1. GRAFOS : CONCEPTOS BASICOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. GRAFOS : CONCEPTOS BASICOS"

Transcripción

1 1. GRAFOS : CONCEPTOS BASICOS Sea V un conjunto finito no vacio y sea E V x V. El par (V, E) es un grafo no dirigido, donde V es un conjunto de vértices o nodos y E es un conjunto de aristas. Denotaremos el número de vértices del conjunto como V =n y el número de aristas del mismo como E =m. El grafo es dirigido si E es un conjunto de arcos, en lugar de ser un conjunto de aristas, es decir, si las aristas pertenecientes a E tienen dirección. En este caso, el grafo puede ser denominado dígrafo. Figura 1: (1) Grafo no dirigido. (2) Grafo dirigido Para cualquier arista, como por ejemplo, b-c (figura 1), decimos que la arista es incidente en los vértices b y c; b es adyacente a c y c es adyacente a b. Para cualquier arco, como puede ser g-f (figura 1), g es el origen o fuente de la arista (g, f) y el vértice f es el término o vértice terminal. Se denomina bucle o lazo a una arista o un arco que tiene como fuente y término el mismo nodo o vértice. Supondremos, mientras que no se especifique lo contrario, que el grafo G=(V, E) es no dirigido, y sean x e y vértices (no necesariamente distintos) del mismo. Un camino x-y es una sucesión alternada finita (sin lazos),,,,,,..,,,,, de vértices y aristas de G, que comienzan en el vértice x y termina en el vértice y, y que contiene las k-1 aristas, donde 0 i k-2. Si suponemos que el número de nodos es k, la longitud de un camino es k-1, es decir, el número de aristas que hay en ese camino. Si k = 1, no hay aristas, x es igual a y, y el camino se denomina trivial. Cualquier camino en el que x = y, siendo k>2, se denomina camino cerrado. En caso contrario, el camino es abierto. 16

2 Un camino puede repetir vértices y aristas. Si no se repite ninguna arista en el camino x- y, entonces el camino es elemental. También se le denomina recorrido. Un recorrido cerrado se llama circuito. Si ningún vértice del camino se presenta más de una vez, el camino es simple. El término ciclo se usa para describir un camino simple cerrado. Decimos que el grafo es conexo si existe un camino simple entre cada par de vértices cualesquiera distintos de G. Un grafo que no es conexo es disconexo o no conexo. Denotaremos por C (G) al número de componentes de G. Así, C (G) será uno si el grafo es conexo. Diremos que un grafo regular es aquel en el cual todos los vértices tienen el mismo número de aristas incidentes, y aleatorio si sus aristas siguen una distribución aleatoria y, por tanto, no ha sido diseñado con ningún criterio concreto. Otros conceptos de gran importancia en un grafo son: Distancia entre dos vértices: Longitud del camino más corto entre esos vértices. Denotaremos entonces la distancia mínima entre los vértices i y j como d ij, si se suponen distancias reales y se consideran aspectos métricos, y u ij si se suponen distancias unidad y se consideran, por tanto, aspectos topológicos. Esta magnitud se calcula realizando cualquier algoritmo de camino más corto como el algoritmo de Dijsktra (visto posteriormente) desde cada vértice al resto. Excentricidad de un vértice v: La excentricidad de v є V se define como la distancia máxima desde v a cualquier otro vértice del grafo G siguiendo caminos de longitud mínima. Se denotará por ξ (v). Diámetro: Longitud del camino más corto para unir los dos vértices más alejados de la red. También puede ser entendido como el máximo de las excentricidades de todos los vértices del grafo. A partir de ahora lo denotaremos con D. Grado o valencia de un vértice: Número de aristas incidentes en el vértice. Se denotará con k. Valor medio del grado o valencia de los nodos del grafo: 17

3 k k ; i = 1,,n (1) donde k i es el grado correspondiente al nodo i. Valor mínimo de grado o valencia: Número mínimo de aristas incidentes en un vértice de entre todos los vértices existentes en el grafo. Se denotará como k mín. Valor máximo de grado o valencia: Número máximo de aristas que inciden en un vértice de entre todos los vértices del grafo. Se denotará como k max. Matriz de adyacencia: Matriz simétrica de orden n, donde n es el número de vértices del grafo. Compuesta por unos y ceros, se define como:. 1, si los vertices i y j son adyacentes (2) 0, en caso contrario P(k): Distribución de probabilidad de que un nodo arbitrariamente seleccionado esté conectado con otros k nodos. Equivalentemente, también puede ser definida como la fracción de vértices de una red que tiene grado k. h-entorno de un vértice v: Conjunto de vértices con una distancia mínima menor o igual a h desde v. Denotaremos la 1-entorno o 1-vecindad del vértice v como N (v). N(V i ), N(E i ): Concepto similar a la h-vecindad. Denominaremos N(V i ) al conjunto de vértices adyacentes a los pertenecientes a V i. Denominaremos N(E i ) al conjunto de vértices incidentes a las aristas pertenecientes a E i. Vértice de corte de un grafo: Vértice que cuando se elimina (esto supone la eliminación de todas las aristas incidentes en él) incrementa el número de componentes conexas del grafo, es decir, escinde el grafo en dos o varios subgrafos conexos. 18

