MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO

Save this PDF as:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO"

Transcripción

1 MOVIMIENTO RECTILÍNEO UNIFORMEMENTE ACELERADO Sabes cuáles son las caraceríscas del momeno reclíneo unormemene acelerado? INTRODUCCION Prmero debemos saber que denro de la cnemáca exsen derenes pos de momeno y ésos dependen de cómo sea su aceleracón, es decr, s aría o no la elocdad, y de la rayecora que sga el mól. Así, podemos dsngur: Tambén podemos clascar los momenos en uncón de su rayecora. Así endremos: Momenos reclíneos, s el camno segudo por el mól o rayecora, es una línea reca. Un objeo que cae lbremene ene esa rayecora. Momenos curlíneos, s la rayecora es cura. Denro de esos esarían el crcular, cuando el mól descrbe rayecoras con orma de crcunerenca, como las agujas de un reloj; O el parabólco, s descrbe una parábola, como el proyecl dsparado por un arma o un balón de balonceso lanzado a canasa. Momeno Unorme, s la elocdad es consane o, lo que es lo msmo, la aceleracón es nula. Ese momeno es an sencllo que es dícl de obserar en la nauraleza. Momeno Reclíneo Unormemene acelerado (M.R.U.A.) Se le denomna momeno reclíneo unormemene arado ya que su elocdad esa cambando de manera unorme, ambén se le llama momeno reclíneo unormemene acelerado porque se acelera o rena de manera unorme. Ese momeno, se caracerza porque el mól ene rayecora reclínea, su elocdad camba (acelera o rena) de manera unorme, por ano, aumena o dsmnuye sempre en la msma candad cada segundo, es decr su aceleracón es consane, ese momeno puede ser horzonal (por ejemplo el momeno de un auomól) o ercal (por ejemplo un cuerpo que cae lbremene). Por lo que la caída lbre y ro ercal se encuenran denro de ese po. La aceleracón es una candad ecoral que se dene como el cambo de elocdad que ene un mól enre el empo que requere para realzarlo. Nos

2 relacona los cambos de la elocdad con el empo en el que se producen, es decr, mde la rapdez con que se dan los cambos de elocdad. Una aceleracón grande sgnca que la elocdad camba rápdamene. Una aceleracón pequeña sgnca que la elocdad camba lenamene. Una aceleracón cero sgnca que la elocdad no camba. Como se menconó, la aceleracón nos dce cómo camba la elocdad y no cómo es En los momenos reclíneos no camba la dreccón, por lo que solo nos reerremos a la aceleracón angencal. Aceleracón consane: Es cuando el cambo de la elocdad en cada neralo es sempre el msmo y se raa enonces de un momeno de aceleracón consane o unormemene acelerado y en él podemos obserar que: La dsanca oal recorrda es drecamene proporconal al cuadrado del empo. Por ejemplo s en 1 segundo la dsanca recorrda es de 1 m, en s la dsanca oal recorrda es cuaro (²) eces la recorrda en el prmer segundo; a los 3 s la dsanca recorrda es nuee (3²) eces mayor que la del prmer segundo y a los 4 s es 16 eces (4²) esa dsanca. Los cuerpos que se mueen con aceleracón consane recorren dsancas drecamene proporconales al cuadrado del empo. la elocdad. Por lo ano un mól puede ener una elocdad grande y una aceleracón pequeña (o cero) y ceersa. Un mól esá acelerando menras su elocdad camba.exsen derenes pos de aceleracón como son: La aceleracón angencal nos relacona la aracón de la rapdez con el empo La aceleracón normal (o cenrípea que se esuda en los momenos curlíneos) para relaconar los cambos de la dreccón con el empo. Aceleracón meda. La aceleracón (angencal) meda de un mól se calcula ulzando la sguene ecuacón: Con ella calculamos el cambo medo de rapdez, en el neralo de empo deseado. Para calcular la aceleracón nsanánea se oma un neralo de empo muy pequeño. Undades: V V a m s = s = m s En el Ssema Inernaconal, la undad de aceleracón es 1 (m/s)/s, es decr 1 m/s². Dreccón de la aceleracón. Como la aceleracón es una magnud ecoral sempre endrá asocada una dreccón y

3 un sendo que nos ndca el sgno aunque se pueden esablecer los sguenes acuerdos: 1) Que la rapdez esé aumenando o dsmnuyendo ) Que el cuerpo se muea en la dreccón + ó - es decr respeando la poscón ecoral. En el prmero, sí la aceleracón aorece al momeno (aumena la elocdad), no mporando haca donde se drge: zquerda, derecha, arrba o abajo, la aceleracón se consdera posa y s de lo conraro desaorece al momeno (dsmnuye la elocdad del mól) se debe consderar negaa El segundo argumeno es que: S un mól esá dsmnuyendo su rapdez (esá renando), enonces su aceleracón a en el sendo conraro al momeno. S un mól aumena su rapdez, la aceleracón ene el msmo sendo que la elocdad. En ese segundo caso el sgno de la aceleracón se deermna (poso o negao), consderando el sendo, derecha o zquerda, arrba o abajo, ec. es decr el sendo de los ecores como se muesra a connuacón. ACELERACIÓN 1ª poscón úlma poscón TIEMPO (S) (m/s) En el gráco aneror, el cuerpo se muee en la dreccón posa (su elocdad es posa) y aumena su rapdez. Cuando un cuerpo aumena su rapdez, la dreccón de la aceleracón es la msma que la de la elocdad. Por ano, ese cuerpo ene una aceleracón posa.

