T2. El modelo lineal simple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "T2. El modelo lineal simple"

Transcripción

1 T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso Curso / 40

2 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de los parámetros de regresión 3 Propiedades de los estimadores Teorema de Gauss-Markov Estimación con Gretl 4 Intervalos de confianza 5 Contrastes asociados a un modelo ANOVA Evaluación de la capacidad explicativa 6 Predicción Evaluación de predicciones Curso / 40

3 El modelo lineal simple Competencias El modelo lineal simple ya ha sido estudiado en la asignatura Introducción a la estadística económica, si bien entonces se adoptaba una óptica descriptiva y ahora se completa con el análisis inferencial, incluyendo la construcción de intervalos de confianza y la realización de contrastes asociados a un modelo. Una vez superado este tema los alumnos serán capaces de: Estimar e interpretar los parámetros de un modelo lineal simple. Enunciar y resolver el contraste de significación del modelo. Utilizar las opciones de estimación de Grel e interpretar correctamente el output. Curso / 40

4 Planteamiento e hipótesis básicas Especificación de un modelo Teoría económica Y = f(x) Supuestos teóricos Conductas humanas Componente aleatoria u Errores de medida Factores no medibles Modelo econométrico Y = f(x) + u Teoría Keynesiana: C t = β 1 + β 2 R t Hipótesis: β 1 > 0, 0 < β 2 < 1 Componente errática del consumo: u Modelo econométrico del Consumo: C t = β 1 + β 2 R t + u t Curso / 40

5 Planteamiento e hipótesis básicas Hipótesis básicas Hipótesis Supuesto Hipótesis sobre u sobre Y Esperanza E(u i ) = 0 Esperanza de la E(Y /X i ) = β 1 + β 2 X i i = 1,..., n perturbación nula i = 1,..., n Varianza Var(u i ) = σ 2 Homocedasticidad Var(Y /X i ) = σ 2 i = 1,..., n i = 1,..., n Correlación Cov(u i, u j ) = 0 No Cov(Y /X i, Y /X j ) = 0 i j = 1,..., n autocorrelación i j = 1,..., n Distr.Prob. u i N (0, σ) Normalidad Y /X i N (β 1 + β 2 X i, σ) na J. López y Rigoberto Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

6 Planteamiento e hipótesis básicas Modelo de regresión Línea de regresión poblacional Curso / 40

7 Estimación de los parámetros de regresión Estimación del modelo Información estadística Muestras temporales Muestras de corte transversal Muestras de panel Métodos de estimación Método de mínimos cuadrados Método de máxima verosimilitud Método de los momentos Análisis de los estimadores Curso / 40

8 Estimación de los parámetros de regresión Estimación Objetivos: Estimar un modelo lineal Ŷ i = ˆβ 1 + ˆβ 2 X i que aproxime lo mejor posible los valores observados de Y. Ŷ i = ˆβ 1 + ˆβ 2 X i Y i û i = Y i Ŷ i Valores estimados Valores observados Errores de estimación o residuos Curso / 40

9 Estimación de los parámetros de regresión Estimación mínimo cuadrática Función a minimizar n n ) 2 n ) 2 ûi 2 = (Y i Ŷ i = (Y i ˆβ 1 ˆβ 2 X i Estimadores mínimo cuadráticos (EMC) n ( Xi X ) ( Y i Ȳ ) ˆβ 2 = S XY S 2 X = n ( Xi X ) 2 ˆβ 1 = Ȳ ˆβ 2 X Curso / 40

10 Estimación de los parámetros de regresión Estimadores mínimo cuadráticos Propiedades descriptivas n û i = 0 Ȳ = ˆβ 1 + ˆβ 2 X n X i û i = 0 n Ŷ i û i = 0 Curso / 40