4 Arista de corte de un grafo: Arista que cuando se elimina incrementa el número de componentes conexas del grafo, es decir, escinde el grafo en dos o varios subgrafos conexos. Corte de un grafo: Supresión de un conjunto de nodos o aristas en el grafo que produce el incremento en el número de componentes conexas del grafo. Si el grafo no es ponderado, el corte se considera mínimo cuando el número de nodos o aristas eliminados ha sido mínimo. Por el contrario, si el grafo es ponderado, el corte mínimo es aquel que suprime el conjunto de menor peso, siendo obtenido el peso del conjunto a partir de la suma de los pesos de las aristas y nodos considerados independientemente. El corte es equilibrado cuando el grafo se escinde en dos subgrafos que contienen aproximadamente el mismo número de vértices, a saber y. Por último, destacar o definir algunos tipos de grafos concretos: - Un grafo conexo y sin ciclos es lo que se denomina árbol. - Un grafo es completo (mallado total) si entre dos vértices cualesquiera de dicho grafo existe una arista en el caso de un grafo no dirigido y un arco en el caso de un grafo dirigido. - Un grafo bipartito es aquel cuyos vértices se pueden separar en dos subconjuntos disjuntos V 1 y V 2 y las aristas siempre unen vértices de un conjunto con vértices de otro. Se cumplen: 1., siendo V el conjunto de todos los vértices del grafo. 2. Φ 3.,,,, no existe ninguna arista, ni, - Un grafo es fuertemente conexo si para cada par de vértices u y v, existe un camino desde u a v y otro desde v a u. Esta definición solo tiene sentido cuando el grafo es dirigido. 19

5 Algoritmo de Dijsktra Sea un grafo ponderado, G= (V, E) con un nodo v 1 є V, en el que hemos asignamos a cada arco a ij un peso σ ij. Por tanto, el peso de un camino entre los nodos i y j Γ,,,,,, Como γ,,. El problema consiste en determinar el camino más corto desde v 1 al resto de nodos de la red. Si llamamos g j al peso del camino más corto entre el nodo v 1 y el j, el algoritmo sigue los siguientes pasos: 1. Inicializa: P={1}, T={2,3,4,,n}, g 1 = 0, g j = si j є 1-vecindad(1), g j = si j 1-vecindad(1) 2. Designación de una etiqueta variable como fija: Determinar k T tal que. Hacer \. Hacer. Mientras exista algún nodo dentro del conjunto T, continuamos este paso con el paso 3. Sino finalizamos el algoritmo. 3. Actualización: 1- vecindad (k), min, y pero no contenido en la 1-vecindad (k), g j permanece con el mismo valor. Volvemos al paso 2. El coste del algoritmo es del orden de, donde V es el número de vértices y A el número de aristas. Ejemplo 20

6 En este punto de la memoria, calcularemos todos estos conceptos definidos en este primer apartado sobre algún grafo sencillo. Con ello se pretende aclarar los conceptos y dudas que pudieran surgir en su lectura. El grafo tomado que se ha escogido como modelo es el mostrado en la figura 2. Figura 2: Nodos numerados (negro), aristas numeradas (verde), peso de cada arista (rojo). Este grafo, definido como G = (V,E), donde V = {1,2,3,4,5,6} y E = {1,2,3,4,5,6,7,8} es conexo, no completo (faltan 7 aristas para obtener el grafo ideal: 1-5, 1-3, 6-2, 6-3, 6-4, 5-3, 4-2) y no dirigido (las aristas no tiene dirección. El peso de la arista en ambos sentidos es el mismo). La matriz de adyacencia es Las distancias mínimas topológicas entre vértices son: 0 ; 1 ; 2 ; 1 ; 2 ; 1 1 ; 0 ; 1 ; 2 ; 1 ; 2 2 ; 1 ; 0 ; 1 ; 2 ; 3 1 ; 2 ; 1 ; 0 ; 1 ; 2 2 ; 1 ; 2 ; 1 ; 0 ; 1 1 ; 2 ; 3 ; 2 ; 1 ; 0 Matricialmente, esto se puede expresar: 21

7 Las distancias mínimas reales entre sus vértices son más complejas de calcular. Para hacerlo, emplearemos el algoritmo de Dijsktra: Origen: Vértice 1 Paso 1: P = {1}, T = {2, 3, 4, 5, 6}, 0 ; 3 ; ; 2 ; ; 4 Paso 2: Determinar k T tal que, es decir, 2. Añadimos el nodo 4 al conjunto P y lo extraemos del conjunto T. P = {1,4} y T = {2, 3, 5,6}. Como seguimos teniendo elementos en T, continuamos. Paso 3: Actualización, Γ, min,, es decir, min, min,29 11 min, min,25 7 y, pero no adyacente a k, g j permanece con el mismo valor, es decir, 3 y 4. Paso 2: El mínimo valor de g k es ahora g 2 = 3. Luego, P = {1, 2,4} y T = {3, 5,6}. Paso3: El nodo 2 está conectado con los vértices contenidos en T, 3 y 5. Luego, 4, mientras que min11, min11,3 1 4 min7, min7,3 2 5 Paso 2: Existen dos valores mínimos. Sería indiferente que cogiéramos uno u otro. Añadiremos al conjunto P el nodo 3, con lo que P = {1, 2, 3,4} y T = {5,6}. Paso 3: El nodo 3 no está conectado ni al vértice 5 ni al 6, luego en este caso no habría que actualizar ningún valor. Paso 2: Añadimos el nodo 6 al conjunto. P = {1, 2, 3, 4,6} y T = {5}. 22

8 Paso 3: El nodo 5 está conectado al 6. Actualizamos el valor de distancia: min5, min5,4 6 5 El vector de distancias mínimas del vértice 1 al resto es: Origen: Vértice Los razonamientos seguidos han sido los mismos, por lo que se realizarán los cálculos de forma más esquemática. Paso 1: P = {2}, T = {1, 3, 4, 5, 6}, 0 ; 3 ; 1 ; ; 2 ; Paso 2: El nodo más cercano al nodo 2 es el 3. P = {2,3} y T = {1, 4, 5,6}. Como seguimos teniendo elementos en T, continuamos. Paso 3: Al vértice 3 es adyacente tan solo el 4. Con lo cual, min, min, El resto de los valores permanecen igual: 3 ; 10 ; 2 ; Paso 2: El mínimo valor de g k es ahora g 5 = 2. Luego, P = {2, 3,5} y T = {1, 4,6}. Paso3: El nodo 5 está conectado con los vértices contenidos en T, 4 y 6. Luego, 3, mientras que min10, min10,2 5 7 min, min,26 8 Paso 2: Añadiremos al conjunto P el nodo 1, con lo que P = {1, 2, 3,5} y T = {4,6}. Paso 3: El nodo 1 está conectado al 6, luego en este caso, 7, mientras que min8, min8,3 4 7 Paso 2: P = {1, 2, 3, 5,6} y T = {4}. 23

