles

13.1 Estática comparativa en el modelo IS-LM con pleno empleo

13.1 Estática comparativa en el modelo IS-LM con pleno empleo Capítulo 3 Modelo de ofeta y demanda agegada de pleno empleo. a síntesis neoclásica El modelo IS-M completo es el modelo de la síntesis neoclásica con pecios flexibles y, po lo tanto, con pleno empleo.

Más detalles

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0

Nosotros supondremos que la demanda de inversión es lineal y que depende negativamente del tipo de interés: gr donde g > 0 TEMA 4: MODELO DE DETERMINACIÓN DE LA RENTA NACIONAL: EL SECTOR MONETARIO En el modelo de deteminación de la enta nacional desaollado hasta ahoa no hemos hablado de la cantidad de dineo ni de los tipos

Más detalles

UNIVERSIDAD DE LA LAGUNA

UNIVERSIDAD DE LA LAGUNA ESCUEL UNIVERSIDD DE L LGUN TÉCNIC SUPERIOR DE INGENIERÍ INFORMÁTIC Tecnología de Computadoes Páctica de pogamación, cuso 2010/11 Pofeso: Juan Julian Meino Rubio Enunciado de la páctica: Cálculo de una

Más detalles

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS

IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS IMPOSICIÓN Y EQUIVALENCIA RICARDIANA EN UNA ECONOMÍA DE DOS PERIODOS Sea el siguiente poblema de un hoga epesentativo en una economía de dos peiodos, en la que los hogaes son gavados con impuestos de suma

Más detalles

El estadístico covarianza de la rentabilidad de dos acciones se defi ne como el

El estadístico covarianza de la rentabilidad de dos acciones se defi ne como el fomación ESURIENO EL MERO (V: OVRINZ Y OEFIIENTE E ORRELIÓN E L RENTILI E OS IONES OVRINZ Y OEFIIENTE E ORRELIÓN E L RENTILI E OS IONES. IMPORTNI Y SIGNIFIO E L IVERSIFIIÓN PR EL INVERSOR EN E UN RTER

Más detalles

TEMA 3.-LAS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM)

TEMA 3.-LAS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM) Julián Moal TEMA 3.-AS INSTITUCIONES FINANCIERAS Y MONETARIAS (IFM) 3.1.-as funciones del sistema bancaio 3.2.-os intemediaios bancaios en la economía 3.3.-El Banco Cental y el Sistema bancaio Bibliogafía

Más detalles

PARTE II APLICACIONES A LA TEORÍA DEL CONSUMIDOR. Tema 1 Elección Intertemporal

PARTE II APLICACIONES A LA TEORÍA DEL CONSUMIDOR. Tema 1 Elección Intertemporal PARTE II APLIAIONES A LA TEORÍA DEL ONSUMIDOR Tema Elección Intetempoal Tema La Elección Intetempoal ESQUEMA -. La Resticción Pesupuestaia -. Las Pefeencias del onsumido 3-. La Asignación Intetempoal Óptima:

Más detalles

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción

1/8 LA ESTRUCTURA TEMPORAL DE LOS TIPOS DE INTERES. 1.- Introducción LA ESTRUCTURA TEMORAL DE LOS TIOS DE INTERES.- Inoducción La esucua empoal de ipos de ineés o simplemene cuva de ipos ecoge la evolución de los ipos de ineés en función de su vencimieno, consideando po

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

9. Costo de capital y decisiones de financiamiento IN56A

9. Costo de capital y decisiones de financiamiento IN56A 9. Costo de capital y decisiones de financiamiento IN56A Otoño 2009 Gonzalo Matuana F. Objetivo en finanzas copoativas l objetivo de cualquie geente en una empesa debe se siempe maximiza el valo de la

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS II Facultad de iencias Económicas onvocatoia de Junio Pimea Semana Mateial Auxilia: alculadoa financiea MATEMÁTIA DE LAS OPERAIONES FINANIERAS II 2 de Mayo de 202 hoas Duación: 2 hoas. Péstamos a) Teoía:

Más detalles

5.1 La herencia keynesiana. 5.2 Modelo neoclásico de inversión con costes de capital. 5.3 Modelo de inversión de Tobin con ajustes de capital.