4 ACELERACIÓN TIEMPO (S) (m/s) En ese gráco se represena que el cclsa se muee en la dreccón negaa (por lo ano su elocdad es negaa) y dsmnuye su rapdez. Según nuesro acuerdo, s la rapdez dsmnuye, la dreccón de la aceleracón es conrara a la de la elocdad. Por lo ano, el mól aquí represenado ene una aceleracón posa. ACELERACIÓN TIEMPO (S) (m/s) El ercer gráco represena un cuerpo que se muee en la dreccón posa (su elocdad es posa) y dsmnuye su rapdez. Según nuesro acuerdo, cuando un cuerpo dsmnuye su rapdez, el sendo de la aceleracón es opueso al de la elocdad. Por lo ano el cuerpo ene aceleracón negaa. Úlma poscón ACELERACIÓN 1ª poscón

5 Desplazameno (m) Velocdad () aceleracón (m/s) TIEMPO (S) (m/s) En el úlmo caso, el cuerpo se muee en la dreccón negaa y aumena su rapdez. Cuando aumena la rapdez de un cuerpo, su aceleracón ene el msmo sendo que la elocdad. En ese caso el mól ambén ene una aceleracón negaa. En resumen: S la elocdad y la aceleracón an en el msmo sendo (ambas son posas o ambas negaas) el mól aumena su rapdez. S la elocdad y la aceleracón an en sendos conraros (enen sgnos opuesos), el mól dsmnuye su rapdez. S gracamos un mól con momeno reclíneo unormemene acelerado endríamos los sguenes resulados DESPLAZAMIENTO CONTRA TIEMPO CONTRA TIEMPO empo (s) El desplazameno es gual al La elocdad se ncremena unormemene cuadrado del empo ACELERACIÓN TIEMPO CONTRA La aceleracón permanece consane Es decr que no camba y la elocdad se ncremene con la msma magnud durane odo el momeno. Además de la ecuacón que represena al Momeno reclíneo unorme que es empo (s) empo (s)

6 a Tenemos oras ecuacones que nos son úles para resoler problemas de ese po s Tenendo y despejamos s nos quedaría s =. y consderando que en el MARUA la elocdad nunca es consane en su lugar se ulza la elocdad meda que m es = queda: s enonces nos S de nuesra prmera ecuacón despejamos V endremos a y susumos la V m en la de endremos a m a su ez susumos esa en la de s m enemos que 1 s a 1 s ( a) a De la ecuacón despejamos nos queda a y susumos el empo en la ecuacón aneror enemos que s ( a ) nos queda as 1 a( a ) que son las ecuacones que se ulzan para resoler problemas de MRUA EJEMPLO 1.- Un auomól se desplaza con elocdad de 60 km/h cuando empeza a acelerar de manera unorme a razón de m/s durane 4 segundos, deermna: La máxma elocdad que adquere El desplazameno que uo en los cuaro segundos Solucón Daos V = 60 km/h a = m/s = 4 s en base a los daos prmero se deben realzar las conersones para uncar las undades

7 1000m 60km 1km 60km1000m1h m h 3600s h1km3600s s 1h Ecuacones Desarrollo = + a = m/s + m/s(4 s) = 4.66 m/s para calcular dsanca se enen los sguenes daos: V = m/s a = m/s = 4 s = 4.66 m/s S analzamos nuesras ecuacones, eremos que podemos ulzar cualquera que nolucre la dsanca ya que se cuenan con odos los daos y debemos obener el msmo resulado. s s = +½a as V V s =.64m EJEMPLO Un camón se desplaza a una elocdad de 140km/h cuando repennamene rena y logra deenerse en 98 m deermna: Su desaceleracón El empo que arda en deenerse La elocdad que llea a los res segundos de ncar el renado Daos V = 140km/h De gual manera que en el caso aneror se uncan undades medane s = 98 m las conersones correspondenes V = m 140km 1km 140km1000m1h m h 3600s h1km3600s s 1h s = +1/ a s= 16.66m/s(4s) + ½(m/s)(4s) = 8.64 m as=- 0 a s m/s a = -7.71m/s 38.88m / s (98m) 7.71 Para demosrar que se obene el msmo resulado lo haremos con ora ecuacón as V Vo s = V V a V V a m / s 7.71m / s a m / (m / s )

8 elocdad (m/s) 5.04 s = 5.04 s = + a = 38.88m/s + (-7.71 m/s)(3 s) = m/s = m/s EJERCICIO Una parícula pare del reposo con aceleracón consane desde un puno A hasa un puno C que se encuenra en línea reca, cuando pasa por un puno B llea una elocdad de 1m/s y cuando llega al puno C su elocdad es de 0m/s ulzando.5s para llegar del puno B al C Deermna: a) La dsanca enre A y B b) La dsanca que hay enre A a C c) El empo oal de recorrdo Respuesas a).5 m b) 6.5 m c) 6.5 s Auoealuacón 1) Qué magnud nos represena la pendene de esa gráca empo (s) a) Velocdad b) Aceleracón c) Dsanca d) Dsanca/Tempo

9 ) El MRUA se caracerza porque su aceleracón: a) Camba unormemene b) Permanece consane c) Sempre es de 9.81m/s c) Depende del momeno 3) En el MRUA, s la aceleracón ene un alor grande cómo se compora la elocdad? a) Camba rápdamene b) No camba c) Camba lenamene c) Su alor ende a nno 4) Es una magnud escalar que represena la dsanca recorrda enre el empo que ulza para realzarla a) Velocdad b) Aceleracón c) Rapdez d) Desplazameno 5) Magnud ecoral que represena el desplazameno que realza un mól enre el empo en que lo realza se le llama a) Velocdad b) Aceleracón c) Rapdez d) La consane 6) Cuándo la elocdad y la aceleracón llean el msmo sendo qué pasa con la elocdad? a) Dsmnuye b) Aumena c) Es sempre negaa d) Es sempre posa 7) Cuándo la elocdad y la aceleracón llean sendos conraros, qué pasa con la elocdad? a) Dsmnuye b) Aumena c) Es sempre negaa d) Es sempre posa 8) S la V de un mól es de 0 m/s y se acelera a razón de 3 m/s a los 5 s de haber ncado el cambo de elocdad su elocdad será de: a) 35 m/s b)5 m/s c) 7.5 m/s d) 9.5 m/s