9 Paso 3: Al no estar el nodo 6 conectado al 4 no he de actualizar el valor. El vector de distancias mínimas del vértice 2 al resto es: Origen: Vértice 3 El vector de distancias mínimas del vértice 3 al resto se calcula siguiendo el mismo razonamiento que ha sido realizado cuando tomábamos los vértices 1 ó 2 como origen. El vector obtenido es: Origen: Vértice 4 El vector de distancias mínimas del vértice 4 al resto se calcula siguiendo el mismo razonamiento que ha sido realizado cuando tomábamos los vértices 1 ó 2 como origen. El vector obtenido es: Origen: Vértice 5 Aplicando las propiedades de simetría que debe tener la matriz resultante, podemos obtener los valores de las mínimas distancias del nodo 5 al 1, 2,3 y 4. La única que falta es la distancia al nodo 6, pero esta se aprecia fácilmente que es 6. Origen: Vértice 6 Por simetría se obtiene la distancia de este nodo a todos los demás. Por lo tanto, la matriz de distancias mínimas entre cada par de nodos es: 24

10 De acuerdo con estos resultados, las excentricidades de los vértices son: ξ(1) = 5, ξ(2) = 7, ξ(3) = 8, ξ(4) = 7, ξ(5) = 6, ξ(6) = 8 Y el diámetro, D = 8. El grado o valencia de los nodos es k(1) = 3, k(2) = 3, k(3) = 2, k(4) = 3, k(5) = 3, k(6) = 2 Por lo que, k min = 2 y k máx = 3. El valor medio de grado k med = 1/6*(3*4+2*2) =16/6 = 2, Si tomamos, por ejemplo, el vértice 1, veremos cómo su 1-entorno es el conjunto formado por los nodos {2, 4,6}. La 2-entorno sería el conjunto formado por {3,5}. Si suponemos un conjunto de vértices V i formado por el vértice 1, N(V i ) sería equivalente a la 1-entorno. Si el conjunto, sin embargo, estuviese formado por los nodos {1,2}, N(V i ) contendría los vértices restantes que constituyen el grafo, es decir, {3,4,5,6}, ya que cualquiera de ellos es accesible o desde 1 o desde 2. Si definimos, por ejemplo, un conjunto E 1 formado por las aristas {2,5}, N(E 1 ) estaría formado por los vértices {1,2,4,5}. 25

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv

Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv DEFINICIÓN 1: Un GRAFO O GRAFO NO ORIENTADO es una terna G = {V, A,ϕ } conv φ donde: V = {v 1, v 2,, v n }: conjunto finito de vértices o nodos. A = {a 1, a 2,, a n }: conjunto finito de aristas o lados

Más detalles

Francisco J. Hernández López

Francisco J. Hernández López Francisco J. Hernández López fcoj23@cimat.mx Estructura de datos no lineales donde cada componente o nodo puede tener uno o más predecesores (a diferencia de los árboles) y sucesores Un grafo esta formado

Más detalles

Teoría de Grafos Introducción Grafos isomorfos

Teoría de Grafos Introducción Grafos isomorfos Capítulo 1 Teoría de Grafos 1.1. Introducción Definición. Denominaremos pseudomultigrafo a una terna (V,E, γ), donde V y E son conjuntos y γ : E {{u,v}: u,v V }. El conjunto V se denomina conjunto de vértices

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos.

Grafos. Suponiendo que e = [u, v]. Entonces los nodos u y v se llaman extremos de e y u y v se dice que son nodos adyacentes o vecinos. Grafos Los grafos son estructuras que constan de vértices o nodos y de aristas o arcos que conectan los vértices entre sí. Un grafo G consiste en dos cosas: 1. Un conjunto V de elementos llamados nodos

Más detalles

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} }

En la fig. 1 se representa el grafo, G=(V,A) donde: V = {1, 2, 3, 4, 5, 6} A = { {1,2}, {1,3}, {1,5}, {3}, {3,4}, {4,5}, {5,6} } Unidad 1 Parte 1 - Teoría de Grafos Introducción En este capítulo veremos la noción matemática de grafo y propiedades de los mismos. En capítulos subsiguientes veremos las estructuras de datos utilizadas

Más detalles

Tema 1: Introducción a la Teoría de Grafos

Tema 1: Introducción a la Teoría de Grafos Tema 1: Introducción a la Teoría de Grafos MATEMÁTICA A DISCRETA Nociones básicas Subgrafos. Operaciones con grafos Formas de definir un grafo Isomorfismo de grafos Tema 1: 1 Nociones básicas: Grafo: G

Más detalles

Grafos. Algoritmos y Estructuras de Datos III

Grafos. Algoritmos y Estructuras de Datos III Grafos Algoritmos y Estructuras de Datos III Grafos Un grafo G = (V, X ) es un par de conjuntos, donde V es un conjunto de puntos o nodos o vértices y X es un subconjunto del conjunto de pares no ordenados

Más detalles

Tema 5 Árboles y Grafos.

Tema 5 Árboles y Grafos. Tema 5 Árboles y Grafos. Definiciones básicas de teoría de grafos. Un grafo consta de un conjunto de nodos, un conjunto de aristas y una correspondencia f del conjunto de aristas al conjunto de nodos.

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones

UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS. Investigación de Operaciones UNIVERSIDAD NACIONAL DE INGENIERÍA UNI-RUACS Facultad de Ingeniería Industrial Investigación de Operaciones Tema: Teoría de los Grafos Elaborado por: Ing. Carlos Alberto Moreno. Docente: Ing. Pastrana

Más detalles

Los elementos de V son los vértices (o nodos) de G y los elementos de A son las aristas (o arcos) de G.