11 Estimación de los parámetros de regresión Estimación máximo verosímil u i N (0, σ) Y /X i N (β 1 + β 2 X i, σ) f (y i ) = f (y i, β 1, β 2, σ 2 ) = 1 e 1 (y i β 1 β 2 x i ) 2 2 σ 2 2πσ L(y 1,, y n, β 1, β 2, σ 2 ) = n f (y i, β 1, β 2, σ 2 ) ( = n 1 2πσ e 1 2 ) (y i β 1 β 2 x i ) 2 σ 2 ( ) n = 1 2πσ e 1 n (y i β 1 β 2 x i ) 2 2 σ 2 Curso / 40

12 Estimación de los parámetros de regresión Estimación máximo verosímil Función a maximizar ln L(y 1,..., y n, β 1, β 2, σ 2 ) = n 2 ln(2π) n 2 ln(σ2 ) 1 2 n (y i β 1 β 2 x i ) 2 σ 2 Estimadores máximo verosímiles (EMV) ˆβ 2 = S XY S 2 X ; ˆβ 1 = Ȳ ˆβ 2 X ˆσ 2 = n ûi 2 n Curso / 40

13 Propiedades de los estimadores Características de los estimadores Estimadores Esperanzas Varianzas ˆβ 1 ( ) ( ) E ˆβ1 = β 1 Var ˆβ1 = σ 2 n X 2 i n n (X i X) 2 ˆβ 2 ( ) ( ) E ˆβ 2 = β 2 Var ˆβ 2 σ = 2 n (X i X) 2 Propiedades de los estimadores: Insesgados, Consistentes, Óptimos na J. López y Rigoberto Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

14 Propiedades de los estimadores Teorema de Gauss-Markov Teorema de Gauss-Markov Dentro de la familia de estimadores lineales e insesgados, los EMC son óptimos en el sentido de que presentan mínima varianza Curso / 40

15 Propiedades de los estimadores Teorema de Gauss-Markov Distribución de los estimadores Distribución de ˆβ 1 y ˆβ 2 Bajo la hipótesis de normalidad de las perturbaciones u N (0, σ) se garantiza la normalidad de los estimadores: ) ˆβ 1 N (β 1, σ ˆβ1 ) ; ˆβ2 N (β 2, σ ˆβ2 Estimador de la varianza La varianza σ 2 es deconocida y por tanto también lo serán: σ 2ˆβ 1 y σ 2ˆβ 2 S 2 = n ûi 2 n 2 E(S 2 ) = σ 2 Curso / 40

16 Propiedades de los estimadores Teorema de Gauss-Markov Estimación de las varianzas σ 2 n X 2 i ( ) Var ˆβ1 = n n ( Xi X ) 2 S 2 n X 2 i S 2ˆβ1 = n n ( Xi X ) 2 S 2ˆβ 2 = S 2 n ( Xi X ) 2 Curso / 40

17 Propiedades de los estimadores Estimación con Gretl Estimación con Gretl Modelo 1: MCO, usando las observaciones (T = 15) Variable dependiente: consumo Coeficiente Desv. típica const -49, ,9325 renta 0, }{{} 0, } {{ } = ˆβ 2 =S ˆβ2 na J. López y Rigoberto Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

18 Propiedades de los estimadores Estimación con Gretl Estimación con Gretl 900 consumo con respecto a renta (con ajuste mínimo-cuadrático) Y = X consumo renta Curso / 40

19 Intervalos de confianza Análisis inferencial Para los parámetros de regresión ( ) ˆβ N β, σ ˆβ ˆβ β σ ˆβ N (0, 1) ˆβ β S ˆβ t n 2 Para la varianza poblacional d S 2 = (n 2)S 2 σ 2 χ 2 n 1 Curso / 40

20 Intervalos de confianza Intervalos de confianza para los parámetros de regresión IC para β con un nivel de confianza 1 α ( ) ( ) d ˆβ β P ˆβ k α = 1 α P k α = 1 α ( ) [ P ˆβ k α S ˆβ β ˆβ + k α S ˆβ = 1 α ˆβ ks ˆβ, ˆβ + ks ˆβ] S ˆβ 0.5 Función de densidad t(n-2=13) Valores probabilidad a dos colas = 0.05 Valor crítico k α= Curso / 40