5.1 La herencia keynesiana. 5.2 Modelo neoclásico de inversión con costes de capital. 5.3 Modelo de inversión de Tobin con ajustes de capital. Tema 5 La invesión 5. La heencia keynesiana. 5. Modelo neoclásico de invesión con coses de capial. 5.3 Modelo de invesión de Tobin con ajuses de capial. Bibliogafía: Gacía del Paso Macoeconomía Avanzada

Más detalles

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1

TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 TRIGONOMETRÍA FUNCIONES DE MÁS DE 90 GRADOS página 1 página 2 SEGUNDO BIMESTRE 1 FUNCIONES DE MAS DE 90 GRADOS 1.1 CONCEPTOS Y DEFINICIONES Los valoes de las funciones tigonométicas solamente eisten paa

Más detalles

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA

Alquiler o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda. Marisol Rodríguez Chatruc UdeSA Alquile o Hipoteca?: Un Modelo Simple de Tenencia de Vivienda Una aplicación del método de pogamación dinámica a vaiable dicotómica Maisol Rodíguez Chatuc UdeSA 4 CNEPE - 28 y 29 de mayo de 2009 Motivación

Más detalles

ESTRUCTURA DE CAPITALES EN LA EMPRESA

ESTRUCTURA DE CAPITALES EN LA EMPRESA ETRUTURA DE APITALE EN LA EMPREA TEMA 5 FUNDAMENTO DE DIREIÓN FINANIERA Fundamentos de Diección Financiea 1 uestión Las decisiones de financiación pueden cea valo paa la empesa? Hipótesis de Tabajo: e

Más detalles

Operaciones financieras de financiación, inversión y cobertura de riesgos.

Operaciones financieras de financiación, inversión y cobertura de riesgos. Opeaciones financieas de financiación, invesión y cobetua de iesgos. Tinidad Sancho, Maite Mámol UNIVERSIDAD DE BARCELONA 23/0/203 2 Tinidad Sancho Insa, Mª Teesa Mámol INDICE.. Sistemas y mecados financieos

Más detalles

Problemas aritméticos

Problemas aritméticos 3 Poblemas aitméticos Antes de empeza Objetivos En esta quincena apendeás a: Recoda y pofundiza sobe popocionalidad diecta e invesa, popocionalidad compuesta y epatos popocionales. Recoda y pofundiza sobe

Más detalles

F. Trig. para ángulos de cualquier magnitud

F. Trig. para ángulos de cualquier magnitud F. Tig. paa ángulos de cualquie magnitud Ahoa vamos a utiliza la ciuncfeencia unitaia paa descubi algunas popiedades de las funciones tigonométicas. Empezamos con las funciones sin cos. Al vaia el valo

Más detalles

8.1 Conceptos e identidades fundamentales. Tipo de cambio

8.1 Conceptos e identidades fundamentales. Tipo de cambio Capítulo 8 Modelo de equilibio inteno y exteno: Mundell-Fleming Hasta aquí solo se ha descito el equilibio inteno, mas no el exteno. Po equilibio exteno entendeemos el equilibio de la balanza de pagos.

Más detalles

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1

PAUTA CONTROL 3 CÁLCULO EN VARIAS VARIABLES, 2014/1 PAUTA CONTROL CÁLCULO EN VARIAS VARIABLES, 14/1 (1) (a) Demueste que el máximo de la función x y z sobe la esfea x + y + z = a es (a /) y que el mínimo de la función x + y + z sobe la supeficie x y z =

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

MOVIMIENTO DE LA PELOTA

MOVIMIENTO DE LA PELOTA MOVIMIENTO DE LA PELOTA Un niño golpea una pelota de 5 gamos de manea que, sale despedida con una elocidad de 12 m/s desde una altua de 1 5 m sobe el suelo. Se pide : a) Fueza o fuezas que actúan sobe

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

Gestión de Activos Financieros de Renta Fija (Pirámide. Madrid. 2002) Ejercicios del capítulo 5

Gestión de Activos Financieros de Renta Fija (Pirámide. Madrid. 2002) Ejercicios del capítulo 5 Gestión de Activos Financieros de Renta Fija (Pirámide. Madrid. 2002) Ejercicios del capítulo 5 1º) Si un bono cupón-cero de un año de vida emitido por el Tesoro se vende hoy a 95,50 euros y uno de dos

Más detalles

OPCIÓN A FÍSICA. 30/11/2010. E r

OPCIÓN A FÍSICA. 30/11/2010. E r OPCIÓN A FÍSICA. 0//00 PROBLEMA EXPERIMENTAL (.5 p). En el laboatoio de física se ealiza un expeimento paa medi la densidad de un sólido y de una disolución. Paa ello se utiliza un dinamómeto, se pesa

Más detalles

Capítulo Dadas las siguientes ecuaciones: Mercado de bienes C = C 0 I = I 0 G = G 0 X = x 1. e M = m 1. Y* + x 2. Y d. e e = e 0.