Los elementos de V son los vértices (o nodos) de G y los elementos de A son las aristas (o arcos) de G. MATERIAL TEÓRICO º Cuatrimestre Año 03 Prof. María Elena Ruiz Prof. Carlos Roberto Pérez Medina UNIDAD III: GRAFOS Definición: Llamaremos grafo a una terna G= (V, A, ϕ), donde V y A son conjuntos finitos,

Más detalles

Capítulo 5 Introducción a la teoría de grafos

Capítulo 5 Introducción a la teoría de grafos Capítulo 5 Introducción a la teoría de grafos 5.1. Terminología básica y tipos de grafos Una primera aproximación a la teoría de grafos la tenemos cuando observamos un mapa de carreteras: ciudades (vértices)

Más detalles

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre

Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre Es un conjunto de objetos llamados vértices o nodos unidos por enlaces llamados aristas o arcos, que permiten representar relaciones binarias entre elementos de un conjunto. Típicamente, un grafo se representa

Más detalles

Análisis de Algoritmos Teoría de grafos

Análisis de Algoritmos Teoría de grafos Análisis de Algoritmos Teoría de grafos Dra. Elisa Schaeffer elisa.schaeffer@gmail.com PISIS / FIME / UANL Teoría de grafos p. 1 Grafos Un grafo G es un par de conjuntos G = (V,E) Teoría de grafos p. 2

Más detalles

GLOSARIO DE TÉRMINOS BÁSICOS

GLOSARIO DE TÉRMINOS BÁSICOS APÉNDICE 1 GLOSARIO DE TÉRMINOS BÁSICOS OBSERVACIÓN: todas las definiciones para grafos son válidas tanto para grafos orientados como para noorientados, a menos que se especifique lo contrario. 1. Grafo:

Más detalles

Un grafo G = (V, E) se dice finito si V es un conjunto finito.

Un grafo G = (V, E) se dice finito si V es un conjunto finito. 1 Grafos: Primeras definiciones Definición 1.1 Un grafo G se define como un par (V, E), donde V es un conjunto cuyos elementos son denominados vértices o nodos y E es un subconjunto de pares no ordenados

Más detalles

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30

Grafos. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Grafos 1 / 30 Grafos AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Grafos / 0 Objetivos Al finalizar este tema tendréis que: Conocer la terminología básica de la teoría de grafos. Pasar

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2016 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Flavia Bonomo fbonomo@dc.uba.ar do. Cuatrimestre 009 Programa Introducción a la teoría de grafos Problemas de camino mínimo Problemas de flujo máximo Programación lineal

Más detalles

TEMA IV TEORÍA DE GRAFOS

TEMA IV TEORÍA DE GRAFOS TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,

Más detalles

Definiciones y ejemplos.

Definiciones y ejemplos. V. Grafos Definiciones y ejemplos. Módulo 5 DEF. Sea V un conjunto finito no vacío, y sea El par (V, E) es llamada entonces grafo dirigido en V, donde V es el conjunto de vértices o nodos y E es su conjunto

Más detalles

Deseamos interconectar entre si todos los ordenadores de un edificio

Deseamos interconectar entre si todos los ordenadores de un edificio Teoría de grafos Deseamos interconectar entre si todos los ordenadores de un edificio Tres problemas de conexión: Conectar una serie de ordenadores por pares Procurar que la distancia por cable entre dos

Más detalles

Estructuras de Datos y Algoritmos. Grafos

Estructuras de Datos y Algoritmos. Grafos Estructuras de Datos y Algoritmos Grafos Definiciones Grafo modelo para representar relaciones entre elementos de un conjunto. Grafo: (V,E), V es un conjunto de vértices o nodos, con una relación entre

Más detalles

Grafos y Redes. 3. Resolución: Dibujar el camino sin levantar el lápiz y pasando sólo una vez por cada arco o arista.

Grafos y Redes. 3. Resolución: Dibujar el camino sin levantar el lápiz y pasando sólo una vez por cada arco o arista. Grafos y Redes. Nodos: vértices, 2, 3 2. Arcos: aristas, conexión entre nodos. 2, 54, etc. 3. Resolución: Dibujar el camino sin levantar el lápiz y pasando sólo una vez por cada arco o arista. 4. Grado

Más detalles

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios

Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios CLASE GRAFOS Este material es de uso exclusivo para clase de algoritmos y estructura de datos, la información de este documento fue tomada textualmente de varios libros por lo que está prohibida su impresión

Más detalles

A5 Introducción a la optimización en redes

A5 Introducción a la optimización en redes 48 Materials David Pujolar Morales A5 Introducción a la optimización en redes Definición 1. Grafo finito. Sea un V un conjunto no vacío con un número finito de elementos y E una familia finita de pares

Más detalles

1. ESTUDIO DE ROBUSTEZ EN REDES DEPENDIENDO DE SU TOPOLOGÍA

1. ESTUDIO DE ROBUSTEZ EN REDES DEPENDIENDO DE SU TOPOLOGÍA . ESTUDIO DE ROBUSTEZ EN REDES DEPENDIENDO DE SU TOPOLOGÍA A continuación, se intentarán aplicar algunas de las definiciones vistas anteriormente a redes con distinta topología con objeto de analizar el

Más detalles

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.

INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS. INDICE INTRODUCCION1 DESARROLLO2 GRAFOS (CONCEPTO).2 ARISTAS...2 VERTICES2 CAMINOS.3 CLASIFICACION DE GRAFOS...3 GRAFOS EULERIANOS.7 GRAFOS CONEXOS7 ÁRBOLES..7 BOSQUES DE ÁRBOLES...8 RECORRIDO DE UN GRAFO..8

Más detalles

Representación y manipulación de grafos: caminos, expansión, cortes y flujos

Representación y manipulación de grafos: caminos, expansión, cortes y flujos Un grafo G es un par de conjuntos G =(V,E) Representación y manipulación de grafos: caminos, expansión, cortes y flujos V = un conjunto de n vértices u, v, w V E = un conjunto de m aristas V = n, E = m

