EJERCICIOS DE INTEGRALES IMPROPIAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE INTEGRALES IMPROPIAS"

Transcripción

1 EJERCICIOS DE INTEGRALES IMPROPIAS. Integrles impropis de primer especie. Clculr Pr n, n con >. F (b) = b n n+ = n + Si n >, entonces F (b) =, con lo que Si n <, entonces l integrl converge y Pr n =, F (b) = F (b) = y, como F (b) =, l integrl diverge.. Clculr e. Resolvemos directmente l integrl: e = b e = ] b = n + (bn+ n+ ). n diverge. n = n+ n +. = ln b ln e ] ( e ) =. 3. Estudir l convergenci de l integrl e. Clculremos directmente l integrl plicndo l definición de integrl impropi.

2 e b de lo que se deduce que l integrl es convergente. 4. Estudir l convergenci de l integrl e / e / ] b ( e b/ + ) =, En primer lugr, si =, e = y l integrl diverge. e, R. Si, descomponemos l integrl en dos sumndos y obtenemos: I = k k e + e ] k ek e = + m ] + m k e ] m k e + m m e e m + ] { / si >, = si <. Result en definitiv que l integrl propuest es convergente cundo > y divergente cundo. 5. Clculr e. Utilizremos l propiedd (4), relciond con l integrción por prtes pr integrles impropis. Pr ello, tomndo f() =, g () = e, tenemos que f () =, g() = e y e b e e ] b + b debido que e ] b b be b e b =. 6. Hllr e + e. e e ] b =, Como mbos ites de integrción son infinitos, descomponemos l integrl en dos sumndos. Si escribimos el integrndo como e + e = e, tenemos: + e b I e + + e b rc tg e ] b + b e b + e rc tg e ] b (rc tg e b π/4) + (π/4 rc tg b eb ) = π π 4 + π 4 = π.

3 7. Estudir l convergenci de l integrl (ln ) 8. Si clculmos directmente l integrl, tenemos: (ln ) 8 de modo que l integrl es convergente. 8. Estudir l convergenci de l integrl b (ln ) (/)(ln ) ( ) 7(ln b) 7 + 7(ln ) 7 = 7(ln ) 7, e e. Resolvemos en primer lugr l integrl indefinid hciendo el cmbio de vrible e = t: e e = e e e = e t dt = e t = e e. Clculmos continución l integrl impropi y tenemos: e e = b e e = de lo que se deduce que l integrl es convergente. 9. Hllr e sen. ] b ( e eb + e e ) = + = ; El ite superior de integrción es infinito con lo que, l integrr por prtes, obtenemos: I b e sen ] b e (sen + cos ) e b (sen b + cos b) +. Cundo b, e b, mientrs que sen b + cos b, luego I = /.. Clculr I n = n e, pr n N. Integrndo por prtes, obtenemos que n e = n e + n n e. 3

4 Recordndo demás que b n e b =, result: I n b n e b n e b + n b n e = n I n. Procediendo por recurrenci, se lleg que I n = n(n )I n = = n! I y como I = obtenemos que I n = n!. Hllr Por definición de integrl impropi, tenemos: b rc tg(/) I + 4 ] b = π 4. e =,. Clculr l integrl Por definición de integrl impropi = B A A B Resolvemos en primer lugr l integrl indefinid pr lo cul plicmos el método de integrción por frcciones simples. Como = ] ln rc tg rc tg, 3 l integrl propuest vldrá I = 8 ln + π π ln + π π ] = 5π. 3. Demostrr que ( + es convergente, pr todo m N. ) m En efecto, si hcemos el cmbio de vrible = tg t, = sec t dt, los ites de integrción son hor t = (correspondiente = ) y t = π/ (cundo = ). L integrl qued hor π/ sec t dt ( + tg t) m = π/ sec m t dt = l cul es evidentemente convergente pr m nturl. π/ cos m t dt, 4

5 4. Determinr el vlor de C pr que se convergente l integrl impropi Hllr el vlor de dich integrl. Si escribimos l función integrndo como cociente de polinomios, + C C + = + C C ( + C)( + ) = ( C) + C (, + C)( + ) ( + C C ) + observmos que el denomindor tiene grdo 3. Pr que l integrl se convergente, el grdo del numerdor debe ser menor que. De quí se deduce que C =, es decir C = /. Pr este vlor, l integrl qued: + / ] ( b b ) + + / + 4 ln( + ) ] b ln( + ) 4 ln(b + ) 4 ln 3 ln(b + ) + ln 4 ln 4(b + ) 3(b + ) = 4 ln 8 3. ]. 5. Hllr los vlores de los prámetros y b pr que ( ) + b + =. ( + ) Al igul que en el problem nterior, escribimos el integrndo como un frcción pr comprr los grdos del numerdor y denomindor. Como + b + ( + ) = (b ) + ( + ), l integrl será convergente cundo b =, es decir = b. En este cso, si integrmos por frcciones simples, obtenemos que I = ( + b + ( + ) ) ln k ln k k k + ln + = ln ln +. Como debe ser = ln ln, result que = b = e. + + ] k 6. Estudir l convergenci de l integrl ln. 5

6 Resolvemos l integrl indefinid por prtes hciendo u = ln y dv = /. Así du = /, v = / y: ln = ln + = ln + ln =. L integrl impropi qued entonces: ln b ln + ln ] b ( + ln b ) + =, b pues ln b/b = (se puede plicr por ejemplo l regl de L Hôpitl). Otr posibilidd, en l que no se clcul directmente l integrl, es utilizr el criterio de comprción. Debido que: e ln / /3/ ln / / (/) / =, / es convergente, se deduce l convergenci de l integrl propuest. 3/ 7. Estudir l convergenci de l integrl En primer lugr observmos que l función integrndo es positiv en el intervlo de integrción. Como l diferenci de grdos entre el denomindor y el numerdor es, comprmos el integrndo con l función /. Debido que / =, y l integrl impropi / es convergente, l integrl propuest tmbién es convergente. 8. Estudir l convergenci de l integrl Análogmente l problem nterior, l función es positiv en el intervlo, ). Además, cundo, es un infinitésimo del mismo orden que /, es decir / = /. Como es divergente, l integrl propuest tmbién lo será. 9. Estudir l convergenci de l integrl

7 L convergenci de l integrl dd equivle l convergenci de l integrl porque, en el intervlo, ], el integrndo es cotdo y l integrl es propi. 4 + Como l función integrndo es positiv en el intervlo de integrción, podemos plicr el criterio de comprción. Así tenemos que / 4 + / 4 + =, pues el grdo del numerdor coincide con el grdo del denomindor. Como l integrl es divergente, tmbién es divergente l integrl propuest.. Investigr l convergenci de l integrl 3 +. Como el integrndo es positivo plicmos el criterio de comprción por pso l ite. Cundo, tenemos Como l integrl 3 + = 3 ( + / 3 ) = 3/ + / 3 3/.. Estudir l convergenci de l integrl es convergente, l integrl propuest tmbién lo será. 3/ ( + ) 3/. Comprmos el integrndo con l función y = /. Tenemos sí: ( + ) 3/ / 3 3 ( / =. + ) 3/ Como es divergente, tmbién lo es l integrl propuest.. Estudir l convergenci de l integrl Comprndo los grdos del numerdor y denomindor, obtenemos que g() = / es un infinitésimo equivlente l función integrndo cundo. Como demás es convergen- 3 te, por el criterio de comprción deducimos que l integrl propuest es tmbién convergente. 7