21 Intervalos de confianza Intervalos de confianza para la varianza poblaconal IC para σ 2 con un nivel de confianza 1 α ( ) ( ) (n 2)S 2 (n 2)S 2 P σ 2 < k 1 = P σ 2 > k 2 = α 2 [ (n 2)S 2 k 2, ] (n 2)S 2 k Función de densidad Chi-cuadrado(n-2=13) probabilidad en la cola derecha = Valores Valor crítico k α= Curso / 40

22 Contrastes asociados a un modelo Contrastes de significación: Y i = β 1 + β 2 X i + u i Contraste básico: explica X los cambios de Y? Valor muestral: H 0 : β 2 = 0 H 1 : β 2 0 Contraste individual t de Student ˆβ 2 β 2 S ˆβ2 t n 2 Nivel crítico: p = P d ˆβ2 = ˆβ 2 S ˆβ 2 ( ) t n 2 > d ˆβ2 Conclusión: Para p bajo se rechaza la hipótesis (por tanto se concluye que X tiene sentido para explicar Y) na J. López y Rigoberto Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

23 Contrastes asociados a un modelo Contraste de significación con Gretl Modelo 1: MCO, usando las observaciones (T = 15) Variable dependiente: consumo Coeficiente Desv. Típica Estadístico t Valor p const *** renta ,3539 }{{} 0,0000 }{{} *** ˆβ 2 0 p=p( t 13 >46,3539) = S ˆβ 0, Conclusión Se rechaza la nulidad del coeficiente de la renta y por tanto ésta es una variable relevante para explicar el consumo Curso / 40

24 Contrastes asociados a un modelo ANOVA Análisis de la varianza Ŷi = ˆβ 1 + ˆβ 2 X i VT = n ( Yi Ȳ ) 2 VE = n ) 2 n (Ŷi Ȳ ; VNE = ûi 2 na J. López y Rigoberto Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

25 Contrastes asociados a un modelo ANOVA Análisis de la varianza (ANOVA) ( Yi Ȳ ) = ) ) (Ŷi Ȳ + (Y i Ŷ i n ( Yi Ȳ ) n ) 2 2 n ) 2 = (Ŷi Ȳ + (Y i Ŷ i ANOVA en Gretl Análisis de Varianza: Suma de cuadrados gl Media de cuadrados Regresión (VE) Residuo (VNE) Total (VT) R 2 = / = F(1, 13) = / = [Valor p 7.98e-16] Curso / 40

26 Contrastes asociados a un modelo ANOVA Análisis de varianza (ANOVA) VT VE VNE Variabilidad g.l. Ratios n ( Yi Ȳ ) 2 n ) 2 (Ŷi Ȳ = ˆβ 2 2 n n ( Xi X ) 2 ( ) 2 n Y i Ŷi = n-1 1 ˆβ 2 2 n (Y i Ȳ ) 2 n 1 n ( Xi X ) 2 û 2 i n-2 S 2 = n ûi 2 n 2 VE 1 VNE n 2 = ˆβ 2 2 n (X i X ) 2 S 2 F 1 n 2 ; R 2 = 1 VNE VT n ûi 2 = 1 n ( Yi Ȳ ) 2 Curso / 40

27 Contrastes asociados a un modelo ANOVA Contraste F Y i = β 1 + β 2 X i + u i Contraste H 0 : β 2 = 0 H 1 : β 2 0 n (X i X ) 2 ˆβ 2 2 S 2 F 1 n 2 Si el modelo propuesto es adecuado la variación explicada será muy superior a la no explicada, con lo que el ratio F adoptará un valor elevado y su nivel crítico será reducido. En el modelo lineal simple este contraste es equivalente al de la t de Student ya que se cumple: F 1 n 2 = (t n 2) 2 Curso / 40