Más detalles

Conceptos básicos en la Teoría de Grafos

Conceptos básicos en la Teoría de Grafos Conceptos básicos en la Teoría de Grafos Cristina Jordán Lluch Instituto de Matemáticas Multidisciplinar Grupo de Modelización Físico-Matemática Conceptos básicos Subgrafos Caminos, cadenas y ciclos Represetación

Más detalles

Teoría de grafos y optimización en redes

Teoría de grafos y optimización en redes Teoría de grafos y optimización en redes José María Ferrer Caja Universidad Pontificia Comillas Definiciones básicas Grafo: Conjunto de nodos (o vértices) unidos por aristas G = (V,E) Ejemplo V = {,,,,

Más detalles

Matemáticas Discretas

Matemáticas Discretas Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Cursos Propedéuticos 2011 Ciencias Computacionales INAOE Dr. Enrique Muñoz de Cote jemc@inaoep.mx http://ccc.inaoep.mx/~jemc Oficina

Más detalles

Grafos: Fundamentos Representaciones, etc. Jose Aguilar

Grafos: Fundamentos Representaciones, etc. Jose Aguilar Grafos: Fundamentos Representaciones, etc. Jose Aguilar Introducción Las estructura de datos no lineales se caracterizan por tener una relación de adyacencia genérica entre sus elementos, es decir, un

Más detalles

Tema: Los Grafos y su importancia para la optimización de redes.

Tema: Los Grafos y su importancia para la optimización de redes. Tema: Los Grafos y su importancia para la optimización de redes. Qué son los Grafos? Un grafo es una dupla G= {X,U}, donde X es un conjunto finito y no vacio de elementos llamados vértices y U es el conjunto

Más detalles

Algebra Matricial y Teoría de Grafos

Algebra Matricial y Teoría de Grafos Algebra Matricial y Teoría de Grafos Unidad 3: Nociones de teoría de grafos Luis M. Torres Escuela Politécnica del Litoral Quito, Enero 2008 Maestría en Control de Operaciones y Gestión Logística p.1 Contenido

Más detalles

OBJETIVOS ÍNDICE BIBLIOGRAFÍA

OBJETIVOS ÍNDICE BIBLIOGRAFÍA OBJETIVOS Tema 9: GRAFOS Primera Parte Estructuras de Datos y Algoritmos Curso 2002/03 Definiciones formales de grafo y conceptos relacionados Estructuras de datos para representar grafos Algoritmos para

Más detalles

Introducción a la Teoría de Grafos

Introducción a la Teoría de Grafos Introducción a la Teoría de Grafos Conceptos Simples, Problemas Difíciles Héctor Ramírez C. 1 1 Departamento de Ingeniería Matemática Universidad de Chile Curso MA3701: Optimización Héctor Ramírez C. (U.

Más detalles

Teoría de redes y optimización en redes

Teoría de redes y optimización en redes Teoría de redes y optimización en redes Pedro Sánchez Martín Contenidos Definiciones básicas Árbol generador mínimo de expansión Camino mínimo Algoritmo Dkstra Algoritmo Bellman-Ford Fluo máximo Fluo de

Más detalles

5.4 Caminos mínimos: Algoritmo de Dijkstra

5.4 Caminos mínimos: Algoritmo de Dijkstra 81 5.4 Caminos mínimos: Algoritmo de Dijkstra Al observar nuestro mapa de carreteras se pueden considerar las distancias en km que hay entre las ciudades, a cada arista se le asigna el valor correspondiente

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

Matemáticas Básicas para Computación

Matemáticas Básicas para Computación Matemáticas Básicas para Computación MATEMÁTICAS BÁSICAS PARA COMPUTACIÓN 1 Sesión No. 10 Nombre: Grafos Objetivo: Al término de la sesión el participante conocerá los elementos que integran los grafos,

Más detalles

TEMA 5 El tipo grafo. Tipo grafo

TEMA 5 El tipo grafo. Tipo grafo TEMA 5 El tipo grafo PROGRAMACIÓN Y ESTRUCTURAS DE DATOS Tipo grafo 1. Concepto de grafo y terminología 2. Especificación algebraica. Representación de grafos.1. Recorrido en profundidad o DFS.2. Recorrido

Más detalles

Francis Guthrie Planteo el problema de los cuatro colores, después de colorear el mapa de Inglaterra 9/15/2015 3

Francis Guthrie Planteo el problema de los cuatro colores, después de colorear el mapa de Inglaterra 9/15/2015 3 INTRODUCCION GRAFOS La Teoria de Grafos nace del análisis sobre una inquietud presentada en la isla Kueiphof en Koenigsberg (Pomerania) ya que el río que la rodea se divide en dos brazos. Sobre los brazos

Más detalles

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo

Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Capítulo 3: Grafos Clase 1: Grafos: Modelos, tipos, representación e isomorfismo Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 35 Por qué estudiamos

Más detalles

Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial

Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial Estructuras de Datos y Algoritmos: Boletín de Problemas del segundo parcial (Facultad de Informática) Curso 00 0 Estructuras de Datos y Algoritmos (FI-UPV) Curso 00 0 Árboles. Si la acción P fuera escribir

Más detalles

Teoría de Grafos I. 2. Describa tres situaciones prácticas en las cuales un grafo pueda ser útil.

Teoría de Grafos I. 2. Describa tres situaciones prácticas en las cuales un grafo pueda ser útil. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 1 Teoría de Grafos I 1. Defina y de ejemplos de cada uno de los siguientes

Más detalles

Caminos y Flujos optimales. 2da y 3er clase 2007

Caminos y Flujos optimales. 2da y 3er clase 2007 Caminos y Flujos optimales 2da y 3er clase 2007 ESQUELETOS OPTIMALES (mínimo) Esqueleto de G =(X,U) es un subgrafo que es un árbol y que contiene todos los vértices de G. Esqueleto Mínimo de G = (X, U,

Más detalles

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Grafos

Parte de Algoritmos de la asignatura de Programación Master de Bioinformática. Grafos Parte de Algoritmos de la asignatura de Programación Master de Bioinformática Grafos Web asignatura: http://dis.um.es/~domingo/algbio.html E-mail profesor: domingo@um.es Transparencias preparadas a partir

Más detalles

GRAFOS. 1. La matriz de adyacencia del grafo G es

GRAFOS. 1. La matriz de adyacencia del grafo G es GRAFOS. La matriz de adyacencia del grafo G es entonces, A) G es un pseudografo B) G es un grafo completo. G no es conexo Supongamos V={v,v,v,v } son los vértices del grafo. En los pseudografo están permitidas

Más detalles

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos

Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Capítulo 4: Grafos Clase 2: Caminos, Circuitos Eulerianos y Hamiltonianos Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 4: Grafos 1 / 29 Navegación de grafos

Más detalles

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos.

Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Matemática Discreta y Lógica 2 1. Árboles Árboles Definición 1.1 Sea G = (V, A) un grafo no dirigido. G se denomina árbol si es conexo y no contiene ciclos. Como un lazo es un ciclo de longitud 1, un árbol

Más detalles

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3

Tema 2: Grafos y Árboles. Algoritmos y Estructuras de Datos 3 Tema 2: Grafos y Árboles Algoritmos y Estructuras de Datos 3 1 ÍNDICE 2.1 Definiciones básicas: grafos y árboles 2.2 Representaciones de árboles y grafos 2.3 Algoritmos de recorrido de árboles binarios

Más detalles

1. GRAFOS REGULARES Y ALEATORIOS

1. GRAFOS REGULARES Y ALEATORIOS 1. GRAFOS REGULARES Y ALEATORIOS Como ya se comentó en la introducción de esta memoria, un objetivo inicial del proyecto era realizar un estudio de las redes de metro del mundo, en el cual se comprobase

Más detalles

GRAFOS. Tomado de: Joyanes Aguilar Luis, Estructuras de datos en Java. CASOS

GRAFOS. Tomado de: Joyanes Aguilar Luis, Estructuras de datos en Java. CASOS GRAFOS Tomado de: Joyanes Aguilar Luis, Estructuras de datos en Java. CASOS 1.4 El recorrido del cartero Imaginemos un grafo que representa el mapa de las calles de un barrio. Una calle va de una esquina

Más detalles

Clase 1: Gráficas. Malors Espinosa Lara. 6 de Febrero de 2010

Clase 1: Gráficas. Malors Espinosa Lara. 6 de Febrero de 2010 Clase : Gráficas. Malors Espinosa Lara 6 de Febrero de 00 Resumen Estudiaremos el capítulo del libro A course in Combinatorics. Daremos algunas definiciones de libro Combinatorics and Graph Theory, pues

Más detalles

Estructuras de Datos y Algoritmos

Estructuras de Datos y Algoritmos Estructuras de Datos y Algoritmos Práctico 3: Grafos (Finalización: 06/09) Ing. en Computación - Ing. en Informática - Prof. en Computación Año 2018 Ejercicio 1: Dado el siguiente p-digrafo: 5 b 6 d 11

Más detalles

5.6 Árbol generador de un grafo

5.6 Árbol generador de un grafo 88 5.6 Árbol generador de un grafo Definición 5.59. Sea G un grafo simple. Un árbol generador de G es un subgrafo de G que es un árbol y contiene todos los vértices de G. Ejemplo 5.60. Un grafo y algunos

Más detalles

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002

Definiciones: conjuntos, grafos, y árboles. Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 Definiciones: conjuntos, grafos, y árboles Agustín J. González ELO 320: Estructura de Datos y Algoritmos. 2002 1 Conjuntos (sets) y Grafos (graphs) Un Conjunto es una colección de objetos distintos. No

Más detalles

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS.

3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS. 3.0.-ARBOLES ABARCADORES Y COMPONENTES CONEXOS 3.1.- CONCEPTO DE ARBOL ABARCADOR Y SU RELACION CON LOS RECORRIDOS. 3.2.- BOSQUES Y COMPONENTES CONEXOS. NEXON LENIN CEFERINO POMPOSO Los árboles son particularmente

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 5 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 30 Sep 2013-6 Oct 2013 Primeras Definiciones Grafo Un grafo está definido por dos conjuntos, un

Más detalles

Teoría de Grafos y Árboles.

Teoría de Grafos y Árboles. Estructuras Discretas Teoría de Grafos y Árboles. Prof. Miguel Fagúndez www.geocities.com/mfagundez4 1 www.geocities.com/mfagundez4 www.geocities.com/mfagundez4 3 Grafos: Definición Un grafo no es mas

Más detalles

Hamilton, Euler y Dijkstra

Hamilton, Euler y Dijkstra UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE COMPUTACION Matemáticas Discretas III (Cód. 6108) Práctica # 2 Hamilton, Euler y Dijkstra 1. Sea G = un multigrafo no dirigido donde

Más detalles

Grafos Los siete puentes de Königsberg: Teoría de Grafos

Grafos Los siete puentes de Königsberg: Teoría de Grafos Grafos Los siete puentes de Königsberg: Un ciudadano de Königsberg (Prusia) se propuso dar un paseo cruzando cada uno de los siete puentes que existen sobre el río Pregel una sola vez. Los dos brazos del

Más detalles

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES

ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOLES CRISTIAN ALFREDO MUÑOZ ÁLVAREZ JUAN DAVID LONDOÑO CASTRO JUAN PABLO CHACÓN PEÑA EDUARDO GONZALES ÁRBOL Un árbol es un grafo no dirigido, conexo, sin ciclos (acíclico), y que no contiene aristas

Más detalles

Tema 15: GRAFOS Algoritmos y estructuras de datos I - Tema 15 1

Tema 15: GRAFOS Algoritmos y estructuras de datos I - Tema 15 1 Tema 15: GRFOS jemplos de grafos G 1 = (V 1, 1 ) V 1 ={1,2,3,4} 1 ={ (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4) } (1, 3) 1 (1, 2) (2, 3) (1, 4) 2 3 4 (3, 4) (2, 4) jemplos de grafos G 2 = (V 2, 2 )