8 3. Estudir l convergenci de l integrl e. En primer lugr descomponemos l integrl en tres sumndos. Además, debido l simetrí de l función integrndo, podemos escribir: I = e + e + e = e + e. Pr estudir l convergenci de est últim integrl impropi, como l función integrndo es positiv, plicmos el criterio de comprción. Tenemos por un ldo que se verific l cotción e e,, y por otro ldo que e b Esto indic que l integrl propuest es convergente. 4. Investigr l convergenci de l integrl e e ] ( b e b + e ) = e. 3. Debido que es un infinito de orden superior 3, es decir =, plicremos el criterio de comprción por pso l ite con l función g() = /. Ahor bien, como e 3 / / 3 =, converge, el criterio no puede plicrse con est función. Si tommos un función un poco myor que g, como h() = (/3), tenemos: y demás 3 / (/3) 3 (4/3) =, (/3) (/3) ln /3 ] b 3 = ln /3. El citdo criterio de comprción indic pues que l integrl propuest es convergente. 5. Determinr si l integrl converge o no. 3 El integrndo es no negtivo y decreciente en, ). Recordmos que, de cuerdo con el criterio de l integrl pr series infinits, si f es un función no creciente y no negtiv en, ), entonces f y n f(n) convergen mbs o divergen mbs. 8

9 En este cso l convergenci de l serie n se puede determinr por el criterio de l ríz. 3n n Tenemos sí: n n + /3 n+ n/3 n 3 n n + n 3 n+ n = 3 <, de modo que l serie converge, con lo que tmbién l integrl dd converge. 6. Estudir l convergenci de l integrl e. Aunque l función no está definid en =, como + e =, l función está cotd pr > y l integrl no es impropi en =. El crácter de est integrl es el mismo que el de l serie socid n n e n. Aplicndo el criterio de Pringsheim, como n n e n = y es convergente, tmbién lo es l serie nterior. n 7. Estudir l convergenci de l integrl e Debido que l función integrndo es positiv en el intervlo de integrción y tiende cero cundo, reducimos el estudio de l convergenci de l integrl l de l serie socid 4n 3 + n + e n. Por el criterio de l ríz, n n Entonces l integrl es convergente. 8. Estudir el crácter de l integrl I =. n 4n 3 + n + e n /e <. n ln( + ) e Como l función integrndo es no negtiv en el intervlo de integrción, estudiremos el crácter de l serie socid ln( + n) e n. Aplicndo el criterio del cociente tenemos:. ln(n+) e n+ ln(n + ) ln(n+) e ln(n + ) = e <, e n lo que indic que l serie es convergente y, en consecuenci, tmbién es convergente l integrl propuest. 9

10 9. Estudir el crácter de l integrl + sen. Como l serie socid l integrl impropi es serie n y est es divergente, tmbién será divergente l integrl dd. 3. Estudir l convergenci de l integrl sen k e n + n sen, l cul es equivlente l n Como l función integrndo cmbi de signo, estudimos l convergenci bsolut. L serie socid l integrl es sen kn sen kn que es convergente pues y, por el criterio e n e n e n n de l ríz, n n e n. n e n = <. Lo nterior indic que l integrl dd es bsolutmente convergente. 3. Estudir l convergenci de l integrl α >. sen, pr α Como l función f() = sen tiene primitiv F () = cos cotd y l función g() = / α es derivble y decreciente, con g() =, por el criterio de Dirichlet (4) se deduce que l integrl es convergente. 3. Estudir el crácter de l integrl cos Como el integrndo no es un función positiv en el intervlo de integrción, debemos estudir l convergenci bsolut. Como cos,, tenemos que cos de donde cos, l cul es convergente. Se deduce por el criterio de comprción que l integrl propuest es bsolutmente convergente.. Como regl generl podemos firmr que, si en l epresión el numerdor está cotdo, l integrl impropi converge bsolutmente si lo hce f() n n. 33. Probr que sen converge condicionlmente.

11 sen Aunque l función no esté definid en =, está cotd pues =. Por tnto l sen convergenci de l integrl dd equivle l convergenci de l integrl. Como vimos en el problem.3, est integrl es convergente. Sin embrgo, sen diverge pues, como sen sen cos =, tenemos que De ls dos últims integrles, prtes, sen diverge y cos cos. converge, pues, integrndo por ] cos sen b sen + = sen sen +, y est últim integrl converge bsolutmente como se deduce por l cotción sen. De lo nterior se deduce que sen converge condicionlmente. 34. Estudir l convergenci de l integrl sen 3 L integrl es impropi por tener un ite de integrción infinito. Aunque demás l función no sen 3 3 está definid en =, como =, l integrl no es impropi en =. + + Pr estudir l convergenci utilizmos l fórmul sen 3 = 3 sen 4 sen 3 = 3 4 sen. 3 4 sen 3 3 sen 3. Entonces 4 y cd uno de los sumndos es convergente como vimos en el problem nterior. Entonces su sum será tmbién convergente.,. Integrles impropis de segund especie. Resolver b, con α R, donde < b. (b ) α

12 Distinguiremos los siguientes csos: - Si α =, por definición de integrl impropi, b b r b r b r b ln(b ) ] r ln(b r) + ln(b )] =. r b - Si α, b r ] r (b ) α r b (b ) α (b ) α+ r b α + (b ) α+ (b r) α+ ] { si α + < = r b α + (b ) α+ α+ si α + >. En definitiv, l integrl propuest es convergente cundo α < y divergente cundo α.. Clculr b donde < b. ( ) 3/ Como l función no está cotd en =, hcemos lo siguiente: b ( ) 3/ c + c + b c ( ) 3/ b + c + c ] =. ] b c 3. Clculr 3 9. El integrndo present un discontinuidd esencil en = 3. Result entonces: ε ε + 9 ] 3 ε 3 ε rc sen /3 rc sen ε + ε + 3 = rc sen = π. 4. Estudir l convergenci de l integrl El integrndo f() = tenemos: ( )( + ). es no negtivo y f() =. Tomndo g() =, ( )( + ) f() g() = >. + 3

13 Por tnto, l integrl dd converge si y sólo si converge l integrl de g. Ahor bien, luego l integrl dd es convergente. b ] b b b =, 5. Investigr si es convergente l integrl 4. L función integrndo tiene un discontinuidd en =. Comprmos l integrl propuest con l de /( ) α con α propido. Debido que / 4 /( ) α ( ) α 4 ( ) α ( ) / ( + )( + ) = /, cundo α = / y demás es convergente, del criterio de comprción se deduce ( ) / l convergenci de l integrl propuest. 6. Estudir l convergenci de l integrl ( + ) 4. Aplicmos el criterio de comprción con l integrl convergente l integrl es convergente. (+ ) 4 ( ) / ( + )( + ) / =,. Como ( ) / 7. Estudir l convergenci de l integrl ( 3 ) n. L integrl es impropi porque el integrndo tiende infinito cundo. Hcemos el cmbio de vrible 3 = t, = dt dt. L integrl se escribe hor como I = 3t/3 3t /3 ( t). A n primer vist prece que se h complicdo l integrl pues hor es impropi pr los dos etremos del intervlo. Dividimos éste en dos sumndos: I = / dt 3t /3 ( t) n + / dt 3t /3 ( t) n. El primer sumndo es convergente pues l integrl es equivlente / dt t /3 que sbemos es convergente. El segundo sumndo, l estr cotdo /t /3 en todo el intervlo, será convergente cundo n/ <, es decir n <. 3

14 Otro método más sencillo serí descomponer 3 de l siguiente form 3 = ( ++)( ). L integrl qued entonces ( I = ++) n ( ) n/. Como el numerdor está cotdo en todo el intervlo y el grdo del denomindor es n/, l integrl será convergente cundo n/ <. 8. Demostrr que 4 no eiste. ( ) El integrndo present un discontinuidd esencil en =, vlor comprendido entre los ites de integrción. Descomponemos l integrl en dos sumndos y result: ε 4 I ε + ( ) + ε + +ε ( ) ] ε ] 4 + ε + ε + +ε ( ) ε + ε + ( 3 + ε ) ε + =. Si no se hubier tenido en cuent el punto de discontinuidd, obtendrímos equivocdmente el resultdo: 4 ( ) = ] 4 = 4 3 pues demás no es posible que l integrl de un función positiv se negtiv. 9. Estudir l convergenci de l integrl I = 3. Como l función no está cotd en =, descomponemos l integrl en sum: 3 = Cd uno de los sumndos es convergente pues tiene l form deduce que l integrl es convergente. α con α <. De ello se El vlor de l integrl serí el mismo si no se tuvier en cuent l discontinuidd esencil en =, pero no serí correcto el proceso seguido.. Hllr