10 9) Un mól lleaba una elocdad de 10m/s y renó con una desaceleracón de 4 m/s deermna que dsanca recorró a los dos segundos de ncar el renado a) 8 m b)1 m c) 8 m d) 1.5 m 10) Magnud ecoral que represena el cambo de elocdad que ene un mól enre el empo que requere para realzarlo a) Velocdad b) Aceleracón c) Rapdez d) Desplazameno 11) Una parícula pare del reposo con aceleracón consane desde un puno A hasa un puno C que se encuenra en línea reca, cuando pasa por un puno B llea una elocdad de 1 m/s y cuando llega al puno C su elocdad es de 0 m/s enre esos dos úlmos hay una dsanca de 40 m. A B C Deermna: La dsanca enre A y B El empo que ulzó para r de B a C El empo oal de recorrdo a) a).5 m b).5 s c) 6.5s b) a) 40m b).5s c) 6.5s c) a) 40m b) 5s c) 7.5s

Movimiento Rectilíneo Uniformemente Acelerado (MRUA)

Movimiento Rectilíneo Uniformemente Acelerado (MRUA) 7. Movmeno Reclíneo Unorme Acelerado Movmeno Reclíneo Unormemene Acelerado (MRUA) elocdad Meda o elocdad promedo: La velocdad meda represena la relacón enre el desplazameno oal hecho por un móvl y el empo

Más detalles

Esa variación puede darse con la magnitud de la velocidad, su dirección y/o su sentido.

Esa variación puede darse con la magnitud de la velocidad, su dirección y/o su sentido. Momeno Varado - Que un momeno ea arado gnca que el mól que lo poee ene una elocdad aría con el empo. Ea aracón puede dare con la magnud de la elocdad, u dreccón y/o u endo. Un prmer cao lo enemo en momeno

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

a = = t 0 t 0 v ( t ) = lim v = lim v = = t 0 t 0 a = = 0501) Movimiento: Conceptos Básicos v = = t - t Aceleración Distancia Recorrida Velocidad

a = = t 0 t 0 v ( t ) = lim v = lim v = = t 0 t 0 a = = 0501) Movimiento: Conceptos Básicos v = = t - t Aceleración Distancia Recorrida Velocidad Escalar + a ( ) ( ) Meda ( + ) ( ) d a ( ) lm a lm d Insanánea (a) a + - - ( ) ( ) celeracón 5) Momeno: Concepos áscos Dsanca ecorrda Idea: Cuena-Klómeros de un auomól Sempre umena Dependenca Descrpcón

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Físca General Proyeco PMME - Curso 8 Insuo de Físca Faculad de Inenería UdelaR M O V I M I E N T O E P R O Y E C T I L M O V I M I E N T O R E L A T I V O Vanessa íaz Florenca Clerc Un olero Juan paea

Más detalles

Guía de estudio sobre: Movimiento Rectilíneo Uniforme (MRU)

Guía de estudio sobre: Movimiento Rectilíneo Uniforme (MRU) Departamento de Físca Coordnacón Segundo Medo 07 Guía de estudo sobre: Momento rectlíneo Unorme Varado: MRUV Nombre: Curso: Clascacón de los Momentos en línea recta se clascan de acuerdo a su rapdez: UNIFORMES:

Más detalles

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012

Ondas y Rotaciones. Aplicaciones I. Jaime Feliciano Hernández Universidad Autónoma Metropolitana - Iztapalapa México, D. F. 15 de agosto de 2012 Ondas y Roacones Aplcacones I Jame Felcano Hernández Unversdad Auónoma Meropolana - Izapalapa Méco, D. F. 5 de agoso de 0 INTRODUCCIÓN. En esa hoja de rabajo vamos a aplcar el conocmeno que hemos consrudo

Más detalles

Semana 12: Tema 9 Movimiento Rotacional

Semana 12: Tema 9 Movimiento Rotacional Semana : Tema 9 Movmeno Roaconal 9. Velocdad y Aceleracón angular 9. Roacón con aceleracón angular consane 9.3 Energía cnéca roaconal 9.4 Cálculo de momeno de nerca y el eorema de los ejes paralelos Capíulo

Más detalles

Caída libre de los cuerpos

Caída libre de los cuerpos CIENCIA TECNOLOGÍA Y AMBIENTE Caída lbre de los cuerpos PROF: JAIE QUISPE CASAS I.E.P.Nº 874 Ex 451 013 1 INTRODUCCIÓN Enre los dersos momenos que se producen en la nauraleza, sempre exsó nerés en el esudo

Más detalles

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente.

El signo negativo indica que la fem inducida es una E que se opone al cambio de la corriente. AUTO-INDUCTANCIA: Una bobna puede nducr una fem en s msma.s la correne de una bobna camba, el flujo a ravés de ella, debdo a la correne, ambén se modfca. Así como resulado del cambo de la correne de la

Más detalles

Física para todos 1 Carlos Jiménez Huaranga CINEMÁTICA

Física para todos 1 Carlos Jiménez Huaranga CINEMÁTICA ísc pr odos 1 Crlos Jménez Hurng CINEÁTIC CONCEPTOS PREVIOS omeno.- Se dce que un cuerpo esá en momeno cundo su poscón rí respeco un ssem de referenc que se supone fjo. Tryecor.- Es l fgur descr por ls

Más detalles

Estadística de Precios de Vivienda

Estadística de Precios de Vivienda Esadísca de recos de Vvenda Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce.

La Cinemática es la parte de la Física que estudia los movimientos sin preocuparse de la causa que los produce. CINEMÁTICA La Cinemáica es la pare de la Física que esudia los moimienos sin preocuparse de la causa que los produce. SISTEMA DE REFERENCIA, POSICIÓN Y TRAYECTORIA Un cuerpo esá en moimieno cuando su posición

Más detalles

Si se toma en cuenta el primer término con el tercero se tendrá que:

Si se toma en cuenta el primer término con el tercero se tendrá que: PITULO III INEMTI E FLUIOS TEXTO GUI HIRULI PROLEMS RESUELTOS INEMTI E FLUIOS -III) El campo de elocdade de un fluo permanene ea dado por: u a b, b c, w c a, eermne la ecuacón de la línea orbellno. en

Más detalles

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por:

7) Considere los ejercicios 2.b) y 2.c) a) Encuentre un nuevo modelo en variable de estados considerando la transformación dada por: 7 Consdere los ejerccos.b.c a Encuenre un nueo modelo en arable de esados consderando la ransformacón dada por: x x x x b Para.d halle la ransformacón por auoalores Resoleremos el ncso a para el ejercco.c

Más detalles

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC

9. CIRCUITOS DE SEGUNDO ORDEN LC Y RLC 9. IUITOS DE SEGUNDO ODEN Y 9.. INTODUIÓN En el capíulo aneror mos como los crcuos ressos con capacancas o los crcuos ressos con nducancas enen arables que son calculadas medane ecuacones dferencales de

Más detalles

Hallar la media y varianza. Obtener la F.G.M y obtenerlas de nuevo.