Más detalles

Fundamentos de la teoría de grafos

Fundamentos de la teoría de grafos Fundamentos de la teoría de grafos 3º I.T.I. de Sistemas Mª Teresa Cáceres Sansaloni 1 Tema 1: Nociones básicas Conceptos básicos sobre grafos. Representación de grafos. Multigrafos, grafos dirigidos y

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

TIPOS ABSTRACTOS DE DATOS EN HASKELL

TIPOS ABSTRACTOS DE DATOS EN HASKELL TIPOS ABSTRACTOS DE DATOS EN HASKELL ÍNDICE GENERAL 1. Introducción a Haskell 2. Tipos abstractos de datos en Haskell 3. TAD Grafo 4. TAD Montículos 5. Bibliografía INTRODUCCIÓN A HASKELL 1. Introducción

Más detalles

Grafos. 19 de diciembre de 2013

Grafos. 19 de diciembre de 2013 Grafos 19 de diciembre de 2013 Grafo Un grafo es un conjunto, no vacío, de objetos llamados vértices (o nodos) y una selección de pares de vértices, llamados aristas (edges en inglés) que pueden ser orientados

Más detalles

2007 Carmen Moreno Valencia

2007 Carmen Moreno Valencia Tema VIII. Grafos Grafos 1 2007 Carmen Moreno Valencia 1. Grafos, digrafos y multigrafos 2. Grafos eulerianos 3. Matrices de adyacencia e incidencia 4. Exploración de grafos pesados 1. Grafos, digrafos

Más detalles

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS

Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Estructura de Datos Página 1 de 13 ESTRUCTURA DE DATOS Contenido TEMA 4. Grafos 4.1. Grafos 4.1.1. Definición 4.1.2.Conceptos 4.2. Modelado de problemas típicos 4.3. Representación de un grafo a través

Más detalles

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios

Indice. 1. Tipos de grafos. 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios Teoría de Grafos 1 1. Tipos de grafos Indice 2. Conceptos Básicos 3. Representación de grafos 4. Subgrafos. Grafos complementarios 5. Caminos y conectividad 6. Grafos Bipartitos 2 Tipos de Grafos Un grafo

Más detalles

Introducción a la teoría de grafos

Introducción a la teoría de grafos Capítulo 5 Introducción a la teoría de grafos 51 Generalidades sobre grafos En esta sección vamos a comenzar el estudio de la teoría de Grafos El inicio de esta teoría tuvo lugar en 1736, en un artículo

Más detalles

Ciclos Hamiltonianos Algoritmo de la Ruta Más Corta. Matemática Discreta. Agustín G. Bonifacio UNSL. Teoría de Grafos II

Ciclos Hamiltonianos Algoritmo de la Ruta Más Corta. Matemática Discreta. Agustín G. Bonifacio UNSL. Teoría de Grafos II UNSL Teoría de Grafos II y Ejemplos Un ciclo en un grafo que contiene cada vértice justo una vez, excepto por el vértice inicial y el final que aparece dos veces, recibe el nombre de ciclo de Hamilton.

Más detalles

Lógica de Proposiciones y de Predicado

Lógica de Proposiciones y de Predicado Lógica de Proposiciones y de Predicado Franco D. Menendez LABIA FACET - UNT »Grafos: Definiciones y Ejemplos. Representación Matricial. Adyacencia de Nodos y Aristas. SubGrafos, Complementos e Isomorfismos

Más detalles

Universidad Tecnológica Nacional Facultad Regional Buenos Aires. Gestión de Datos. Teoría de Grafos

Universidad Tecnológica Nacional Facultad Regional Buenos Aires. Gestión de Datos. Teoría de Grafos Universidad Tecnológica Nacional Facultad Regional Buenos Aires Gestión de Datos Teoría de Grafos Ing. Enrique Reinosa Julio 2007 Índice Grafos... 3 Conceptos y Definiciones... 3 Caminos, pasos y ciclos...

Más detalles

TEORIA DE GRAFOS. Estructuras Discretas Ing. Jenny Paredes Aguilar

TEORIA DE GRAFOS. Estructuras Discretas Ing. Jenny Paredes Aguilar TEORIA DE GRAFOS Estructuras Discretas Ing. Jenny Paredes Aguilar INTRODUCCION Teoria de grafos se usa en numerosos problemas cuantificables, en las organizaciones, intervienen una serie de elementos entre

Más detalles

Capítulo 7. Grafos. Continuar

Capítulo 7. Grafos. Continuar Capítulo 7. Grafos Continuar Introducción Uno de los primeros resultados de la teoría de grafos fue el que obtuvo Leonhard Euler en el siglo XVIII al resolver el problema de los puentes de Königsberg.

Más detalles

Unidad 1 Introducción a la teoría de gráficas

Unidad 1 Introducción a la teoría de gráficas Unidad 1 Introducción a la teoría de gráficas La Teoría de G ráficas es una técnica con la que se visualiza de forma global, holística o sistémica un problema. Esta técnica ayuda a comprender y análisis

Más detalles

Tema 2.TEORIA Y APLICACIONES DE LA TEORÍA DE GRAFOS.

Tema 2.TEORIA Y APLICACIONES DE LA TEORÍA DE GRAFOS. Tema 2.Fundamentos y aplicaciones de la teoría de grafos. 1 Tema 2.TEORIA Y APLICACIONES DE LA TEORÍA DE GRAFOS. 1. Introducción. Teoría de grafos en una rama de la Topología Surge de los estudios de Euler

Más detalles

Método simplex para redes (representaciones gráficas) Cálculo del flujo de un árbol de expansión

Método simplex para redes (representaciones gráficas) Cálculo del flujo de un árbol de expansión . 7 Árbol con ofertas y demandas. (Suponemos que el flujo de los demás arcos es igual a ) Método simplex para redes (representaciones gráficas) 6 - flujo en el arco (,)? Método simplex para redes (representaciones