15 Como el integrndo present un discontinuidd en =, tenemos que ε I ε ε + +ε ( ) /3 ] ε 3 + ( ) /3 ] 4 ε + +ε 3 3 ε + ( ε)/3 ] + ε (ε ) /3 ] = 3 3 ε + ( 3 9 ).. Determinr el crácter de l integrl 3 (3 )( ). L integrl es impropi porque el integrndo tiende infinito en los dos etremos del intervlo. Seprmos l integrl en dos sumndos y tenemos: I =, (3 )( ),5 (3 )( ) Aplicremos el criterio de comprción pr estudir l convergenci de cd integrl. En el cso de que,5, deducimos que (3 )( ) ( )/ = (3 )( ) ( )/ = (3 )( ) ( ) /.,5 Como demás es convergente, tmbién lo será el primer sumndo de l integrl ( ) / dd. Procediendo nálogmente con el segundo sumndo obtenemos que, si,5 < < 3, (3 )( ) (3 ) / y sbemos tmbién que 3,5 es convergente. (3 ) / En definitiv obtenemos que l integrl propuest es convergente.. Determinr l nturlez de l integrl I = ( ). Como l integrl es impropi en los dos etremos de integrción, l dividimos en dos sumndos. Así escribimos I = / ( ) + / / ( ) = 5 ( ) / / + / /.

16 Los numerdores están cotdos en los intervlos correspondientes. Por tnto l primer integrl / tiene el mismo crácter que que sbemos es convergente. Con respecto l segund / integrl podemos fctorizr el denomindor y escribir Est integrl es equivlente en cunto su crácter l integrl convergente. En definitiv, l integrl dd es convergente. 3. Hllr π/ cos sen. / / = El integrndo present un discontinuidd en = π/, de modo que I = π/ ε cos ( sen ) / ] π/ ε ε + sen ε + = ε +{ sen(π/ ε)]/ } =. / / / ( ) / ( + ) /. que es tmbién ( ) / 4. Clculr l integrl ln. Est integrl es impropi porque el integrndo no está cotdo en =. Si relizmos l integrl indefinid por prtes, tenemos: ( ln ] ) ln I + + ] ln 4 = 4 + +( ln 4 ) ln / = 4 = 4 = 4. + / + ( /) 3/ 5. Clculr rc sen. Por definición de integrl impropi, tenemos: rc sen B B B rc sen (rc sen ) ] B = (π/) = π 8. 6

17 π/ cos 6. Determinr los vlores de m pr que m se convergente. Debido l equivlenci cos cos si, entonces m y ls dos integrles m π/ cos π/ m, tienen el mismo crácter (convergen o divergen l vez). De m quí se deduce que l integrl es convergente cundo m <, o bien m < 3, y divergente cundo m Estudir l convergenci de l integrl ln. Como l función no está cotd en = ni en =, descomponemos l integrl en dos sumndos sí: ln α = ln + ln, con < α <. α Aplicmos el criterio de comprción pr estudir l convergenci de cd un de ls integrles. Debido que ln / / = y que α es convergente, el primer sumndo es convergente. / Análogmente, como y α ln / = es convergente, el segundo sumndo es tmbién convergente. De lo nterior se deduce que l integrl propuest es convergente. 8. Determinr l nturlez de l integrl ln según los vlores de >. Como l función integrndo no está definid en = ni en =, descomponemos l integrl en dos sumndos / I = + ln / = I + I. ln En l segund integrl hcemos el cmbio de vrible z =, con lo que I = / z dz ( z) ln( z). Debido l equivlenci de infinitésimos ln( z) z cundo z, podemos comprr l / z dz / dz integrl con = y est últim es convergente. z z 7

18 Estudimos hor el primer sumndo, que es un integrl impropi en = porque ln ln =. / / Comprremos l integrl con b que es convergente si b < y divergente si b. Clculndo el ite del cociente, obtenemos: + / ln b / b + ln = { si b si b <. De este modo, si <, elegimos b =, en cuyo cso el ite del cociente es cero y l integrl I es convergente. Por otr prte, si >, elegimos b = lo que hce que el ite del cociente se infinito y l integrl se divergente. Estudiremos por último el cso =. Como / / ln ln pues está cotd en (, /), y demás / l integrl es tmbién divergente. ] / ln ln =, ln + tiene el mismo crácter que En definitiv, obtenemos que l integrl propuest es convergente cundo < y divergente cundo. 9. Estudir el crácter de l integrl I = 3 e /. e t Si hcemos el cmbio de vrible = /t, result l integrl I = dt. Ahor bien, como l t5 sucesión de término generl n = en n 5 es divergente, ( n = ), l serie n es divergente. Por el criterio de l serie socid, l integrl impropi I es tmbién divergente.. Estudir l convergenci de l integrl π cos. El denomindor se nul cundo = ; por tnto el integrndo no está cotdo en =. Debido l equivlenci cos, result que l integrl propuest tiene el mismo crácter que π. Como ést es divergente, tmbién lo es l integrl propuest.. Estudir l convergenci de l integrl

19 Descomponemos l integrl en dos sumndos como I = Así tenemos dos integrles impropis: l primer es de segund especie pues l función no está cotd en = y l segund de primer especie, pues el intervlo de integrción es infinito. Aplicmos el criterio de comprción en mbos csos. Por un prte, e es convergente. Por otr prte, / + 4 / = + 3 / + 4 / = + 4 e es convergente. Como mbs integrles son convergentes, tmbién lo será l sum de mbs.. Estudir l convergenci de l integrl e. e Como + directmente l integrl, obtenemos: e = e e = =, l integrl es impropi en mbos etremos de integrción. Clculndo ] e B + e A =. A + B e ] B A + A B 3. Determinr los vlores de pr los cules es convergente l integrl I = +. Por un prte el intervlo de integrción es infinito y por otr, en el cso de que <, el integrndo no está cotdo en =. Debemos pues descomponer l integrl en dos sumndos I = + + L primer integrl tiene el mismo crácter que es decir >. +., l cul es convergente cundo <, Con respecto l segundo sumndo, debido l equivlenci +, cundo, l integrl es equivlente = =, l cul es convergente si >, o bien <. 9

20 En definitiv, ls dos condiciones indicn que l integrl propuest es convergente cundo < < y divergente en cso contrrio. 4. Estudir l convergenci de l integrl e α según los distintos vlores de α. Debido que l función integrndo no está cotd en = cundo α >, descomponemos l integrl en dos sumndos e e e α = α + α, y estudimos l convergenci de cd uno de ellos. En el primer sumndo, como e si, entonces e α, de modo que l integrl es convergente si α < y α divergente si α. Pr el segundo sumndo, como e α, l convergenci equivle l de l α integrl. Por tnto, converge si α > y diverge si α. α Como l integrl propuest es convergente cundo lo sen mbos sumndos, tenemos que es convergente cundo α (, ) y divergente en el resto. 5. Probr que l integrl impropi Descomponemos l integrl en dos sumndos como t α e t dt = t α e t dt converge si α > y diverge si α. t α e t dt + y estudimos l convergenci de cd uno de ellos. t α e t dt, El primer sumndo corresponde un integrl impropi de segund especie. Debido l equivlenci e t t cundo t, result que tα e t. Esto indic que l integrl converge t α cundo α <, es decir α >, y diverge cundo α. El segundo sumndo es siempre convergente como se deduce l comprrlo con l integrl convergente. En efecto: dt t t t t α e t t t α+ e t =. L integrl propuest es por tnto convergente cundo α >. 6. Se define l función Γ() como: Γ() = t e t dt.