Hallar la media y varianza. Obtener la F.G.M y obtenerlas de nuevo. FGM-MARKOV 7.-Una varable aleaora ene de funcón de cuanía x Px ( ),3,3, 3, Hallar la meda y varanza. Obener la F.G.M y obenerlas de nuevo. En base a la funcón de cuanía µ α Ex P ( ),3 +,3 +, + 3,,3 σ α

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Ejercicios T9c- VARIABLE ALEATORIA, MODELOS DE PROBABILIDAD UNIVARIANTES C

Ejercicios T9c- VARIABLE ALEATORIA, MODELOS DE PROBABILIDAD UNIVARIANTES C Ejerccos T9c- VARIABLE ALEATORIA, MODELOS DE PROBABILIDAD UNIVARIANTES C FGM-MARKOV 7.-Una varable aleaora ene de funcón de cuanía x Px ( ),3,3, 3, Hallar la meda y varanza. Obener la F.G.M y obenerlas

Más detalles

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes.

CICLO BASICO DE INGENIERIA. Aplicar los conceptos fundamentales relacionados con el algebra matricial y calculo de determinantes. REPÚLI OLIVRIN DE VENEZUEL MINISTERIO DEL PODER POPULR PR L DEFENS UNIVERSIDD NIONL EPERIMENTL DE L FUERZ RMD NÚLEO ZULI DIVISIÓN DE SERETRÍ RRER: SIGNTUR: MT - NOMRE DEL PROFESOR: ILO SIO DE INGENIERI

Más detalles

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo

Santiago, CIRCULAR N. Para todas las entidades aseguradoras y reaseguradoras del segundo grupo REF.: Modfca Crcular N 2062 que nsruye respeco al raameno de recálculo de pensón, en pólzas de seguros de rena valca del D.L. N 3.500, de 1980. Sanago, CIRCULAR N Para odas las endades aseguradoras y reaseguradoras

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y Bobnas 4. Inroduccón 4. ondensadores 4.3 Energía almacenada en un condensador 4.4 Asocacón de condensadores 4.5 Bobnas 4.6 Energía almacenada en una bobna 4.7 Asocacón de bobnas

Más detalles

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA

UdelaR Facultad de Ciencias Curso de Física I p/lic. Física y Matemática Curso 2011 CINEMÁTICA UdelaR Facultad de Cencas Curso de Físca I p/lc. Físca y Matemátca Curso 011 1.- CINEMÁTICA UNIDIMENSIONAL CINEMÁTICA Partícula- Modelo de punto materal, de dmensones desprecables. Ley horara x (t) Funcón

Más detalles

CINEMÁTICA II. pendiente = t(s)

CINEMÁTICA II. pendiente = t(s) C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II Tipos de movimienos i) Movimieno recilíneo uniforme (MRU): cuando un cuerpo se desplaza con rapidez consane a lo largo de una rayecoria recilínea,

Más detalles

Método de Runge-Kutta para Ecuaciones Diferenciales

Método de Runge-Kutta para Ecuaciones Diferenciales Análss Numérco Carlos Armando De Casro Paares Méodo de Runge-Kua para Ecuacones Derencales Uno de los méodos más ulzados para resolver numércamene problemas de ecuacones derencales ordnaras con condcones

Más detalles

EJERCICIOS: Análisis de circuitos en el dominio del tiempo

EJERCICIOS: Análisis de circuitos en el dominio del tiempo EJEIIOS: Análss de crcuos en el domno del empo. égmen ransoro y permanene. En cada uno de los sguenes crcuos el nerrupor ha esado abero largo empo. Se cerra en. Deermnar o I, dbujar la onda correspondene

Más detalles

1. Introducción, n, concepto y clasificación

1. Introducción, n, concepto y clasificación Tema 5: Números índces. Inroduccón, n, concepo y clasfcacón 2. Números índces smples. Defncón y propedades 3. Números índces complejos Números índces complejos sn ponderar Números índces complejos ponderados

Más detalles

TEMA 4: CANALES DIGITALES EN BANDA BASE CON RUIDO

TEMA 4: CANALES DIGITALES EN BANDA BASE CON RUIDO PROBLEMA EMA 4: CANALES DIGIALES EN BANDA BASE CON RUIDO Se desea realzar una ransmsón bnara de símbolos equprobables, para ello se recurre a una codfcacón NRZ de po AMI y cuyas señales se ndcan a connuacón:

Más detalles

Cálculo y Estadística

Cálculo y Estadística PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una empresa emplea res

Más detalles

Introducción a la Teoría de Inventarios

Introducción a la Teoría de Inventarios Clase # 4 Las organzacones esán consanemene vendo como camba el nvel de sus nvenaros en el empo. Inroduccón a la Teoría de Invenaros El ener un nvel bajo de nvenaros mplca resgos para no sasacer la demanda

Más detalles

Movimiento uniformemente acelerado

Movimiento uniformemente acelerado CINEMÁTICA DE LA PARTÍCULA Moimieno recilíneo Como su nombre lo indica, ese moimieno es el que iene lugar cuando una parícula se desplaza a lo largo de un rayeco reco. Describiremos res casos para el moimieno

Más detalles

UNIDAD 5: EL MOVIMIENTO. EJERCICIOS RESUELTOS - O +

UNIDAD 5: EL MOVIMIENTO. EJERCICIOS RESUELTOS - O + Fíca y Quíca º ESO Undad 5: El oeno. ejercco reuelo - - (claecayquca.blogpo.co): por Joé Anono Naarro (janaarro.cayquca@gal.co) UNIDAD 5: EL MOVIMIENTO. EJERCICIOS RESUELTOS Ejercco. Indca en cada cao