Capítulo Dadas las siguientes ecuaciones: Mercado de bienes C = C 0 I = I 0 G = G 0 X = x 1. e M = m 1. Y* + x 2. Y d. e e = e 0. Capítulo 13 MODELO DE OFERT DEMND GREGD DE PLENO EMPLEO. L SÍNTESIS NEOCLÁSIC 1. Dadas las siguientes ecuaciones: Mecado de bienes C C + b d I I - h G G X x 1 * + x 2 e M m 1 d - m 2 e e e - ( - * T t

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles

Guía Regla de la Cadena(1 er Orden)

Guía Regla de la Cadena(1 er Orden) UNIVERSIDAD DE CHILE CÁLCULO EN VARIAS VARIABLES PROFESOR: MARCELO LESEIGNEUR AUXILIARES: ALFONSO TORO - SEBASTIÁN COURT Guía Regla de la Cadena1 e Oden 1. Sean f : R R y g : R R dos funciones difeenciables.

Más detalles

EL MODELO KEYNESIANO CAPÍTULO 3 3.1 INTRODUCCIÓN

EL MODELO KEYNESIANO CAPÍTULO 3 3.1 INTRODUCCIÓN CAPÍTULO 3 EL MODELO KENESIANO 3.1 INTRODUCCIÓN Antes de la Gan Depesión muchos economistas consideaban al desempleo como un poblema pasajeo y de meno impotancia asociado con las fluctuaciones nomales

Más detalles

Eficiencia en costos, cambios en las condiciones generales del mercado y crisis en la banca colombiana:

Eficiencia en costos, cambios en las condiciones generales del mercado y crisis en la banca colombiana: Eficiencia en costos, cambios en las condiciones geneales del mecado y cisis en la banca colombiana: 992-2002 Michel Janna Gandu * mjannaga@banep.gov.co Resumen: El pesente estudio estima una fontea estocástica

Más detalles

APLICACION DE LAS VENTAJAS COMPARATIVAS RELATIVAS A LAS OPERACIONES SWAP.

APLICACION DE LAS VENTAJAS COMPARATIVAS RELATIVAS A LAS OPERACIONES SWAP. PLICCION DE LS VENTJS COMPRTIVS RELTIVS LS OPERCIONES SWP. Tinidad Sancho Fenando Espinosa Catedática de Escuela Univesitaia de Economía Financiea Contabilidad. Pofeso inteino. Depatamento de Matemática

Más detalles

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o

VALORACION DE ACCIONES. (1) El valor presente de la suma del dividendo de finales de período más el precio de la acción a finales de período, o U N I V E R S I D A D D E C H I L E Faculad de Ciencias Físicas y Maemáicas Depaameno de Ingenieía Indusial IN56A 0 of: Viviana Fenández VALORACION DE ACCIONES El valo de una acción se puede calcula como:

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Electicidad Magnetismo - Gpo. Cso / Tema : Intodcción Concepto de campo Repaso de álgeba vectoial Sistemas de coodenadas Catesiano Cvilíneas genealiadas: cilíndico esféico. Opeadoes vectoiales. Gadiente

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

z Región III Región II Región I

z Región III Región II Región I Capacito de placas ciculaes - solución completa amos a calcula el potencial electostático en todo el espacio paa un capacito de placas ciculaes y paalelas. Las placas conductoas están ubicadas en z = ±l/2,

Más detalles

Inversiones SIMCO, S.A. de C.V.