21 ) Probr que converge pr > y diverge pr. b) Probr que Γ( + ) = Γ() pr >. c) De lo nterior, deducir que Γ(n) = (n )! pr culquier n nturl. ) Vmos seprr el estudio en tres csos: - : L integrl es impropide primer especie pues l función está cotd. Aplicmos dt el criterio de comprción con, que es convergente: t t t t e t t + t e t =, como se deduce l plicr l regl de L Hôpitl sucesivs veces (el denomindor es un infinito de orden superior l del numerdor). Esto indic que l integrl impropi es convergente. - < < : En este cso l integrl tmbién es impropi de segund especie pues en = l función no está cotd. Descomponemos l integrl como t e t dt = t e t dt + t e t dt. El segundo sumndo es convergente (se procede como en el cso nterior); pr estudir l dt convergenci del primer sumndo plicmos de nuevo el criterio de comprción con t α donde elegimos culquier α que cumpl > α >. Debido que y que t tα t e t + t tα+ =, + dt es convergente, tmbién l integrl propuest es convergente. tα - : De nuevo tenemos un integrl impropi de segund especie. Aplicmos el criterio dt de comprción con, hciendo α =. Result: tα y, como t tα t e t + t e t = + dt es divergente, tmbién lo es l integrl propuest. tα b) Aplicndo el método de integrción por prtes, Γ( + ) b b t e t dt t e t] b + + Γ() = Γ(). eb c) Aplicndo el prtdo b) sucesivs veces, tenemos: Como demás Γ() = b Γ(n) = (n )Γ(n ) = = (n )(n )... Γ(). e t dt =, deducimos que Γ(n) = (n )! t e t dt

22 3. Aplicciones l cálculo de áres y volúmenes. Resolver (rc tg t) dt. + L integrl del numerdor es divergente porque (rc tg t) = π /4. Como el ite del t denomindor tmbién es infinito, tenemos un indeterminción /. Aplicndo l regl de L Hôpitl, L (rc tg t) dt + (rc tg ) / + = π /4 = π /4. ( et dt. Resolver et dt Como ls integrles ). e t dt y e t dt son divergentes (los integrndos son funciones que no están cotds en (, )), tenemos un indeterminción del tipo /. Aplicndo por dos veces l regl de L Hôpitl, result: L ( et dt ) et dt et dt e e et dt e e e / =. 3. Se F l función definid en todo R por F () = ) Estudir l continuidd y derivbilidd de F. b) Probr que F () F () =. + e t t dt. ) Como l función integrndo f() = e / es continu en R \ {}, será integrble en culquier intervlo que no conteng l cero. Esto implic que F es continu en R pues, l ser + >, culquier punto del intervlo, + ] es positivo. Además es tmbién derivble en todo R, siendo dt, debemos estudir l convergenci de est inte- b) Como F () F () = e t t grl impropi. f () = e+, R. +

23 Debido que =, l función integrndo no está cotd, de modo que l integrl t es divergente. Tenemos en definitiv que t e t F () F () = Demostrr l cotción e ( + ) e t dt e. Integrmos en primer lugr por prtes, hciendo u = t y dv = te t dt. Así: e t dt = = t te t dt ( + t ] b t e t ) e t dt = e. Como t, + t +. Por tnto, e ( = + ) t e t dt = e t dt e ( + ) y tmbién t e t dt ( + ) e t dt e t dt e. Observción. Est cotción permite estimr el error que se comete l desprecir el áre situd bjo l curv y = e pr vlores grndes de. 5. Hllr el áre comprendid entre l estrofoide y ( + ) = ( ) y su síntot. En form eplícit, l ecución es y = ± + y su síntot es l rect =. De cuerdo con l figur y teniendo en cuent l simetrí, el áre es: A = + = r + + = (4 + π). 3 r

24 6. Hllr el áre situd l derech de = 3 y limitd por l curv y = X. y el eje De cuerdo con l gráfic, el áre viene dd por l fórmul A = 3 que es un integrl impropi. Resolviendo l integrl indefinid por el método de frcciones simples, obtenemos: = ln ] b + b A 3 3 = ln b b + ln = /b ln + /b + ln = ln. 7. Clculr el áre limitd por ls curvs y =, y = en el intervlo, ). + De cuerdo con l gráfic y por definición de integrl impropi, tenemos: ( A = ) b ( + ) + ln ] b ( ln( + ) ln b ln ) = ln. + b 4

25 8. Hllr el áre limitd por l curv y + y = y sus síntots y el volumen engendrdo por dich áre l girr lrededor del eje X. ) Si despejmos l vrible y, l curv se epres como y = ± síntots son = y =. lo que indic que ls Teniendo en cuent que l curv es simétric respecto los dos ejes de coordends (lo que se deduce l sustituir por e y por y), el áre vendrá dd por l fórmul A = 4. Como el integrndo present un discontinuidd en =, debemos clculr A = 4 ε + ε = 4 ε + ] ε = 4 ε +( ε ε ) = 4. b) Aprovechndo de nuevo ls simetrís y plicndo el método de los discos, tenemos: V = π y = π = π ε + ε y = π = π ε + + ln ( ) ] + / ε =. 9. Hllr el áre de l región comprendid entre l curv de Agnesi y = 3 y el eje de + bsciss y el volumen engendrdo por l mism región l girr lrededor del eje X. 3 El eje de bsciss es l síntot de l curv, pues + =. 5

26 ) Teniendo en cuent l simetrí de l figur, el áre viene dd por 3 A = + = b / (/) + (/) + rc tg(/) ] b rc tg(b/) = π. b) Aplicndo el método de los discos, el volumen se obtiene por l fórmul V = π y 6 () = π ( + ). Pr relizr l integrción plicmos el cmbio de vrible = tg t, con lo que = = t = y = = t = π/ y obtenemos: V = π = π π/ 6 ( + ) π/ = π sec 4 t sec t dt 3 cos t dt = π 3 π/4 = π 3 /.. Se consider l curv y = /4 definid en (, ]. ) Hllr el áre bjo l curv. b) Hllr el volumen del sólido obtenido l girr l curv lrededor del eje X. ) Como l función no está cotd en =, el áre viene dd por un integrl impropi: A = /4 + b) Análogmente l prtdo nterior, V = π = π + /4 + /4 = π + ] ( ) 3/4 4 3/ /4 = / ] / = π / +( / ) = π.. Se consider l región R limitd por ls curvs y( + ) + rc tg = y y 3 = en el intervlo, ]. 6

27 i) Clculr el áre de l región R. ii) Eiste el volumen del sólido obtenido l girr R lrededor del eje X? i) De cuerdo con l figur, el áre viene dd por: A = + ( /3 + ) rc tg + (3 + (π/4) 3 /3 + /3 /3 (rc tg ) (rc tg ) + ) = 3 + π 3. ] ii) El volumen pedido es el mismo que el de l región comprendid entre l curv y = /3 y el eje X en el intervlo, ] (bst observr que l girr est región y qued incluid l prte comprendid en el curto cudrnte). Aplicndo el método de los discos, V = π y = π 4/3 + π = 3π +( /3 /3 ) =. /3 /3 ]. Determinr el volumen del sólido obtenido l girr l región limitd por l curv e y = y los ejes de coordends lrededor del eje OX. 7

28 De cuerdo con l figur, si plicmos el método de los tubos, l fórmul del volumen d: V = π ( )ydy = π ye y dy. Como es un integrl impropi debemos estudir su convergenci. Integrmos en primer lugr por prtes y obtenemos: ye y dy = (y + )e y, con lo que V B π (y + )e y] B B π(b + )e B + π = π. 8

29 4. Ejercicios propuestos. Hllr Resp.: I = /.. Clculr Resp.: I = π/. 3. Clculr Resp.: I = π/4. e Pr qué vlores de es convergente Resp.: Diverge pr todo. +? 5. Clculr 4e + 9e. Resp.: I = π 6 rc tg Estudir l convergenci de l integrl Resp.: Divergente (comprr con /). 7. Estudir l convergenci de l integrl Resp.: Convergente (comprr con 8. Estudir l convergenci de l integrl Resp.: Convergente (comprr con 9. Estudir l convergenci de l integrl Resp.: Convergente (comprr con ln ( + ). / α con < α < 4). / 3 ). / ). ( + )