Más detalles

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA

I EJERCICIOS RESUELTOS II EXÁMENES DE ECONOMETRÍA III EXÁMENES DE ECONOMETRÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMETRÍA I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES DE PRINCIPIOS DE ECONOMERÍA Noa: Los ejerccos con asersco no corresponden al programa acual de Prncpos

Más detalles

CRÉDITO PESCA. Consideraciones del producto:

CRÉDITO PESCA. Consideraciones del producto: CRÉDITO PESCA Consderacones del produco: Los crédos se oorgan para el fnancameno de las acvdades de pesca: comerco, exraccón y/o ndusralzacón. Se basan en la capacdad de pago de los clenes y su hsoral

Más detalles

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos

Curso 2006/07. Tema 9: Modelos con retardos distribuidos (I) 9.1. Análisis de los efectos dinámicos en un modelo con retardos distribuidos Curso 26/7 Economería II Tema 9: Modelos con reardos dsrbudos (I) 1. Análss de los efecos dnámcos en un modelo de reardos dsrbudos 2. La dsrbucón de reardos Tema 9 1 9.1. Análss de los efecos dnámcos en

Más detalles

Circuitos Rectificadores 1/8

Circuitos Rectificadores 1/8 Crcuos Recfcadores 1/8 1. Inroduccón Un crcuo recfcador es un crcuo que ene la capacdad de converr una señal de c.a. en una señal de c.c. pulsane, ransformando así una señal bpolar en una señal monopolar.

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE)

EL METODO PERT (PROGRAM EVALUATION AND REVIEW TECHNIQUE) EL METODO PERT (PROGRM EVLUTION ND REVIEW TECHNIQUE) METODO DE PROGRMCION Y CONTROL DE PROYECTOS Desarrollado en 1958, para coordnar y conrolar la consruccón de submarnos Polars. El méodo PERT se basa

Más detalles

Cálculo Estocástico Variación Cuadrática para Martingalas Continuas y Acotadas

Cálculo Estocástico Variación Cuadrática para Martingalas Continuas y Acotadas 1 Cálculo Esocásco Varacón Cuadráca para Marngalas Connuas y Acoadas Gullermo Garro Defncón Varacón fna. Un proceso X es de varacón fna o acoada s sus rayecoras son de varacón fna, c.s. Es decr, s exse

Más detalles

Los esquemas de la reproduccio n de Marx

Los esquemas de la reproduccio n de Marx Los esquemas de la reproducco n de Marx Alejandro Valle Baeza Los esquemas de la reproduccón smple y amplada consuyen sólo una pare del análss del proceso de crculacón del capal. Fueron presenados en la

Más detalles

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA).

TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). 1 TIPOS Y ESTUDIO DE LOS PRINCIPALES MOVIMIENTOS (CINEMÁTICA). Movimieno recilíneo uniforme. 1.- Un objeo se encuenra en el puno de coordenadas (4,) en unidades del SI moviéndose en el senido posiivo del

Más detalles

CINEMATICA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física

CINEMATICA. BERNARDO ARENAS GAVIRIA Universidad de Antioquia Instituto de Física CINEMTIC BERNRD RENS GVIRI Unersdad de ntoqua Insttuto de Físca 2010 Índce general 1. Cnemátca 1 1.1. Introduccón.......................................... 1 1.2. Sstemas de referenca....................................

Más detalles

T E S I S UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERIA FACULTAD DE INGENIERIA

T E S I S UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERIA FACULTAD DE INGENIERIA UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO PROGRAMA DE MAESTRIA Y DOCTORADO EN INGENIERIA FACULTAD DE INGENIERIA ANÁLISIS ESTÁTICO DE UNA PLATAFORMA DE SEIS GRADOS DE LIBERTAD T E S I S QUE PARA OPTAR POR

Más detalles

UNIVERSIDAD NACIONAL DE SAN JUAN

UNIVERSIDAD NACIONAL DE SAN JUAN UNIVERSIDAD NACIONAL DE SAN JUAN FACULTAD DE INGENIERÍA BIOINGENIERÍA CÁTEDRA: "BIOMECÁNICA" GUÍA DE EJERCICIOS Nº : Cnemáca de la Acdad Moora del Cuerpo Humano Elaborado por: Dra. Ing. Sla E. Rodrgo (Profesor

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO RECTILÍNEO, CONCEPTOS BÁSICOS Y GRÁFICAS Dada la dependencia de la velocidad con la posición en un movimieno recilíneo mosrada por la siguiene gráfica, deerminar la dependencia con

Más detalles

CRÉDITO AGRICOLA. Consideraciones del producto:

CRÉDITO AGRICOLA. Consideraciones del producto: Versón: CA-5.04. CRÉDITO AGRICOLA Consderacones del produco: Son crédos que se oorgan para fnancameno de acvdades agropecuaras y se basan en la capacdad de pago de los clenes y su hsoral credco. Se conceden

Más detalles

Ejercicios resueltos y exámenes

Ejercicios resueltos y exámenes Prncpos de Economería y Economería Empresaral I Ejerccos resuelos y exámenes Recoplados por Ezequel Urel I EJERCICIOS RESUELOS II EXÁMENES DE ECONOMERÍA III EXÁMENES DE ECONOMERÍA EMPRESARIAL IV EXÁMENES

Más detalles

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I

UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I UNIVERSIDAD DEL ZULIA PROGRAMA DE INGENIERÍA NÚCLEO COSTA ORIENTAL DEL LAGO UNIDAD CURRICULAR: FÍSICA I INSTRUCTIVO PRÁCTICA Nº 5. MOVIMIENTO RECTILINEO Preparado por. Ing. Ronny J. Chirinos S., MSc prácica

Más detalles

CINEMÁTICA Física I IQ Prof. G.F. Goya

CINEMÁTICA Física I IQ Prof. G.F. Goya Unidad - Cinemáica CINEMÁTICA Física I IQ Prof. G.F. Goya CINEMÁTICA Unidad - Cinemáica Qué vamos a ver Posición, velocidad, aceleración. Modelo. Magniud. Problemas. Soluciones. Coordenadas caresianas

Más detalles

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática

Índice. Tema 1: Cinemática. Capítulo 1: Introducción a la Cinemática Índice Tema 1: Cinemáica Capíulo 1: Inroducción a la Cinemáica TEMA 1: CINEMÁTICA Capíulo 1: Inroducción a la cinemáica Inroducción Dos nuevas ciencias Galileo Galilei (1564 164) El movimieno en el Renacimieno.