Inversiones SIMCO, S.A. de C.V. v! P ' lit Y" 1:1 atillgsninumic215$11111,11ermime :Id II m paln 1. 11: 11t1,191 lj. Lgd Ff 5 C aa Invesiones SIMCO, S.A. de C.V. SIMCO Infome de Clasificación Clasificaciones Consejo Odinaio de Clasificación

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

1. a 6. a 11. a 16. b 2. d 7. d 12. a 17. a 3. b 8. c 13 d 18. a 4. d 9. d 14 b 19. a 5. a 10. c 15. b 20. b = C(Y T) + I + G 2 E 2

1. a 6. a 11. a 16. b 2. d 7. d 12. a 17. a 3. b 8. c 13 d 18. a 4. d 9. d 14 b 19. a 5. a 10. c 15. b 20. b = C(Y T) + I + G 2 E 2 Univesitat utònoma de acelona Cus 2013-2014 Macoeconomia I Lista de Poblemas 4 I. Peguntas multiespuesta 1. a 6. a 11. a 16. b 2. d 7. d 12. a 17. a 3. b 8. c 13 d 18. a 4. d 9. d 14 b 19. a 5. a 10. c

Más detalles

ENFOQUES CUANTITATIVOS DE REPOSICION DE INVENTARIO: Son sinónimos de una gestión eficiente?

ENFOQUES CUANTITATIVOS DE REPOSICION DE INVENTARIO: Son sinónimos de una gestión eficiente? ENFOQUES CUANTITATIVOS DE REPOSICION DE INVENTARIO: Son sinónimos de una gestión eficiente? Po Segio Floes Uquiza Maste of Science in Industial Engineeing Geogia Institute of Technology Mayo de 2003 Este

Más detalles

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO

PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon

Más detalles

Ranking de Fondos Mutuos FOL-El Mercurio

Ranking de Fondos Mutuos FOL-El Mercurio Ranking de Fondos Mutuos FOL-El Mecuio FOL Agencia de Valoes SpA S a n P i o X 2 3 9 0 P i s o 2, P o v i d e n c i a, S a n t i a g o. F o n o : 5 6-0 2 2-6 5 6 9 4 3 2 M a i l : c o n t a c t o @ f o

Más detalles

Tema 4.-Potencial eléctrico

Tema 4.-Potencial eléctrico Tema 4: Potencial eléctico Fundamentos Físicos de la Ingenieía Pime cuso de Ingenieía Industial Cuso 6/7 Dpto. Física plicada III Univesidad de Sevilla 1 Índice Intoducción: enegía potencial electostática

Más detalles

[II EVALUACIÓN, COMPROBACIÓN DE LECTURA: GUERRA FRÍA] 26 de agosto de 2011

[II EVALUACIÓN, COMPROBACIÓN DE LECTURA: GUERRA FRÍA] 26 de agosto de 2011 1 Colegio Bilingüe Santa Cecilia. Puntuación: 105 Pts. Deatamento de Estudios Sociales. Pocentaje: 25% Pofesoa: Alejanda Álvaez Chaves. Fecha: 26/08/2011 II Evaluación, Comobación de lectua II Timeste.

Más detalles

PORTAFOLIOS ÓPTIMOS PARA LOS NUEVOS SISTEMAS DE PENSIONES DE PAÍSES EMERGENTES. Por. Eduardo Walker

PORTAFOLIOS ÓPTIMOS PARA LOS NUEVOS SISTEMAS DE PENSIONES DE PAÍSES EMERGENTES. Por. Eduardo Walker ORTAFOLIOS ÓTIMOS ARA LOS NUEVOS SISTEMAS DE ENSIONES DE AÍSES EMERGENTES o Eduado Walke ofeso Titula Escuela de Administación ontificia Univesidad Católica de Chile Octube de 3 Este es un documento paa

Más detalles

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES

PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos

Más detalles

DE ECONOMÍA DEPARTAMENTO. Félix Jiménez

DE ECONOMÍA DEPARTAMENTO. Félix Jiménez DPARTAMNTO D CONOMÍA PONTIFICIA UNIVRSIDAD CATÓLICA DL PRÚ DPARTAMNTO D CONOMÍA PONTIFICIA UNIVRSIDAD CATÓLICA DL PRÚ DOCUMNTO D TRABAJO N 296 LMNTOS D TORÍA POLÍTICA MACROCONÓMICA PARA UNA CONOMIÁ ABIRTA.