28 Contrastes asociados a un modelo Evaluación de la capacidad explicativa Medidas de bondad de un modelo Coeficiente de determinación Proporción de la variación de Y que viene explicada por X R 2 = 1 Acotación: 0 R 2 1 n ûi 2 n ( Yi Ȳ ) = 2 n ) 2 (Ŷi Ȳ n ( Yi Ȳ ) 2 Error estándar de la regresión n û i 2 S = n 2 Curso / 40

29 Predicción Predicción ex-post y ex-ante Curso / 40

30 Predicción Predicción Predicciones condicionadas Los modelos econométricos estimados permiten obtener predicciones condicionadas a determinados valores de la variable explicativa. Horizonte de predicción Ŷ 0 = ˆβ 1 + ˆβ 2 X 0 En modelos temporales, considerando horizontes de predicción 1, 2, 3...T las predicciones se obtendrán sustituyendo en el modelo estimado los correspondientes valores de la variable X en esos periodos. Curso / 40

31 Predicción Predicciones estáticas y dinámicas Generalmente realizaremos predicciones estáticas, condicionadas a los valores registrados de X y con horizonte de predicción 1. Cuando intervienen como explicativas variables endógenas retardadas es posible realizar predicciones dinámicas, que a medida que aumenta el horizonte de predicción irán condicionadas a las predicciones anteriores. Período muestral Predicción Estática Predicción Dinámica na J. López y Rigoberto Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

32 Predicción Elaboración de predicciones Predicción de Y para un valor X 0 Error de predicción Ŷ 0 = ˆβ 1 + ˆβ 2 X 0 eŷ0 = Y 0 Ŷ 0 = Y 0 E (Y /X 0 ) + E (Y /X }{{} 0 ) Ŷ }{{} 0 Error poblacional Error muestral Varianza del error de predicción ) Var = σ (eŷ ( n + X0 X ) 2 n ( Xi X ) 2 Curso / 40

33 Predicción Elaboración de predicciones Intervalo de confianza al nivel 1 α para la predicción de Y cuando X = X 0 ks Ŷ n + ( X0 X ) 2 n ( Xi X ), Ŷ 0 + ks n + siendo k el valor tal que P ( t n 2 > k) = 1 α ( X0 X ) 2 n ( Xi X ) 2 Curso / 40

34 Predicción Predicción con Gretl Gretl: En la salida del modelo, Análisis Predicciones... Curso / 40

35 Predicción Predicción con Gretl Para intervalos de confianza 95 %, t(22,.0.025) = Obs. consumo predicción Desv. Típica Intervalo de confianza 95 % predicción ex-post, predicción ex-ante Curso / 40

36 Predicción Predicción con Gretl Curso / 40

37 Predicción Evaluación de predicciones Evaluación de predicciones Error medio (EM) Error cuadrático medio (ECM) Raiz del error cuadrático medio (RECM) Error absoluto medio (EAM) Porcentaje de error medio Porcentaje de error absoluto medio 1 T ) (Y t Ŷ t T t=1 1 T ( ) 2 Y t T Ŷt t=1 1 T ) 2 (Y t Ŷ t T t=1 1 T Y t Ŷ t T ( t=1 ) T Y t Ŷt 100 t=1 TY t T Y t Ŷ t 100 TY t t=1 Curso / 40

38 Predicción Evaluación de predicciones Índice de Theil 1 T U de Theil U = 1 T T 1 t=1 T 1 t=1 ( Y t+1 Ŷ t+1 Y t ( Yt+1 Y t Y t ) 2 ) 2 El índice de Theil puede ser interpretado como el ratio entre las raíces del error cuadrático medio asociadas al modelo propuesto y a un modelo naive o ingenuo que asignase como predicción el valor actual (Ŷt+1 = Y t ). Predicciones ingenuas Ŷ t+1 = Y t U=1 Predicciones perfectas Ŷ t+1 = Y t+1 U=0 Curso / 40