Más detalles

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?.

CINEMÁTICA: MRU. 2. Un móvil recorre 98 km en 2 h, calcular: a) Su velocidad. b) Cuántos kilómetros recorrerá en 3 h con la misma velocidad?. CINEMÁTICA: MRU 1. Pasar de unidades las siguienes velocidades: a) de 36 km/ a m/s. b) de 10 m/s a km/. c) de 30 km/min a cm/s. d) de 50 m/min a km/. 2. Un móvil recorre 98 km en 2, calcular: a) Su velocidad.

Más detalles

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff

1. CONCEPTOS FUNDAMENTALES Magnitudes eléctricas y unidades 1.2. Componentes, dispositivos y circuitos 1.3. Señales 1.4. Leyes de Kirchhoff Concepos fundamenales Índce CONCEPOS FUNDMENLES Magnudes elécrcas y undades Componenes, dsposos y crcuos 3 Señales 4 Leyes de Krchhoff Concepos fundamenales Magnudes elécrcas y undades Magnud es una propedad

Más detalles

Tema 4. Condensadores y Bobinas

Tema 4. Condensadores y Bobinas Tema 4. ondensadores y obnas 4. Inroduccón 4. ondensadores 4. Energía almacenada en un condensador 4.4 socacón de condensadores 4. obnas 4.6 Energía almacenada en una bobna 4.7 socacón de bobnas ( E r

Más detalles

TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas.

TIPOS DE TENDENCIAS Y SUS CONSEQUENCIAS. Tendencias estocásticas versus deterministas. TIPOS D TNDNCIAS Y SUS CONSQUNCIAS. Tendencas esocáscas versus deermnsas. Concepos báscos. Parmos de la base que una sere emporal es la realzacón de un proceso esocásco. Tal y como vmos en los modelos

Más detalles

CARACTERISTICAS DE LAS FORMAS DE ONDA

CARACTERISTICAS DE LAS FORMAS DE ONDA AATISTIAS D LAS FOMAS D ONDA araceríscas de un pulso recangular: A 0.9A 0.1A r a r = rseme, empo de subda ó empo de respuesa f = fowardme, empo de caída a = ancho del pulso f 1 AATISTIAS D LAS FOMAS D

Más detalles

Cálculo y Estadística

Cálculo y Estadística Cálculo y Esadísca PROBABILIDAD, VARIABLES ALEATORIAS Y DISTRIBUCIONES ª Prueba de Evaluacón Connua 0--5 Tes en Moodle correspondene a la pare de Probabldad, Varables Aleaoras y Dsrbucones ( Punos).- Una

Más detalles

Consideraciones generales sobre dinámica estructural

Consideraciones generales sobre dinámica estructural Capíulo Consderacones generales sobre dnámca esrucural Inroduccón El obeo de la dnámca esrucural es el análss de esrucuras bao cargas dnámcas, es decr cargas que varían en el empo. Aunque la mayoría de

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

TRABAJO Y ENERGIA: IMPULSO

TRABAJO Y ENERGIA: IMPULSO TRABAJO Y ENERGIA: IMPULSO Un paquee de 10 kg cae de una rampa con v = 3 m/s a una carrea de 25 kg en reposo, pudiendo ésa rodar libremene. Deerminar: a) la velocidad final de la carrea, b) el impulso

Más detalles

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3

MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 MADRID / SEPTIEMBRE99. LOGSE / FÍSICA / ÓPTICA/OPCIÓN A/ CUESTIÓN 3 Una fuene lumnosa eme luz monocromáca de longud de onda en el vacío lo = 6 l0-7 m (luz roja) que se propaga en el agua de índce de refraccón

Más detalles

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2]

CAPITULO 2: Movimiento en una dirección [S.Z.F.Y. 2] UNIVERSIDAD TECNOLÓGICA NACIONAL Faculad Regional Rosario UDB Física Cáedra FÍSICA I CAPITULO : Movimieno en una dirección [S.Z.F.Y. ] Cinemáica: La Cinemáica se ocupa de describir los movimienos de los

Más detalles

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS.

CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. CINEMÁTICA: MOVIMIENTO RECTILÍNEO, OTROS DATOS. Una parícula se muee en la dirección posiia del eje X, de modo que su elocidad aría según la ley = α donde α es una consane. Teniendo en cuena que en el

Más detalles

FASCÍCULO: MATRICES Y DETERMINANTES

FASCÍCULO: MATRICES Y DETERMINANTES FSÍULO: MRIES Y DEERMINNES on el avance de la ecnología en especal con el uso de compuadoras personales, la aplcacón de los concepos de marz deermnane ha cobrado alcances sn precedenes en nuesros días.