Más detalles

Como hemos visto, las curvas IS y LM son locus de puntos de equilibrio en el mercado de bienes y en el mercado de dinero, respectivamente.

Como hemos visto, las curvas IS y LM son locus de puntos de equilibrio en el mercado de bienes y en el mercado de dinero, respectivamente. Capítulo 7 El modelo IS-LM: el equilibio inteno Como hemos visto, las cuvas IS y LM son locus de puntos de equilibio en el mecado de bienes y en el mecado de dineo, espectivamente. Paa cada punto de las

Más detalles

El modelo de Merton como medida alternativa de valuación de riesgo de default

El modelo de Merton como medida alternativa de valuación de riesgo de default El modelo de Meton como medida altenativa de valuación de iesgo de default Auto: Estella Peotti i (epeotti@bc.com.a) Diecto: Gabiela Facciano, FRM Maestía en Administación de Negocios ESEADE Escuela Supeio

Más detalles

El modelo ahorro-inversión Función de consumo: Función de inversión:

El modelo ahorro-inversión Función de consumo: Función de inversión: Capítulo 4 El lago plazo: el modelo ahoo-invesión con pleno empleo En este capítulo se estudia el equilibio ingeso-gasto en el modelo clásico de pecios flexibles y el equilibio ahoo-invesión. Asimismo,

Más detalles

Altura donde t r y w b o w ½ se deben expresar en las mismas unidades, por ser N adimensional.

Altura donde t r y w b o w ½ se deben expresar en las mismas unidades, por ser N adimensional. GENERALIDADES: CROMATOGRAFÍA Pof. Fancisco Rojo Callejas Tiempo de etención (t, fig 1) El tiempo que un soluto pemanece en la columna. Se mide desde el momento de la inyección hasta la elución del máximo

Más detalles

SUPUESTOS IMPLÍCITOS EN LA UTILIZACIÓN DEL CAPITAL ASSETS PRICING MODEL CAPM - PARA EL CÁLCULO DEL COSTO DEL CAPITAL PROPIO EQUITY-.

SUPUESTOS IMPLÍCITOS EN LA UTILIZACIÓN DEL CAPITAL ASSETS PRICING MODEL CAPM - PARA EL CÁLCULO DEL COSTO DEL CAPITAL PROPIO EQUITY-. ISSN 48-475 Documento Doctoado FC-CID No 1 SUPUSTOS IPLÍCITOS N LA UTILIZACIÓN DL CAPITAL ASSTS PRICING ODL CAP - PARA L CÁLCULO DL COSTO DL CAPITAL PROPIO QUITY-. Calos Atuo Gómez Restepo aio Gacía olina

Más detalles

Documento No. 13. Intermediarios Financieros y Mercados Imperfectos de Capital. por. Guillermo Ortíz. Septiembre, 1979

Documento No. 13. Intermediarios Financieros y Mercados Imperfectos de Capital. por. Guillermo Ortíz. Septiembre, 1979 Documento No. 3 ntemediaios Financieos y Mecados mpefectos de Capital po Guillemo Otíz Septiembe, 979 Las ideas contenidas en le pesente ensayo son esponsabilidad exclusiva del auto y no eflean la posición

Más detalles

CAPITULO INTRODUCCIÓN

CAPITULO INTRODUCCIÓN CAPITULO 4 FRIEDMAN LOS MONETARISTAS la noción cental del monetaismo es que la moneda incide sobe las fluctuaciones económicas a coto plazo de la economía y sobe la inflación, o sea la tendencia de los

Más detalles

Introducción a circuitos de corriente continua

Introducción a circuitos de corriente continua Univesidad de Chile Facultad de Ciencias Físicas y Matemáticas Depatamento de Física FI2003 - Métodos Expeimentales Semeste Pimavea 2010 Pofesoes: R. Espinoza, C. Falcón, R. Muñoz & R. Pujada GUIA DE LABORATORIO

Más detalles

A.Paniagua-H.Poblete (F-21)

A.Paniagua-H.Poblete (F-21) A.Paniagua-H.Poblete (F-2) ELECTRICIDAD MODULO 5 Condensadoes Un condensado es un dispositivo ue está fomado po dos conductoes ue poseen cagas de igual magnitud y signo contaio. Según la foma de las placas