39 Predicción Evaluación de predicciones Índice de Theil Además Theil propone una descomposición de los errores cuadráticos de predicción en tres términos, denominados respectivamente de sesgo, de regresión y de perturbación: ( Ŷ Ȳ ) 2 Proporción de sesgo ECM Proporción de regresión Proporción de error ( SŶ r Y Ŷ S Y ) 2 ECM ( ) 1 r 2 S 2 Y Ŷ Y ECM Es deseable que las proporciones de sesgo y de regresión sean lo más Anapequeñas J. López y Rigoberto posibles Pérez (Dpto Economía Aplicada. T2. ElUniversidad modelo lineal de simple Oviedo) Curso / 40

40 Predicción Evaluación de predicciones Evaluación de predicciones con Gretl Gretl: En la salida del modelo, Análisis Predicciones... Estadísticos de evaluación de la predicción Error medio Error cuadrático medio Raíz del Error cuadrático medio Error absoluto medio Porcentaje de error medio Porcentaje de error absoluto medio U de Theil Proporción de sesgo, UM Proporción de regresión, UR Proporción de perturbación, UD e-16 Curso / 40

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

T4. Modelos con variables cualitativas

T4. Modelos con variables cualitativas T4. Modelos con variables cualitativas Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Ana J. López y Rigoberto Pérez (Dpto EconomíaT4. Aplicada. Modelos Universidad

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez.

MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I. Profesor: Noé Becerra Rodríguez. MÓDULO X. LA DINÁMICA DE LA ECONOMÍA MUNDIAL PROGRAMA OPERATIVO MATEMÁTICAS ECONOMETRÍA I Profesor: Noé Becerra Rodríguez Objetivo general: Introducir los aspectos fundamentales del proceso de construcción

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1

MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN Módulo: FORMACIÓN FUNDAMENTAL. Créditos ECTS: 6 Presenciales: 5 No presenciales: 1 MASTER EN CIENCIAS ACTUARIALES Y FINANCIERAS PLAN 2009 Nombre de asignatura: AMPLIACIÓN DE ESTADÍSTICA Código:603358 Materia: MATEMÁTICAS Y ESTADÍSTICA Módulo: FORMACIÓN FUNDAMENTAL Carácter: OBLIGATORIA

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México

Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México SECCIÓN DE ESTUDIOS DE POSGRADO E INVESTIGACIÓN Aplicación del modelo de frontera estocástica de producción para analizar la eficiencia técnica de la industria eléctrica en México Presentan: Dr. Miguel

Más detalles

CUERPO TÉCNICO, OPCION ESTADISTICA

CUERPO TÉCNICO, OPCION ESTADISTICA CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Modelo clásico de regresión lineal normal (MCRLN)

Modelo clásico de regresión lineal normal (MCRLN) Capítulo 4 Modelo clásico de regresión lineal normal (MCRLN) La llamada teoría clásica de la inferencia estadística consta de dos ramas, a saber: estimación y pruebas de hipótesis. Hasta el momento hemos

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA

UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA Facultad de Ingeniería Mecánica y Eléctrica Escuela Académico Profesional de Ingeniería Mecánica y Eléctrica Departamento de Ciencias de Investigación de la

Más detalles

Econometria de Datos en Paneles

Econometria de Datos en Paneles Universidad de San Andres Agosto de 2011 Porque paneles? Ejemplo (Cronwell y Trumbull): Determinantes del crimen y = g(i), y = crimen, I = variables de justicia criminal. Corte transversal: (y i, I i )