Más detalles

Tema 3: Números índice

Tema 3: Números índice Tema : Números índce Los números ndce son ndcadores ue nos ermen ver la evolucón de una o más magnudes a ravés del emo, esaco, ec. Índce smle Dada una varable o magnud X, se defne el número índce de X

Más detalles

MUESTRAS CON ROTACIÓN DE PANELES

MUESTRAS CON ROTACIÓN DE PANELES 487 MUESTRAS CON ROTACIÓN DE PANELES THOMAS POLFELDT Consulor, INE Sueca (Sascs Sweden). 488 Muesras con roacón de paneles ÍNDICE Págna. Defncones Generales... 489. Por Qué una Muesra de Roacón?... 489

Más detalles

Estadística de Precios de Suelo

Estadística de Precios de Suelo Esadísca de Precos de Suelo Meodología Subdreccón General de Esadíscas Madrd, febrero de 2012 Índce 1 Inroduccón 2 Objevos 3 Ámbos de la esadísca 3.1 Ámbo poblaconal 3.2 Ámbo geográfco 3.3 Ámbo emporal

Más detalles

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica

Modulo II: Ondas. 1. Introducción a las Ondas 2. Ondas en cuerdas 3. Ondas sonoras y acústica . Inoduccón a las Ondas. Ondas en cuedas 3. Ondas sonoas acúsca Modulo II: Ondas. Ecuacón de ondas en una cueda ensa. Enegía de una onda en una cueda.3 Aenuacón.4 Refleón ansmsón de ondas.5 Supeposcón

Más detalles

Macroeconomía II. FCE-UBA Primer Examen Parcial Mayo 2015 INSTRUCCIONES. (Prof. D. Pierri)

Macroeconomía II. FCE-UBA Primer Examen Parcial Mayo 2015 INSTRUCCIONES. (Prof. D. Pierri) FCE-UA Prmer Examen Parcal Mayo 215 Macroeconomía II (Prof. D. Perr) INSRUCCIONES I. El examen consa de 1 punos con la sguene composcón: Ejercco 1 (3 punos), Ejercco 2 (4 punos), Ejercco 3 (3 punos). II.

Más detalles

Cálculo del area de intercambio del rehervidor y del condensador.

Cálculo del area de intercambio del rehervidor y del condensador. M.M.J. Págna 1 de 16 0 Sepembre 005 Revsón (0) Cálculo del area de nercambo del rehervdor y del condensador. Rehervdor. Procedmeno de dseño: En ese rabajo se preende proporconar un procedmeno sencllo,

Más detalles

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular.

CINEMÁTICA. 2/34 Pon dos ejemplos de movimientos con trayectoria rectilínea y de movimientos con trayectoria circular. CINEMÁTICA /34 Un ren pare de una esación. Una niña senada en su inerior lanza hacia arria una peloa y la recoge al caer. Diuja la rayecoria de la peloa al como la ven la niña y la jefe de esación siuada

Más detalles

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida.

Solución: El sistema de referencia, la posición del cuerpo en cada instante respecto a dicha referencia, el tiempo empleado y la trayectoria seguida. 1 Qué es necesario señalar para describir correcamene el movimieno de un cuerpo? El sisema de referencia, la posición del cuerpo en cada insane respeco a dicha referencia, el iempo empleado y la rayecoria

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del moimiento de los cuerpos.. Cuándo un cuerpo está en moimiento? Para hablar de reposo o moimiento hay

Más detalles

Es la velocidad de convergencia estable? Una aplicación a la convergencia en renta entre países de Europa del Este

Es la velocidad de convergencia estable? Una aplicación a la convergencia en renta entre países de Europa del Este Es la velocdad de convergenca esable? Una aplcacón a la convergenca en rena enre países de Europa del Ese Auores María Isabel González Marínez Unversdad de Murca Deparameno de Méodos Cuanavos para la Economía

Más detalles

Capitulo 9. Definición de condiciones de Viga en Cantilever. extremo fijo y por consiguiente su lado opuesto libre tal y como lo indica la siguiente

Capitulo 9. Definición de condiciones de Viga en Cantilever. extremo fijo y por consiguiente su lado opuesto libre tal y como lo indica la siguiente Capul 9. Defncón de cndcnes de Vga en Canlever a vga en canlever esa sujea a cndcnes de frnera mand en cnsderacón un exrem fj y pr cnsguene su lad pues lbre al y cm l ndca la sguene fgura: g. Dagrama de

Más detalles

PROBLEMAS EXTRA 5TO B PARA PREPARAR EL PRIMER PARCIAL

PROBLEMAS EXTRA 5TO B PARA PREPARAR EL PRIMER PARCIAL PROBLEMAS EXTRA 5TO B PARA PREPARAR EL PRIMER PARCIAL ADVERTENCIA: PARA QUE LA RESOLUCION DE ESTOS PROBLEMAS TENGA SENTIDO, DEBEN HACERSE DESPUÉS DE TERMINAR Y ENTENDER TODOS LOS QUE SE PROPONEN EN CLASE.

Más detalles

CIENCIA TECNOLOGÍA Y AMBIENTE

CIENCIA TECNOLOGÍA Y AMBIENTE CIENCIA TECNOLOGÍA Y AMBIENTE MOVIMIENTO RECTILÍNEO UNIFORMENTE VARIADO PROF: JAIME QUISPE CASAS I.E.P.Nº 874 Ex 45 03 MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO La luz y el sonio en su propagación por

Más detalles

MOVIMIENTO RECTILÍNEO

MOVIMIENTO RECTILÍNEO Transparencia Nº 1. CINEMÁTICA. MOVIMIENTO QUÉ ES EL MOVIMIENTO? Cambio de posición de un móvil con el iempo. TIPOS DE MOVIMIENTO Según su rayecoria Todo movimieno es RELATIVO Lo rápido del cambio lo indoca

Más detalles

Ondas y Rotaciones. Principios fundamentales II

Ondas y Rotaciones. Principios fundamentales II Ondas y Roaciones rincipios fundamenales II Jaime Feliciano Hernández Universidad Auónoma Meropoliana - Izapalapa México, D. F. 5 de agoso de 0 INTRODUCCIÓN. Generalmene el esudio del movimieno se realiza

Más detalles

90 km M B M A X F X E 90-Y-2X N MÓVIL A: M A V A

90 km M B M A X F X E 90-Y-2X N MÓVIL A: M A V A PROBLEMAS DE MÓVILES Problema 4: Dos móviles A Y B marchan con velocidad consane; A con velocidad V= km/h y B con velocidad V=5 km/h. Paren simuláneamene de M hacia N y en ese mismo insane pare de N hacia

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Acividades del final de la unidad ACTIVIDADES DEL FINAL DE LA UNIDAD. Dibuja las gráficas x- y v- de los movimienos que corresponden a las siguienes ecuaciones: a) x = +. b) x = 8. c) x = +. Calcula la

Más detalles

Figura 1.1 Definición de componentes de tensiones internas.