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal 1 Poyecto PMME - Cuso 007 Instituto de Física Facultad de Ingenieía UdelaR TITULO MÁQUINA DE ATWOOD AUTORES Calos Anza Claudia Gacía Matín Rodiguez INTRODUCCIÓN: Se nos fue planteado un ejecicio

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

5 Procedimiento general para obtener el esquema equivalente de un transformador

5 Procedimiento general para obtener el esquema equivalente de un transformador Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado 45 5 Pocedimiento geneal paa obtene el esquema equivalente de un tansfomado En este capítulo se encontaá el esquema equivalente de

Más detalles

LECCION 8. ESTATICA DEL SOLIDO

LECCION 8. ESTATICA DEL SOLIDO LECCION 8. ESTATICA DEL SOLIDO 8.1. Intoducción. 8.2. Fuezas actuantes sobe un sólido. Ligaduas. 8.3. Pincipio de aislamiento. Diagama de sólido libe y de esfuezos esultantes. 8.4. Ligaduas de los elementos

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es...

Semana 6. Razones trigonométricas. Semana Ángulos: Grados 7 y radianes. Empecemos! Qué sabes de...? El reto es... Semana Ángulos: Gados 7 adianes Razones tigonométicas Semana 6 Empecemos! Continuamos en el estudio de la tigonometía. Esta semana nos dedicaemos a conoce halla las azones tigonométicas: seno, coseno tangente,

Más detalles

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA

FUERZA ELECTRO MOTRIZ Y RESISTENCIA INTERNA DE UNA PILA FUEZA ELECTO MOTIZ Y ESISTENCIA INTENA DE UNA ILA Intoducción: En la figua 1 se muesta un cicuito de dos esistencias 1 y 2 conectadas en seie, este gupo a su vez está conectado en seie con una pila ideal

Más detalles

Gestión de Activos Financieros de Renta Fija (Pirámide. Madrid. 2002) Ejercicios del capítulo 6

Gestión de Activos Financieros de Renta Fija (Pirámide. Madrid. 2002) Ejercicios del capítulo 6 Gestión de Activos Financieros de Renta Fija (Pirámide. Madrid. 2002) Ejercicios del capítulo 6 1º) Un bono tiene un plazo de 9 años, un 10% de interés y una duración modificada del 7,194%. Si el rendimiento

Más detalles

CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.)

CARACTERÍSTICAS DE LOS GENERADORES DE CORRIENTE CONTINUA (C.C.) CARACERÍSCAS DE LOS GENERADORES DE CORRENE CONNUA (C.C.) Fueza electomotiz (f.e.m.) Es la causa que mantiene una tensión en bones del geneado. La fueza electomotiz (f.e.m.) es la tensión eléctica oiginada

Más detalles

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED

Y SU APLICACIÓN A LOS PLANES DE PENSIONES. ANDRÉS DE PABLO LÓPEZ Catedrático de Economía Financiera UNED CAPÍTULO 1 LA VALORACIÓN FINANCIERO-ACTUARIAL Y SU APLICACIÓN A LOS PLANES DE PENSIONES ANDRÉS DE PABLO LÓPEZ Catedático de Economía Financiea UNED RESUMEN En este tabajo se analiza la poblemática que

Más detalles

MAGNITUDES VECTORIALES:

MAGNITUDES VECTORIALES: Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física Geneal Poecto PMME - Cuso 8 Instituto de Física Facultad de Inenieía UdelaR TÍTULO MOVIMIENTO RELATIVO MOVIMIENTO E PROYECTIL. EL ALEGRE CAZAOR QUE VUELVE A SU CASA CON UN FUERTE OLOR ACÁ. AUTORES

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR Númeos Complejos en Foma Pola 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta

Más detalles

9. NÚMEROS COMPLEJOS EN FORMA POLAR

9. NÚMEROS COMPLEJOS EN FORMA POLAR 9. NÚMEROS COMPLEJOS EN FORMA POLAR Recodemos que en la Unidad vimos que a un númeo complejo podemos expesalo en foma inómica z = a + i donde a, son númeos eales, que se epesenta gáficamente mediante un

Más detalles

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS

CAPÍTULO 15: TRIÁNGULOS RECTÁNGULOS PÍTULO 15: TRIÁNGULOS RETÁNGULOS Dante Gueeo-handuví Piua, 2015 FULTD DE INGENIERÍ Áea Depatamental de Ingenieía Industial y de Sistemas PÍTULO 15: TRIÁNGULOS RETÁNGULOS Esta oba está bajo una licencia

Más detalles

2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementarios, dependientes e independientes.