30 3e 3/ e + e /. Estudir l convergenci de l integrl e e 3/ + 3e 4e / +. Resp.: Convergente (comprr con e / ).. Estudir l convergenci y clculr l integrl Resp.: I = π/4. ( + ).. Estudir l convergenci de l integrl f() = { si < si Resp.: Convergente pues 3. Estudir l convergenci de l integrl f() siendo / es convergente y + 3 cundo. sen. Resp.: Divergente (l función y = sen no está cotd en (, )). 4. Probr que cos + = sen y que un de ells converge bsolutmente. ( + ) Sugerenci: L iguldd se obtiene integrndo por prtes. Ver problem.3 pr estudir l convergenci. 5. Se consider l función f() = ce. ) Determinr el vlor de c pr que b) Clculr Resp.: ) c = ; b) I = /. 6. Probr que Sugerenci: Resolver l integrl. f() =. f() con el vlor de c obtenido en ). e p es convergente si p > y divergente si p. 7. Estudir l convergenci de l integrl Resp.: Divergente (comprr con / ). + cos. 3

31 8. Demostrr que π/ sec no eiste. Resp.: L integrl es divergente. 9. Clculr. Resp.: L integrl es divergente.. Clculr 3 ( ) 3/5. Resp.: 5( 5 )/4.. Estudir l convergenci de l integrl impropi Resp.: Divergente (comprr con /). e cos.. Estudir l convergenci de Resp.: Convergente (comprr con Estudir l convergenci de l integrl Resp.: Convergente (comprr con c /( ) / ) / y con 3 c / 3 ). 4. Estudir l convergenci de l integrl Resp.: Divergente (integrción direct). sen. 5. Estudir l convergenci de l integrl Resp.: Convergente (integrción direct). ln. 6. Estudir l convergenci de l integrl Resp.: Convergente (comprr con / )

32 7. Demostrr que e e t dt =. Sugerenci: Aplicr l regl de L Hôpitl. 8. Clculr el áre de l región limitd superiormente por l curv y =, inferiormente por l curv y( + ) = y l izquierd de =. Resp.: A =. 9. Clculr el áre de l región limitd por ls curvs y =, =, = 3 por encim del eje OX. Resp.: A = 8 ln(3 + 8). 3. Clculr el áre de l región limitd por l curv y = entre los puntos de bscis 3 = y =. Resp.: A = π/3. 3. Clculr el áre comprendid entre y = e y el eje X en (, ). Cuánto vle Resp.: A = ; I = por ser un función impr y l integrl convergente. e? 3. Se f() = e pr todo. Llmmos R l región limitd por l curv y el eje X en el intervlo, t], con t >. Clculr el áre A(t) de R y el volumen V (t) obtenido l girr R lrededor del eje X. Interpretr los vlores de A(t) y V (t). t t Resp.: A(t) = e t + ; V (t) = π 4 e 4t + π 4. 3

CAPÍTULO XII. INTEGRALES IMPROPIAS

CAPÍTULO XII. INTEGRALES IMPROPIAS CAPÍTULO XII. INTEGRALES IMPROPIAS SECCIONES A. Integrles impropis de primer especie. B. Integrles impropis de segund especie. C. Aplicciones l cálculo de áres y volúmenes. D. Ejercicios propuestos. 9

Más detalles

7.1. Definición de integral impropia y primeras propiedades

7.1. Definición de integral impropia y primeras propiedades Cpítulo 7 Integrles impropis 7.. Definición de integrl impropi y primers propieddes El concepto de integrl se etiende de mner csi espontáne situciones más generles que ls que hemos emindo hst hor. Consideremos,

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES

SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES Junio 009 SELECTIVIDAD CASTILLA Y LEÓN/ MATEMÁTICAS / ANÁLISIS DE FUNCIONES PR-.- Un cmpo de tletismo de 00 metros de perímetro consiste en un rectángulo y dos semicírculos en dos ldos opuestos, según

Más detalles

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida

Integral Definida. Tema 6. 6.1 Introducción. 6.2 Definición de Integral Definida Tem 6 Integrl Definid 6.1 Introducción En este tem estudiremos l Integrl Definid o Integrl de Riemnn, un concepto mtemático que esencilmente puede describirse como el límite de un sum cundo el número de

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 6 Curso preprtorio de l prueb de cceso l universidd pr myores de 5 ños curso 1/11 Nuri Torrdo Robles Deprtmento de Estdístic Universidd Crlos III de Mdrid

Más detalles

TEMA 5: INTEGRACIÓN. f(x) dx.

TEMA 5: INTEGRACIÓN. f(x) dx. TEMA 5: INTEGRACIÓN. L integrl indefinid En muchos spectos, l operción llmd integrción que vmos estudir quí es l operción invers l derivción. Definición.. L función F es un ntiderivd (o primitiv) de l

Más detalles

Funciones de variable compleja

Funciones de variable compleja Funciones de vrible complej Integrles impropis. Mrí Eugeni Torres Universidd Ncionl de Entre Ríos Fcultd de Ingenierí Funciones de Vrible Complej (Bioingenierí, Pln 28) Myo 29 Integrles impropis Alcnce

Más detalles

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0.

CÁLCULO ELEMENTAL APUNTES. Valor absoluto. Definición 1. El valor absoluto del número real a, que se designa por a, se define por. a si a < 0. CÁLCULO ELEMENTAL APUNTES Vlor bsoluto Definición 1. El vlor bsoluto del número rel, que se design por, se define por { si 0, = si < 0. Definición 2. L distnci entre los números x 1 y x 2 de l rect rel

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO

UNIVERSIDAD CARLOS III DE MADRID. Departamento de Matemáticas CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO UNIVERSIDAD CARLOS III DE MADRID Deprtmento de Mtemátics MATEMÁTICAS CAPÍTULO 4 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 2010 2011 Elbordo por Elen Romer Índice generl 4. Cálculo

Más detalles

Integrales impropias

Integrales impropias Integrles impropis En todo el estudio hecho hst hor se hn utilizdo dos propieddes fundmentles: l función tení que ser cotd y el intervlo de integrción tení que ser cerrdo y cotdo. En est últim sección

Más detalles

D I F E R E N C I A L

D I F E R E N C I A L D I F E R E N C I A L µ dy y = d Si un función y = f() dmite derivd finit en un punto su incremento puede epresrse como y = f () + ε, siendo ε un infinitésimo pr 0. Al primer término se lo llm diferencil

Más detalles

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006

Resolución del examen de Matemáticas II de Selectividad Andalucía Junio de 2006 Resolución del emen de Mtemátics II de Selectividd Andlucí Junio de 6 Antonio Frncisco Roldán López de Hierro * de junio de 6 Opción A Ejercicio [ 5 puntos] Determin un punto de l curv de ecución y e pendiente

Más detalles

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 71 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 4 n 4 n es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de un sucesión

Más detalles

2.3.1 Cálculo de primitivas

2.3.1 Cálculo de primitivas Mtemátics I.3 Lists de ejercicios de Cálculo Integrl.3 Lists de ejercicios de Cálculo Integrl.3. Cálculo de primitivs 75. Encontrr l epresión de ls siguientes integrles indefinids: ) p) tg b) e sen cos

Más detalles

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b.