Más detalles

CM0244. Suficientable

CM0244. Suficientable IDENTIFICACIÓN NOMBRE ESCUELA ESCUELA DE CIENCIAS NOMBRE DEPARTAMENTO Ciencias Matemáticas ÁREA DE CONOCIMIENTO MATEMATICAS, ESTADISTICA Y AFINES NOMBRE ASIGNATURA EN ESPAÑOL ESTADÍSTICA GENERAL NOMBRE

Más detalles

Econometría II Grado en finanzas y contabilidad

Econometría II Grado en finanzas y contabilidad Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:mdgmarto@est-econ.uc3m.es Este documento es

Más detalles

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA

GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA GUÍA DOCENTE DE LA ASIGNATURA ESTADÍSTICA APLICADA DATOS BÁSICOS DE LA ASIGNATURA Nombre: Titulación: Centro: Tipo: Créditos: Curso: Prerrequisitos: Profesor: Dpto.: Estadística Aplicada. Licenciatura

Más detalles

Facultad de Ciencias Sociales - Universidad de la República

Facultad de Ciencias Sociales - Universidad de la República Facultad de Ciencias Sociales - Universidad de la República Estadística y sus aplicaciones en Ciencias Sociales Edición 2016 Ciclo Avanzado 3er. Semestre (Licenciatura en Ciencia Política/ Licenciatura

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS CURSO: CUARTO

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma

Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Qué significa ser normal? 1er. Simposio Metodología Seis Sigma er. imposio Metodología eis igma Resumen Qué hacemos cuando la distribución no es normal? Qué significa ser normal? Ejemplos de situaciones normales Ejemplos de situaciones no normales Resumen Implicaciones

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS UCS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL ESTADISTICA CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA HT

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA

UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE INGENIERÍA CAMPUS I PROBABILIDAD Y ESTADISTICA NIVEL : LICENCIATURA CRÉDITOS : 7 CLAVE : ICAE13001731 HORAS TEORÍA : 3 SEMESTRE : QUINTO HORAS PRÁCTICA : 1 REQUISITOS

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Programa de la Asignatura: Código: 23 Probabilidad y Estadística Carrera: Ingeniería en Computación Plan: 2013 Carácter: Obligatoria Unidad Académica: Secretaría Académica Curso: Tercer año Primer cuatrimestre

Más detalles

Estimación MC3E, MVIC en Modelos de Ecuaciones Simultáneas

Estimación MC3E, MVIC en Modelos de Ecuaciones Simultáneas Estimación MC3E, MVIC en Modelos de Ecuaciones Simultáneas Economía Aplicada III (UPV/EHU) OCW 2013 Contenidos 1 Información Completa 2 3 Información Completa Un método de información completa considera

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

GRADO EN ECONOMIA SEGUNDO CURSO

GRADO EN ECONOMIA SEGUNDO CURSO GRADO EN ECONOMIA SEGUNDO CURSO Asignatura Estadística II Código 802354 Módulo Métodos cuantitativos Materia Carácter Obligatorio Presenciales 2,7 Créditos 6 No presenciales 3,3 Curso 2 Semestre 3 Estadística

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

UNIVERSIDAD DEL VALLE DE MÉXICO Programa de Estudio

UNIVERSIDAD DEL VALLE DE MÉXICO Programa de Estudio DEPARTAMENTO ACADEMICO LICENCIATURA EJECUTIVA LICENCIATURA EN MERCADOTECNIA ASIGNATURA ESTADÍSTICA INFERENCIAL PARA LA MERCADOTECNIA NOMBRE DEL PROFESOR MARIO M SANCHEZ DE LOS MONTEROS MONTOYA MODALIDAD

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística I Ingeniería Industrial INB - 0403 4 0 8 2.- HISTORIA DEL PROGRAMA

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Anota aquí tus respuestas para esta sección Distribución Z

Anota aquí tus respuestas para esta sección Distribución Z Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten

Más detalles

Conceptos Básicos de Inferencia

Conceptos Básicos de Inferencia Conceptos Básicos de Inferencia Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Inferencia Estadística Cuando obtenemos una muestra, conocemos