2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementarios, dependientes e independientes. 2.2 TIPOS DE EVENTOS, excluyentes y no excluyentes; complementaios, dependientes e independientes. Expeimento aleatoio. Espacio muestal asociado. Concepto de expeimento aleatoio. Definición: Un fenómeno

Más detalles

6 PROPORCIONALIDAD DIRECTA E INVERSA

6 PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA EJERCICIOS PROPUESTOS. Completa la siguiente tabla paa que las magnitudes A y B sean diectamente popocionales. La azón de popocionalidad es: 0,25 A 3 0 23, 2 B 2,,75

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

Consideraciones Básicas del Riesgo de Interés Estructural

Consideraciones Básicas del Riesgo de Interés Estructural Consideaciones Básicas del Riesgo de Inteés Estuctual bel Gacía Gacía 1 ofeso, Escuela de ostgado, Univesidad euana de Ciencias plicadas (UC, Lima, eú) RESUMEN El iesgo de inteés estuctual es la potencial

Más detalles

FIS Átomos de Múltiples Electrones

FIS Átomos de Múltiples Electrones FIS-433- Átomos de Múltiples Electones Todos los átomos contienen vaios electones, po consiguiente el poblema que hemos estudiado hasta ahoa paece no tene mucho valo. Existen apoximadamente 90 tipos de

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN

2. CINEMATICA EL MOVIMIENTO Y SU DESCRIPCIÓN 19. CINEMATICA La descipción matemática del movimiento constituye el objeto de una pate de la física denominada cinemática. Tal descipción se apoya en la definición de una seie de magnitudes que son caacteísticas

Más detalles

Coordenadas homogéneas

Coordenadas homogéneas Coodenadas homogéneas Una matiz de otación 3 x 3 no nos da ninguna posibilidad paa la taslación y el escalado. Intoducimos una cuata coodenada p(x,y,z) p(wx,wy,wz,w), donde w tiene un valo abitaio y epesenta

Más detalles

Brecha del producto y medidas de la tasa de interés neutral para Colombia

Brecha del producto y medidas de la tasa de interés neutral para Colombia Andés González Segio Ocampo Julián Péez Diego Rodíguez Becha del poducto y medidas de la tasa de inteés neutal paa Colombia Resumen En este documento se poponen tes medidas nuevas de la becha del poducto

Más detalles

Temas teóricos. Lino Spagnolo

Temas teóricos. Lino Spagnolo 1 Temas teóicos Electomagnetismo Teoema de Helmholtz. Lino Spagnolo La teoía electomagnética de Maxwell, e incluso las modenas elaboaciones como la electodinámica cuántica y la como dinámica, utilizan

Más detalles

Vol. 1cal. 3600s 736W

Vol. 1cal. 3600s 736W - Un moto tipo OTTO de cilindos desaolla una potencia efectiva (al feno) de 65 a 500 pm. Se sabe que el diámeto de cada pistón es de 7 mm, la caea de 9 mm y la elación de compesión = 9:.Detemina: ilindada

Más detalles

Deflexión de rayos luminosos causada por un cuerpo en rotación

Deflexión de rayos luminosos causada por un cuerpo en rotación 14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades

Cálculo de la relación de margen de contribución en los precios y el surgimiento de la proporción áurea en la estructura de utilidades Cálculo de la elación de magen de contibución en los pecios y el sugimiento de la popoción áuea en la estuctua de utilidades Fecha de ecepción: 06.04.00 Fecha de aceptación: 9.0.00 Calos Henández Otega

Más detalles

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el

avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el /5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado

Más detalles

200. Hallar la ecuación de la simetría ortogonal respecto de la recta:

200. Hallar la ecuación de la simetría ortogonal respecto de la recta: Hoja de Poblemas Geometía IX 200 Halla la ecuación de la simetía otogonal especto de la ecta: SOLUCIÓN n( x a) Sean: - S la simetía otogonal especto de la ecta n ( x a) - P un punto cualquiea cuyo vecto

Más detalles