LA INTEGRAL DEFINIDA Si f(x) es una función continua y no negativa definida en el intervalo x [a, b], entonces la integral definida b. Tem 4 Integrción 4.. Primitivs LA INTEGRAL DEFINIDA Si f(x) es un función continu y no negtiv definid en el intervlo x [, b], entonces l integrl definid f(x) represent el áre bjo l gráfic de l función

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es un primitiv de f() si F () = f() Ejemplos: función: f() Primitiv: F() sen - cos Not: Un función tiene

Más detalles

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas)

1. Cálculo de primitivas. 2. Reglas de cálculo de primitivas. (I Integrales inmediatas) Tem : L integrl definid. Cálculo de primitivs. Aplicciones.. Cálculo de primitivs. Definición. Dds f, F : D R R, decimos que F es un primitiv de l función f si: F ( f(, D. Está clro que si F es un primitiv

Más detalles

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA

a x0 x x... x x b, con lo que los (n+1) números reales dividen al intervalo, 1. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA UNIDAD 6: Integrles Definids. Aplicciones. ÁREAS DE RECINTOS PLANOS. INTEGRAL DEFINIDA Nos plntemos el cálculo de áres de recintos limitdos por curvs que vienen dds por funciones reles,como por ejemplo

Más detalles

2. Cálculo de primitivas

2. Cálculo de primitivas 5. Cálculo de primitivs Definición. Se dice que un función F () es un primitiv de otr función f() sobre un intervlo (, b) si pr todo de (, b) se tiene que F () f(). Por ejemplo, l función F () es un primitiv

Más detalles

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5

Fíjate en el comportamiento de la función ( x ) = x toma valores cercanos a 2. ( ) 5 UNIDAD 5: LÍMITES Y CONTINUIDAD. 1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Fíjte en el comportmiento de l unción ( x ) x 1 tom vlores cercnos. cundo x Si x se proxim, l unción tom vlores cercnos 5. Se escribe:

Más detalles

O(0, 0) verifican que. Por tanto,

O(0, 0) verifican que. Por tanto, Jun Antonio González Mot Proesor de Mtemátics del Colegio Jun XIII Zidín de Grnd SIMETRIA RESPECTO DEL ORIGEN. FUNCIONES IMPARES: Un unción es simétric respecto del origen O, su simétrico respecto de O

Más detalles

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones.

pág. 87 LIMITES 1. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerda del curso pasado los límites de sucesiones. LIMITES. LIMITE DE UNA SUCESIÓN. EL NÚMERO e Recuerd del curso psdo los límites de sucesiones. L sucesión 4 + + + + 4 4 n n + es especilmente interesnte. Empezmos desrrollndol. n,5,7...,44... Se trt de

Más detalles

Definición de la función logaritmo natural.

Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se sbe que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente:

FUNCIONES. Analíticamente, la correspondencia anterior se escribe del modo siguiente: FUNCIONES.- CONCEPTO DE FUNCIÓN Se dice que un correspondenci f definid entre dos conjuntos A B es un función (o plicción), si cd elemento del conjunto A le sign un elemento sólo uno del conjunto B. De

Más detalles

El Teorema Fundamental del Cálculo

El Teorema Fundamental del Cálculo del Cálculo Deprtmento de Análise Mtemátic Fcultde de Mtemátics Universidde de Sntigo de Compostel Sntigo, 2011 L Regl de Brrow: un resultdo sorprendente Recordemos que f es integrble en I = [, b] y su

Más detalles

Cálculo integral de funciones de una variable

Cálculo integral de funciones de una variable Lino Alvrez - Aure Mrtínez CÁLCULO II Cálculo integrl de funciones de un vrible 1 L integrl de Riemnn Se f : [, b] R R un función cotd en [, b]. Definición 1.- Un prtición P = {t 0, t 1,..., t n } del

Más detalles

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tem 5 Límites de funciones, continuidd y síntots Mtemátics CCSSII º Bch 1 TEMA 5 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 5.1 LÍMITE DE UNA FUNCIÓN 5.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de

Más detalles

Integración de funciones de una variable

Integración de funciones de una variable Tem 5 Integrción de funciones de un vrible Introducción Este tem está dedicdo l estudio y l relción que existe entre dos problems que, en principio, tienen un nturlez muy distint.. Cálculo de primitivs:

Más detalles

Aplicaciones del cálculo integral

Aplicaciones del cálculo integral Aplicciones del cálculo integrl Aplicciones del cálculo integrl Cálculo del áre de un función Pr clculr el áre encerrd por un función en un intervlo [,] con el eje X, dee utilizrse l integrl definid. Csos:

Más detalles

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES

TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES TEMA 5 LÍMITES Y CONTINUIDAD DE FUNCIONES 5.1. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. LÍMITES LATERALES 5.1.1. Concepto de tendenci Decimos que " tiende " si tom los vlores de un sucesión que se proim. Se

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

CAPÍTULO. La derivada

CAPÍTULO. La derivada CAPÍTULO 5 L derivd 5. L derivd de un función A continución trtremos uno de los concetos fundmentles del cálculo, que es el de l derivd. Este conceto es un ite que está estrecmente ligdo l rect tngente,

Más detalles

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES.

INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. INTEGRALES DOBLES SOBRE REGIONES GENERA- LES. 6. En l integrl dole f(, ), colocr los límites de integrción en mos órdenes, pr los siguientes recintos: i) trpecio de vértices (, ), (, ), (, ) (, ). ii)

Más detalles

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS

INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS INTEGRALES INDEFINIDAS INTEGRALES DEFINIDAS: CÁLCULO DE ÁREAS Mtemátics º de Bchillerto Ciencis y Tecnologí Profesor: Jorge Escribno Colegio Inmculd Niñ Grnd www.coleinmculdnin.org TEMA 7.- INTEGRALES

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES IDEA INTUITIVA DE LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejemplo : Consideremos l gráic de l unción: si < si > Si tom vlores próimos, distintos de y menores que ej.: 9, 99, 999,, se not

Más detalles

Cálculo de primitivas

Cálculo de primitivas Cálculo de primitivs Cmbio de vrible Cálculo de primitivs Utilizremos l notción f (x) pr denotr un primitiv de l función f. Además, busndo del lenguje, menudo hblremos de integrl de l función cundo deberímos

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Myo de 2015 Operciones Básics con Frcciones Número

Más detalles

Tema 4: Integrales Impropias

Tema 4: Integrales Impropias Prof. Susn López 1 Universidd Autónom de Mdrid Tem 4: Integrles Impropis 1 Integrl Impropi En l definición de un integrl definid f (x) se exigió que el intervlo [, b] fuese finito. Por otro ldo el teorem

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

5.5 Integración numérica

5.5 Integración numérica 88 CÁLCULO / CIENCIAS AMBIENTALES / TEMA 5 5.5 Integrción numéric Métodos de Newton-Côtes De cr clculr l integrl definid: f(x) dx se llmn Métodos de Newton-Côtes los que se bsn en integrr, en lugr de l

Más detalles

LÍMITES CONCEPTO INTUITIVO DE LÍMITE

LÍMITES CONCEPTO INTUITIVO DE LÍMITE Mrí Teres Szostk Ingenierí Comercil Mtemátic II Clse Nº, LÍMITES El concepto de ite, es uno de los pilres en que se bs el Análisis Mtemático, se encontrb en 8 en estdo potencil, ern más principios intuitivos

Más detalles

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES

CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES FUNDAMENTOS DEL ÁLGEBRA CUADERNO DE TRABAJO PARA LA CLASE NÚMEROS REALES NOMBRE ID SECCIÓN SALÓN Prof. Evelyn Dávil Tbl de contenido TEMA A. CONJUNTOS NUMÉRICOS... REGLA PARA LA SUMA DE NÚMEROS REALES...

Más detalles

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES.

I.E.S. PADRE SUÁREZ Álgebra Lineal 1 TEMA I MATRICES. DETERMINANTES. I.E.S. PDRE SUÁREZ Álgebr Linel TEM I. Mtrices.. Operciones con mtrices. Determinnte de un mtriz cudrd.. Mtriz invers de un mtriz cudrd. MTRICES. DETERMINNTES.. MTRICES. Llmmos mtriz de números reles,

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS Repúblic Bolivrin de Venezuel Universidd Alonso de Ojed Administrción Mención Gerenci y Mercdeo UNIDAD I FUNDAMENTOS BÁSICOS Ing. Ronny Altuve Ciudd Ojed, Septiembre de 2015 Conjuntos Numéricos ) Los Números

Más detalles

REPASO DE ECUACIONES (4º ESO)

REPASO DE ECUACIONES (4º ESO) TIPOS DE ECUACIONES.- REPASO DE ECUACIONES ( ESO) Eisten diversos tipos de ecuciones, entre ells estudiremos: Polinómics: En ells, l incógnit prece solmente en epresiones polinómics. El grdo de un ecución

Más detalles

INTEGRALES IMPROPIAS

INTEGRALES IMPROPIAS NOTAS PARA LOS ALUMNOS DE ANALISIS MATEMATICO III INTEGRALES IMPROPIAS Ing. Jun Scerdoti Deprtmento de Mtemátic Fcultd de Ingenierí Universidd de Buenos Aires V INDICE INTEGRALES IMPROPIAS.- PUNTOS SINGULARES

Más detalles

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD Introducción Ide de ite Propieddes de los ites Operciones con. Indeterminciones Regls práctics pr l obtención del ite Asíntots horizontles y verticles Continuidd

Más detalles

Tema 7 (I). FUNCIONES DE UNA VARIABLE. LÍMITES Y CONTINUIDAD.