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Pruebas de hìpótesis Unidad 8. Pruebas de hipótesis. Formulación general. Distribución de varianza conocida. Prueba para la bondad del ajuste. Validación de modelos 1 Formulación Una Hipótesis es una proposición

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL. ISBN:

Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL.  ISBN: Pilar González Casimiro Susan Orbe Mandaluniz ARGITALPEN ZERBITZUA SERVICIO EDITORIAL www.argitalpenak.ehu.es ISBN: 978-84-9860-605-8 Prácticas para el Aprendizaje de la ECONOMETRÍA Pilar González Casimiro

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos.

Carrera: Clave de la asignatura: INB Participantes Representante de las academias de ingeniería industrial de los Institutos Tecnológicos. 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Estadística I Ingeniería Industrial INB-0403 4-0-8.- HISTORIA DEL PROGRAMA Lugar

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS

INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: ACADEMIAS DE MATEMÁTICAS DEPARTAMENTO: CIENCIAS BÁSICAS PROGRAMA DE ESTUDIO ASIGNATURA: ESTADÍSTICA APLICADA CLAVE: TMPE SEMESTRE:

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Datos Descriptivos. ANEXO II Guía de Aprendizaje Información al estudiante. Sólo castellano Sólo inglés Ambos IDIOMA IMPARTICIÓN

Datos Descriptivos. ANEXO II Guía de Aprendizaje Información al estudiante. Sólo castellano Sólo inglés Ambos IDIOMA IMPARTICIÓN ANEXO II Guía de Aprendizaje Información al estudiante Datos Descriptivos ASIGNATURA: Estadística MATERIA: Probabilidad e Inferencia Estadística CRÉDITOS EUROPEOS: 6 CARÁCTER: Básica TITULACIÓN: GIE, GITM,

Más detalles

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre

ANX-PR/CL/ GUÍA DE APRENDIZAJE. ASIGNATURA Estadistica. CURSO ACADÉMICO - SEMESTRE Primer semestre ANX-PR/CL/001-01 GUÍA DE APRENDIZAJE ASIGNATURA Estadistica CURSO ACADÉMICO - SEMESTRE 2016-17 - Primer semestre GA_05IQ_55001012_1S_2016-17 Datos Descriptivos Nombre de la Asignatura Titulación Centro

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA

UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA UNIVERSIDAD DE VALLADOLID FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES DEPARTAMENTO DE ECONOMÍA APLICADA PROYECTO DOCENTE DE ECONOMETRÍA LICENCIATURA: DERECHO Y ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

ESTADISTICA INFERENCIAL

ESTADISTICA INFERENCIAL ESTADISTICA INFERENCIAL CODIGO 214543 (COMPUTACION) 224543 (SISTEMAS) 254443 (CONTADURIA) 264443 (ADMINISTRACION) 274443( GRH) HORAS TEORICAS HORAS PRACTICAS UNIDADES CREDITO SEMESTRE 02 02 03 IV PRE REQUISITO

Más detalles

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística

SE OFRECE A ESTUDIANTES DE GRADO: SI X. MÓDULO DEL PLAN 2013 EN QUE ACREDITA: Módulo Metodológico DESCRIPTORES: Probabilidad y Estadística Asignatura: Probabilidad y Estadistica para Investigadores en ciencias del comportamiento I Tipo: Optativa Créditos: 15 Fecha tentativa: de 12:30 a 17:00 hrs desde el 23/04/2014 Lugar: Salón 9 Cupos: 20

Más detalles

1.2.2. Técnicas estadísticas más utilizadas en la investigación

1.2.2. Técnicas estadísticas más utilizadas en la investigación Contenido PRÓLOGO... 1. LA ESTADÍSTICA COMO HERRAMIENTA EN LA INVESTIGACIÓN TURÍSTICA 1.1. EL TURISMO Y LA ESTADÍSTICA... 2 1.1.1. El turismo... 2 1.1.2. La estadística... 4 1.2. LA ESTADÍSTICA Y LA INVESTIGACIÓN