Más detalles

Teoría de Grafos y Árboles. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Teoría de Grafos y Árboles. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Teoría de Grafos y Árboles UCR ECCI CI- Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Teoría de Grafos Los grafos son estructuras discretas que aparecen ubicuamente en cada disciplina donde

Más detalles

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten

Tema 2. Fundamentos Teóricos de la. programación dinámica Teorema de Optimalidad de Mitten Tema 2 Fundamentos Teóricos de la Programación Dinámica 2.1. Teorema de Optimalidad de Mitten El objetivo básico en la programación dinámica consiste en descomponer un problema de optimización en k variables

Más detalles

Matemáticas discretas II

Matemáticas discretas II Matemáticas discretas II (Teoría de gráficas) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 15-P Sergio Luis Pérez (UAM CUAJIMALPA) Curso de matemáticas discretas II 1 / 44 Conceptos

Más detalles

Gráficas : teoría, aplicaciones e interacciones : II

Gráficas : teoría, aplicaciones e interacciones : II J. Ramírez Alfonsín Université Montpellier 2, Francia Facultad de Ciencias, UNAM, México 22 de Enero de 2013 1 Ciclos 2 Gráficas hamiltonianas 3 Arboles 4 Gráficas Eulerianas 5 Gráficas dirigidas 6 Problema

Más detalles

Teoría de Grafos. Herramientas de programación para procesamiento de señales

Teoría de Grafos. Herramientas de programación para procesamiento de señales Teoría de Grafos Herramientas de programación para procesamiento de señales Indice Nociones básicas: Definiciones Ejemplos Propiedades Nociones avanzadas: Grafos planares Árboles Representación en computadora

Más detalles

Espectros de grafos. Mariano Suárez-Álvarez. 12 de mayo, 2015

Espectros de grafos. Mariano Suárez-Álvarez. 12 de mayo, 2015 Espectros de grafos Mariano Suárez-Álvarez 12 de mayo, 2015 Grafos Un grafo es un par Γ = (V, E) con V un conjunto finito de vértices E V V un conjunto simétrico e irreflexivo de lados Grafos Un grafo

Más detalles

Sesión 4: Teoría de Grafos

Sesión 4: Teoría de Grafos Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 4: Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y

Más detalles

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g).

Coloreo de vértices Definiciones: Coloreo de Grafos. Cotas para χ Proposición: Si H es un subgrafo de G entonces χ(h) χ(g). Coloreo de vértices Definiciones: Coloreo de Grafos Algoritmos y Estructuras de Datos III Un coloreo (válido) de los vértices de un grafo G = (V, X ) es una asignación f : V C, tal que f (v) f (u) (u,

Más detalles

Algoritmos voraces (greedy)

Algoritmos voraces (greedy) Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 21 de marzo de 2018 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Algoritmos voraces 21 de marzo de 2018 1 / 45 1 Algoritmos voraces (greedy) Aplicaciones de

Más detalles

Teoría de Grafos. 2.1 Introducción: grafos y digrafos

Teoría de Grafos. 2.1 Introducción: grafos y digrafos Capítulo 2 Teoría de Grafos 2.1 Introducción: grafos y digrafos En términos generales, un grafo consiste en un conjunto de puntos, que llamaremos vértices, y líneas que unen los vértices, que denominaremos

Más detalles

TEMA 2 FUNDAMENTOS Y APLICACIONES DE LA TEORIA DE GRAFOS. DIAGRAMAS EN ARBOL.

TEMA 2 FUNDAMENTOS Y APLICACIONES DE LA TEORIA DE GRAFOS. DIAGRAMAS EN ARBOL. 1. Introducción. 2. Definición de grafo. 2.1. Grafo Simple. 2.2. Grafo General. 2.3. Grafo Orientado. 2.4. Grafo Nulo. 2.5. Grafo Completo. 2.6. Grafo Regular. 2.7. Grafo Bipartido. 3. Operaciones entre

Más detalles

Teoría de Grafos. 5.1 Introducción.

Teoría de Grafos. 5.1 Introducción. Capítulo Teoría de Grafos.. Introducción. Los grafos se utilizan para modelar situaciones en las que se relacionan entre sí pares de objetos de una determinada colección. Gráficamente, el modelo consiste

Más detalles

1 Espacios completos de desplazamiento.

1 Espacios completos de desplazamiento. DINÁMICA SIMBÓLICA, CÓDIGOS Y GRAFOS Joaquín Luna Torres Universidad Sergio Arboleda. Yolima Álvarez Polo Universidad Distrital. Resumen. En éste escrito se relaciona una parte de los sistemas dinámicos,

Más detalles

AnAnálisis de redes de transporte Tr. Muchas veces se utiliza en aplicaciones que nada tienen que ver con el transporte

AnAnálisis de redes de transporte Tr. Muchas veces se utiliza en aplicaciones que nada tienen que ver con el transporte AnAnálisis de redes de transporte Tr Muchas veces se utiliza en aplicaciones que nada tienen que ver con el transporte Resumen Antecedentes y definiciones El camino más corto Árbol de expansión mínima

Más detalles

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres

GRAFOS. Prof. Ing. M.Sc. Fulbia Torres ESTRUCTURAS DE DATOS 2006 Prof. DEFINICIÓN Un grafo consta de un conjunto de nodos(o vértices) y un conjunto de arcos (o aristas). Cada arco de un grafo se especifica mediante un par de nodos. Denotemos

Más detalles

Teoría de grafos. Coloración de vértices

Teoría de grafos. Coloración de vértices Teoría de grafos Coloración de vértices Problema: cuántas jaulas son necesarias para transportar a estos cinco animales de forma que lleguen sanos y salvos a un mismo destino? León Hámster Si dos animales

Más detalles

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler]

Matemáticas Discretas L. Enrique Sucar INAOE. Teoría de Grafos. Problema de los puentes de Königsberg [Euler] Matemáticas Discretas L. Enrique Sucar INAOE Teoría de Grafos Problema de los puentes de Königsberg [Euler] Teoría de Grafos Definición y terminología Tipos de grafos Trayectorias y circuitos Isomorfismo

Más detalles