Tema 7 (I). FUNCIONES DE UNA VARIABLE. LÍMITES Y CONTINUIDAD. Tem 7 I FUNCIONES DE UNA VARIABLE LÍMITES Y CONTINUIDAD Concepto de función Un función entre dos conjuntos X e Y es un relción definid de tl mner que cd elemento X le corresponde ectmente otro elemento

Más detalles

Integración Numérica. 18 Regla del Trapecio

Integración Numérica. 18 Regla del Trapecio Integrción Numéric L integrl resuelve el problem de clculr el áre bjo l gráfic de un función positiv definid sobre un intervlo cerrdo. El cálculo elementl de funciones de un vrible rel proporcion un método

Más detalles

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si:

pág CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: .- CONTINUIDAD TEMA 6 Continuidd, Cálculo Diferencil. FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continu en si: Lim f( ) f( ) Pr que un función se continu en un punto se h de cumplir: º f ( ) D º Lim

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuciones con vlor soluto El vlor soluto de un número rel se denot por y está definido por:, si 0 si 0 Propieddes Si y son números reles y n es un número entero, entonces: 1.. 3. n 4. n L noción de vlor

Más detalles

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES

POTENCIAS Y LOGARITMOS DE NÚMEROS REALES www.mtesrond.net José A. Jiméne Nieto POTENCIAS Y LOGARITMOS DE NÚMEROS REALES. POTENCIAS DE NÚMEROS REALES.. Potencis de eponente entero L potenci de se un número rel eponente entero se define sí: n (

Más detalles

(Ésta es una versión preliminar de la teoría del tema.)

(Ésta es una versión preliminar de la teoría del tema.) Estudio de funciones periódics Ést es un versión preliminr de l teorí del tem. Un función fx se dice que es periódic de periodo cundo fx = fx +, x. Si se conoce fx en el intervlo [, ] su ciclo, se l conoce

Más detalles

Notas de Integral de Riemann-Stieltjes

Notas de Integral de Riemann-Stieltjes Nots de Integrl de Riemnn-Stieltjes 1. Definición y propieddes Dds funciones g, F : [, b] R que cumpln ciertos requisitos, definiremos l expresión g(x)df(x) de tl mner que cundo consideremos el cso prticulr

Más detalles

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura).

Llamaremos S a la superficie dada y D a su proyección sobre el plano XY (ver figura). TEOREMA E GAU. 15. Hllr el flujo del cmpo i + j + z k trvés de l superficie z 1 +, z 1. ) irectmente. b) Aplicndo el teorem de Guss. olución Llmremos l superficie dd su proección sobre el plno XY (ver

Más detalles

6.1 Sumas de Riemann e integral definida

6.1 Sumas de Riemann e integral definida Tem 6 Integrción Definid 6.1 Sums de Riemnn e integrl definid Supongmos que estmos interesdos en clculr el áre que se encuentr bjo un curv y = f(x) en un intervlo [, b] (pr simplificr, consideremos el

Más detalles

La función logaritmo. Definición de la función logaritmo natural.

La función logaritmo. Definición de la función logaritmo natural. L función logritmo Definición de l función logritmo nturl. Se se que un primitiv o ntiderivd de l función f() = n es l función F() n / (n+), es decir n n n cte. Est fórmul es válid sólo cundo n. Cundo

Más detalles

Integración de funciones reales de una variable real. 24 de octubre de 2014

Integración de funciones reales de una variable real. 24 de octubre de 2014 Cálculo Integrción de funciones reles de un vrible rel 24 de octubre de 2014 c Dpto. de Mtemátics UDC Integrción de funciones reles de un vrible rel L integrl indefinid. Cálculo de primitivs L integrl

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicción Exmen, 7 de Septiembre de 24 Primer prte Ejercicio. Clculr ls coordends de los puntos P y Q de l prábol y x 2, tles que el triángulo formdo por el eje

Más detalles

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función.

Tema 6: LA DERIVADA. Índice: 1. Derivada de una función. LA DERIVADA Tem 6: LA DERIVADA Índice:. Derivd de un unción... Derivd de un unción en un punto... Interpretción geométric.3. Derivds lterles..4. Función derivd. Derivds sucesivs.. Derivbilidd y continuidd.

Más detalles

Métodos de Integración I n d i c e

Métodos de Integración I n d i c e Métodos de Integrción I n d i c e Introducción Cmbio de Vrible Integrción por prtes Integrles de funciones trigonométrics Sustitución Trigonométric Frcciones prciles Introducción. En est sección, y con

Más detalles

Primer Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 15 de Enero de Soluciones.

Primer Examen Parcial de Cálculo. Primer Curso de Ingenieros Industriales. 15 de Enero de Soluciones. Primer Exmen Prcil de Cálculo. Primer Curso de Ingenieros Industriles. 5 de Enero de 200. Soluciones. Not: El exmen const de ejercicios (E, E2, E3 y E) y un problem (P) que se puntún cd uno de ellos sobre

Más detalles

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES

LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES LA INTEGRAL DEFINIDA: ÁREAS Y VOLÚMENES L integrl definid Se y f un función definid en el intervlo,, se llm integrl definid de f en n el intervlo, y se denot por fd lim fc i i i. n i y se llmn límites

Más detalles

8 - Ecuación de Dirichlet.

8 - Ecuación de Dirichlet. Ecuciones Diferenciles de Orden Superior Prte V III Integrl de Dirichle t Ing. Rmón scl Prof esor Titulr de nálisi s de Señles Sistems Teorí de los Circuit os I I en l UTN, Fcultd Regionl vellned uenos

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

Tema 4. Integración de Funciones de Variable Compleja

Tema 4. Integración de Funciones de Variable Compleja Tem 4. Integrción de Funciones de Vrible omplej Prof. Willim L ruz Bstids 7 de octubre de 22 Tem 4 Integrción de Funciones de Vrible omplej 4. Integrl definid Se F (t) un función de vrible rel con vlores

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso

Fundamentos Matemáticos de la Ingeniería. Tema 9: Cálculo integral de funciones de varias variables Curso Fundmentos Mtemáticos de l Ingenierí. (Tem 9) Hoj Escuel Técnic Superior de Ingenierí Civil e Industril (Esp. en Hidrologí) Fundmentos Mtemáticos de l Ingenierí. Tem 9: Cálculo integrl de funciones de

Más detalles

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange.

2. Derivada: tangente a una curva. Los teoremas de Rolle y Lagrange. . Derivd: tngente un curv. Los teorems de Rolle y Lgrnge. Se f : x I f( x) un función definid en un intervlo I y se un punto interior del intervlo I. L pendiente de l rect tngente l curv y f( x), f( )

Más detalles

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo

UNIDAD 6: DERIVADAS. 1. TASA DE VARIACIÓN MEDIA. Se define la tasa de variación media de una función f ( x) y = en un intervalo [ b] a, como: = siendo IES Pdre Poved (Gudi UNIDAD 6: DERIVADAS.. TASA DE VARIACIÓN MEDIA. Se deine l ts de vrición medi de un unción y en un intervlo [ b] T. M. [, b] ( b (, como: b (,, B,, Si considero l rect que une A ( b

Más detalles

TEMA 1. LOS NÚMEROS REALES.