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis

Más detalles

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 29 de Abril de 2016 ANEXO ESTADÍSTICO 1 : COEFICIENTES DE VARIACIÓN Y ERROR ASOCIADO AL ESTIMADOR ENCUESTA NACIONAL DE EMPLEO (ENE) INSTITUTO NACIONAL DE ESTADÍSTICAS (INE) 9 de Abril de 016 1 Este anexo estadístico es una

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010)

Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010) Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Enero 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe que los

Más detalles

Tema 3. Modelo de regresión simple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1

Tema 3. Modelo de regresión simple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1 Tema 3. Modelo de regresión simple Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1 Introducción Objetivo del modelo de regresión simple: Explicar el comportamiento de

Más detalles

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14

Prueba de Hipótesis. Bondad de Ajuste. Tuesday, August 5, 14 Prueba de Hipótesis Bondad de Ajuste Conceptos Generales Hipótesis: Enunciado que se quiere demostrar. Prueba de Hipótesis: Procedimiento para determinar si se debe rechazar o no una afirmación acerca

Más detalles

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4

matemáticas como herramientas para solución de problemas en ingeniería. PS Probabilidad y Estadística Clave de la materia: Cuatrimestre: 4 PS0401 - Probabilidad y Estadística DES: Ingeniería Programa(s) Educativo(s): Ingeniería de Software Tipo de materia: Obligatoria Clave de la materia: PS0401 Cuatrimestre: 4 UNIVERSIDAD AUTÓNOMA DE Área

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE PROBABILIDAD Y ESTADÍSTICA 1. Competencias Plantear y solucionar

Más detalles

Tema 3: El modelo de regresión lineal múltiple

Tema 3: El modelo de regresión lineal múltiple Econometría 1 curso 2009-2010 Tema 3: El modelo de regresión lineal múltiple Genaro Sucarrat (Departamento de Economía, UC3M) http://www.eco.uc3m.es/sucarrat/ Recordamos: El modelo de regresión lineal

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL

UNIVERSIDAD NACIONAL EXPERIMENTAL DE GUAYANA VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL VICERRECTORADO ACADÉMICO COORDINACION DE PRE-GRADO PROYECTO DE CARRERA DE INGENIERIA INDUSTRIAL PROGRAMA: ESTADISTICA II CÓDIGO ASIGNATURA: 1215-22 PRE-REQUISITO: 1215-311 SEMESTRE: CUARTO UNIDADES DE

Más detalles

PRINCIPIOS DE ECONOMETRÍA

PRINCIPIOS DE ECONOMETRÍA PRINCIPIOS DE ECONOMETRÍA 2009-2010 I. IDENTIFICACIÓN Asignatura: Duración: Titulación: Ciclo: Departamento: Profesor: Principios de Econometría Semestral (Primer semestre) Licenciatura en Economía Primer

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos.

Carrera: EMM Participantes Representante de las academias de ingeniería Electromecánica de los Institutos Tecnológicos. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos Probabilidad y Estadística Ingeniería Electromecánica EMM - 0528 3 2 8 2.- HISTORIA

Más detalles

UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES

UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES 1. CARRERA: Profesorado en Química 2. ASIGNATURA: Estadística y Probabilidad 3. AÑO LECTIVO: 2016 UNIVERSIDAD NACIONAL DE FORMOSA FACULTAD DE HUMANIDADES 4. CARACTERES DE LA ASIGNATURA: Obligatoria 5.

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

Multiple Linear Regression

Multiple Linear Regression Multiple Linear Regression Aniel Nieves-González Aniel Nieves-González () LSP 1 / 16 Considere el ejemplo en cual queremos modelar las ventas en una cadena de tiendas por departamento. La v.a. dependiente

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un

Más detalles