Figura 1.1 Definición de componentes de tensiones internas. . ELEMENTOS DE TENSORES CARTESIANOS. Inroduccón: Para descrbr endades o varables físcas se requere de valores o componenes. El número de componenes necesaras deermna la nauraleza ensoral de la varable.

Más detalles

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA)

ECUACIÓN DEL MOVIMIENTO (PARAMÉTRICA) CINEMÁTICA PUNTO MATERIAL O PARTÍCULA: OBJETO DE DIMENSIONES DESPRECIABLES FRENTE A LAS DISTANCIAS ENTRE ÉL Y LOS OBJETOS CON LOS QUE INTERACCIONA. SISTEMA DE REFERENCIA: CONUNTO BIEN DEFINIDO QUE, EN

Más detalles

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia

1.CINEMÁTICA. Movimiento Se define el movimiento como el cambio de posición de algo respecto a un sistema de referencia Magniudes fundamenales Son las magniudes que se pueden medir direcamene 1.CINEMÁTICA Definiciones Reposo Se define como el no cambiar de posición respeco a un sisema de referencia. No hay ningún cuerpo

Más detalles

7. CAPACITANCIA E INDUCTANCIA

7. CAPACITANCIA E INDUCTANCIA 7. APAITANIA E INDUTANIA 7.. INTRODUIÓN El elemeno paso e os ermnales que hemos so hasa el momeno, eso es la Ressenca, presena un comporameno lneal enre su olaje y correne. Eso prouce ecuacones algebracas

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades

Nota de Clase 5 Introducción a modelos de Data Panel: Generalidades oa de Clase 5 Inroduccón a modelos de Daa Panel: Generaldades. Por qué daos de panel? Los modelos de daos de panel son versones mas generales de los modelos de core ansversal seres de empo vsos hasa el

Más detalles

Energía potencial y conservación de la energía

Energía potencial y conservación de la energía Energía potencal y conservacón de la energía Mecánca y Fludos Proa. Franco Ortz 1 Contendo Energía potencal Fuerzas conservatvas y no conservatvas Fuerzas conservatvas y energía potencal Conservacón de

Más detalles

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V)

MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) MOVIMIENTO RECTILINEO UNIFORMEMENTE VARIADO (M.R.U.V) CONCEPTO.- Es aquel mimien en el cual un móil recrre espacis dierenes en iemps iguales, en ese cas aría la Velcidad pr l an aparece la aceleración.

Más detalles

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS

TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS TÉCNICAS METAHEURÍSTICAS. ALGORITMOS BASADOS EN NUBES DE PARTÍCULAS 3 39 Ssema de generacón elécrca con pla de combusble de óxdo sóldo almenado con resduos foresales y su opmzacón medane algormos basados

Más detalles

2 El movimiento y su descripción

2 El movimiento y su descripción El movimieno y su descripción EJERCICIOS PROPUESTOS. Una malea descansa sobre la cina ransporadora de un aeropuero. Describe cómo ve su movimieno un pasajero que esá: parado en la misma cina; en una cina

Más detalles

03) Rapidez de Cambio. 0302) Rapidez de Cambio

03) Rapidez de Cambio. 0302) Rapidez de Cambio Página 3) Rapidez de Cambio 3) Rapidez de Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Ocubre 7 Ocubre 7 Página A) Rapidez media de cambio Considere una canidad física (), como la mosrada

Más detalles

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis

Física I Apuntes de Clase 2, Turno D Prof. Pedro Mendoza Zélis Físca I Apuntes de Clase 2, 2018 Turno D Prof. Pedro Mendoza Zéls Isaac Newton 1643-1727 y y 1 y 2 j O Desplazamento Magntudes cnemátcas: v m r Velocdad meda r r 1 r 2 r velocdad s x1 2 r1 x1 + r2 x2 +

Más detalles

Diplomatura de Ciencias Empresariales. Estadística Económica. Sara Mateo.

Diplomatura de Ciencias Empresariales. Estadística Económica. Sara Mateo. Dlomaura de Cencas Emresarales. Esadísca Económca. Sara Maeo. úmeros Índces nroduccón: Una de las rncales areas de la esadísca es el análss de varables, ano consderadas ndvdualmene como en conjuno, ara

Más detalles

Circuitos Limitadores 1/8

Circuitos Limitadores 1/8 Crcuos Lmadores 1/8 1. Inroduccón Un crcuo lmador (recorador) es aquel crcuo que ene la capacdad de lmar pare de una señal de c.a. sn dsorsonar la pare resane de la señal. El crcuo lmador combna dodos

Más detalles

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t)

F(t) F(t) 1 Introducción a la Física Paralelos 10 y 13. Profesor RodrigoVergara R RAPIDEZ DE CAMBIO X ( ) ( ) F(t) Inroducción a la ísica Paralelos y 3. Profesor RodrigoVergara R RPIDEZ DE CMBIO Rapidez media de cambio Definir el concepo rapidez media de cambio nalizar arianes donde no es el iempo la ariable independiene

Más detalles

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME

GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME INSTITUTO NACIONAL Deparameno de Física Coordinación Segundo Medio 06. GUÍA DE MOVIMIENTO RECTILÍNEO UNIFORME NOMBRE: CURSO: Caracerísica general de M.R.U: Si una parícula se mueve en la dirección del

Más detalles

En este capítulo se presenta a detalle el esquema de relajación Lagrangeana utilizado para

En este capítulo se presenta a detalle el esquema de relajación Lagrangeana utilizado para CAPITULO 4 Descrpcón del algormo propueso En ese capíulo se presena a dealle el esquema de relaacón Lagrangeana ulzado para la obencón de coas nferores; así como ambén, la descrpcón de la heurísca prmal

Más detalles

Mecanismos de palanca. Apuntes.

Mecanismos de palanca. Apuntes. Mecansmos de palanca. Apunes. Oreses González Qunero Deparameno de Ingenería Mecánca Faculad de de Ingenerías Químca y Mecánca 2007 1 1.- Inroduccón. El análss de los mecansmos y máqunas ene por objevo

Más detalles