TEMA 1. LOS NÚMEROS REALES. TEMA. LOS NÚMEROS REALES... Repso de números enteros y rcionles - Operciones con números enteros - Pso de deciml frcción y de frcción de deciml - Operciones con números rcionles - Potencis. Operciones

Más detalles

TEMA 13: INTEGRAL DEFINIDA

TEMA 13: INTEGRAL DEFINIDA TEMA : INTEGRAL DEFINIDA..- El problem de clculr el áre bjo un curv El problem de clculr el áre limitd por lguns curvs fue borddo, por los mtemáticos griegos, desde bstntes siglos trás. El método empledo

Más detalles

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica.

int(s) o int(s, var) S puede ser una expresión simbólica o el nombre de una expresión simbólica. Práctic 3: Cálculo Integrl con MtLb Curso 2010-2011 1 1 Introducción Un de los pquetes más útiles pr el cálculo con MtLb lo constituye Symbolic Mth Toolbox, que permite relizr cálculo simbólico vnzdo,

Más detalles

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL

FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) 1-FUNCION LOGARITMO NATURAL FUNCIONES TRASCENDENTALES (O NO ALGEBRAICAS ) -FUNCION LOGARITMO NATURAL Definición propieddes L funcion logritmo nturl de un numero positivo se not ln su dominio es el conjunto de los números reles positivos

Más detalles

Hasta el momento solo hemos trabajado con funciones reales de la forma

Hasta el momento solo hemos trabajado con funciones reales de la forma Función eponencil: Hst el momento solo hemos trbjdo con funciones reles de l form f( ) = P( ) donde P ( ) es un polinomio f ( ) = donde y es un vrible, entre otros pero hor vmos trbjr con funciones donde

Más detalles

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz

Repartido N 5. Limites ISCAB 3 EMT prof. Fernando Diaz Reprtido N 5 Limites ISCAB EMT prof. Fernndo Diz El resultdo de un límite es un vlor de y en un función cundo el vlor de se proim mucho un vlor ddo sin llegr ser igul él. Es cercrse mucho un vlor en pr

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica

Métodos Numéricos: Resumen y ejemplos Tema 3: Integración numérica Métodos Numéricos: Resumen y ejemplos em 3: Integrción numéric Frncisco Plcios Escuel Politécnic uperior de Ingenierí de Mnres Universidd Politécnic de Ctluñ Mrzo 8, versión.4 Contenido. Fórmuls de cudrtur.

Más detalles

Integral de Riemann. Introducción a la integración numérica.

Integral de Riemann. Introducción a la integración numérica. Cálculo Mtemático (Práctics) M. I. Berenguer Mldondo mribel@ugr.es. 1 Integrl de Riemnn. Introducción l integrción numéric. En est práctic usremos l clculdor ClssPd pr trtr el problem de integrción. Se

Más detalles

10.- Teoremas de Adición.

10.- Teoremas de Adición. Trigonometrí 10.- Teorems de Adición. Rzones trigonométrics de los ángulos A + B y A B. Hy que tener cuiddo de no confundir l rzón trigonométric de l sum de dos ángulos, con l sum de dos rzones trigonométrics.

Más detalles

ECUACIONES (4º ESO Op B)

ECUACIONES (4º ESO Op B) ECUACIONES ( ESO Op B) IDENTIDADES, IGUALDADES FALSAS Y ECUACIONES.- Un iguldd lgebric está formd por dos epresiones lgebrics (un de ells puede ser un número), seprds por el signo. Ejemplos.- + + 1 ( +

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO EJERCICIOS RECOLECTADOS EN LA RED. (MATEMÁTICA I ADMINISTRACIÓN) INECUACIONES Y VALOR ABSOLUTO INTERVALOS DESIGUALDADES INECUACIONES INTERVALOS EN LA RECTA REAL Ddos dos números culesquier y b, tles que

Más detalles

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3.

( ) 4. Colegio Diocesano Sagrado Corazón de Jesús. MATEMÁTICAS I / 1º Bachillerato C y T LOGARTIMOS. log. log. log. 1 log log 3. Colegio Diocesno Sgrdo Corzón de Jesús MATEMÁTICAS I / º Bchillerto C y T LOGARTIMOS Logritmos El ritmo de un número, m, positivo, en bse, positiv y distint de uno, es el eponente l que hy que elevr l

Más detalles

7.1. Definición de la Integral de Riemann

7.1. Definición de la Integral de Riemann Cpítulo 7 Integrl de Riemnn 71 Definición de l Integrl de Riemnn En este cpítulo supondremos, menos que se indique lo contrrio, que < b y f : [, b] R es un función cotd Definición 71 Un prtición del intervlo

Más detalles

Curvas en el espacio.

Curvas en el espacio. Curvs en el espcio. Tod curv en el espcio R n se puede considerr como l imgen de un función vectoril r : [, b] R n, r(t) = (x 1 (t),..., x n (t)), que recibe el nombre de prmetrizción de l curv. Los puntos

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS. Hllr l sum de los primeros cien enteros positivos múltiplos de 7. L sum de n términos de un progresión ritmétic viene dd por l expresión: + n Sn n Aplicndo pr 00 términos: + 00

Más detalles

MATE 3013 LA FUNCIÓN DERIVADA

MATE 3013 LA FUNCIÓN DERIVADA MATE 3013 LA FUNCIÓN DERIVADA Se quiere hllr l rect tngente l curv en el punto ( ; f()) = f() 8 Se tom un punto rbitrrio ( ; f()) se trz l rect secnte que ps por esos dos puntos (; f()) (; f()) 8 Cuál

Más detalles

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P.

Se llama logaritmo en base a de P, y se escribe log a P, al exponente al que hay que elevar la base a para obtener P. Log P X Se llm ritmo en bse de P, y se escribe P, l eponente l que hy que elevr l bse pr obtener P. Log P P Ejemplo: 8 8 L l it b d 8 Leemos, ritmo en bse de 8 es porque elevdo es 8. Anámente podemos decir:

Más detalles

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática

Tutorial MT-m3. Matemática Tutorial Nivel Medio. Función cuadrática 12345678901234567890 M te m átic Tutoril MT-m3 Mtemátic 2006 Tutoril Nivel Medio Función cudrátic Mtemátic 2006 Tutoril Función Cudrátic Mrco Teórico 1. Función cudrátic: Está representd por: y = x 2 +

Más detalles

Estudio de funciones exponenciales y logarítmicas

Estudio de funciones exponenciales y logarítmicas FUNCIÓN EXPONENCIAL Recomendciones l Docente: L ctividd proponer debe puntr que los lumnos puedn nlizr los siguientes spectos: 1. Cómo vrí el gráfico de l función eponencil y de qué depende su monotoní.

Más detalles

TRABAJOS DE MATEMATICA

TRABAJOS DE MATEMATICA UNIVERSIDAD NACIONAL DE CÓRDOBA FACULTAD DE MATEMÁTICA, ASTRONOMÍA Y FÍSICA SERIE C TRABAJOS DE MATEMATICA Nº 36/07 Un segundo curso de Cálculo Crin Boyllin, Elid Ferreyr, Mrt Urciuolo, Cynthi Will Editores:

Más detalles

Aplicaciones de la integral indefinida

Aplicaciones de la integral indefinida Aplicciones_de_l_integrl.n Aplicciones de l integrl indefinid Práctic de Cálculo, E.U.A.T,Grupos ºA y ºB, 2005 Est práctic muestr cómo clculr lguns áres y volúmenes utilizndo integrles. En cd cso dremos

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS

UNIDAD N 3: EXPRESIONES ALGEBRAICAS POLINOMIOS Mtemátic Unidd - UNIDAD N : EXPRESIONES ALGEBRAICAS POLINOMIOS ÍNDICE GENERAL DE LA UNIDAD Epresiones Algebrics Enters...... Polinomios..... Actividdes... 4 Vlor Numérico del polinomio........ 4 Concepto

Más detalles