Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Solución: En ambos casos se observa que los determinantes de las matrices de coeficientes son distintos de cero. Veamos: a)"

Transcripción

1 Resolver el siguiene sisema: 9 Primero hallaremos los rangos de la marices formadas por los coeficienes del sisema de la mari formada por los coeficienes los érminos independienes después. sí: 9 rang Ya que la ercera fila es res veces la primera menos la segunda; 9 rang Ya que se conserva la misma combinación lineal. l ser los rangos iguales el sisema es compaible al ser el rango menor que el número de incógnias el sisema es indeerminado. Un menor de orden dos no nulo es: T Y el sisema es equivalene a, Discuir resolver los siguienes sisemas homogéneos: b) a) En ambos casos se observa que los deerminanes de las marices de coeficienes son disinos de cero. Veamos: a) b) En consecuencia, los sisemas homogéneos son compaibles deerminados, pues el rango de la mari de coeficienes de cada sisema necesariamene coincide con el rango de la mari ampliada de cada sisema. Los sisemas sólo admien la solución rivial.

2 Si enemos un sisema compaible indeerminado de dos ecuaciones lineales con dos incógnias, se puede conseguir un sisema incompaible añadiendo una ercera ecuación? Eplicar la respuesa dar un ejemplo. Sí se puede conseguir. asa con añadir una ecuación conradicoria con las oras dos. Por ejemplo: Es un sisema compaible indeerminado. Si añadimos una ercera ecuación conradicoria a esas dos se endrá un sisema incompaible: Clasificar en función del número de soluciones los siguienes sisemas de ecuaciones lineales: c) ; b) ; a) Dada la mari del sisema: a) Se sabe que el sisema iene infinias soluciones, pues las ecuaciones ª ª coinciden ( ). Dada la mari del sisema: b) Se sabe que el sisema no iene solución, pues las dos úlimas ecuaciones son incompaibles, por ano, incompaible el sisema. Dada la mari del sisema: c) Se sabe que el sisema iene solución única, a que es compaible deerminado.

3 Deerminar, para que el sisema propueso enga: a) solución única b) infinias soluciones ( ) ( ) ( ) Dada la mari de coeficienes del sisema, ( ) Se iene que su deerminane es: ( ) ( ) 7 ( )( )( ) si el deerminane no es nulo, r () número de incógnias, es decir, si es disino de,, -, eise una única solución, la rivial (,, ). si el deerminane es nulo, es decir, o, -, ha infinias soluciones. Discue el sisema de ecuaciones propueso según los valores del parámero :

4 Dada la mari de coeficienes del sisema: Se iene que su deerminane es: Si es nulo, enonces - o. si -, Y la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r (). Orlando ese menor la ercera fila la cuara columna de enemos: Y en consecuencia r () disino de r (). El sisema es incompaible, no iene solución. si, Y la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r () Como resula de M añadiendo una columna de ceros enemos que: r () r () < número de incógnias. El sisema es compaible indeerminado, iene infinias soluciones. si el deerminane no es nulo, no vale - ni, r () r () nº de incógnias. El sisema es compaible deerminado.

5 7 Deermina para qué valores del parámero, el sisema: ) ( ) ( a) es compaible b) es incompaible Obenemos primero la mari de los coeficienes,, la mari ampliada,. ; Calculemos el rango de. Tomando el menor de orden formado a parir de las primera segunda filas columnas enemos que: Por ano, r () disino de para odo. Tomando desarrollando el menor de orden : Se iene que: ) )( ( ) ( ) ( Por ano, si ( - )( - ), r () ; si ( - )( - ), r (). Es decir: si o, r (); si es disino de, r (). Veamos qué pasa con el rango de para esos valores: Si, r (), pues la primera fila es igual a la ercera además el menor. Si, Y r (). Veamos si es dos o res calculando los menores de orden : ) ( ) ( Luego r ().

6 Discuir, según los valores del parámero, el sisema de ecuaciones lineales:

7 Dada la mari de coeficienes del sisema: Se iene que su deerminane es: Si es nulo, enonces ±. Si -: Y la mari ampliada queda como: Dado que el deerminane de es nulo el menor: r (). Orlando ese menor la ercera fila la cuara columna de enemos: Luego r () disino de r (). El sisema es por ano incompaible, no iene solución. Si : Y la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r (). Orlando ese menor la primera fila la cuara columna de enemos: Luego r () disino de r (). El sisema es incompaible, sin solución. Si el deerminane no es nulo, eso es no vale o -, enemos un SCD 7

8 9 Deermina la epresión general de odos los números eneros que pueden ser descompuesos en cuaro números naurales disinos, ales que sumando al primero, resando al segundo, muliplicando por al ercero dividiendo por al cuaro, se obengan resulados iguales. Sean,,, los cuaro números naurales del enunciado. Dadas las condiciones del enunciado se iene que: ; De donde surge el siguiene sisema: Obenemos ahora la mari de coeficienes () la mari ampliada () del sisema: ; Tano en como en se ienen las siguienes relaciones: la cuara fila es igual a la segunda menos la primera la quina fila es igual a la ercera menos la primera la sea fila es igual a la ercera menos la segunda En consecuencia, r () r (). Dado que el menor de orden formado por las primera segunda filas columnas de no es nulo, r (). Y dado que el menor de orden formado a parir del anerior:, r (). Luego el r () no puede ser ni menor que, por lo que r () r () < número de incógnias. sí pues, el sisema es compaible indeerminado. Obenemos sus soluciones al resolver el sisema equivalene al propueso: ; ; La epresión general de los números pedidos es: La solución es,, 9 > (El número múliplo de para que siempre se obenga un número enero)

9 Discue el sisema (m ) (m ) en función del parámero m resuélvelo cuando sea posible. Si m m -, S.C.D. Solución Si m, S.C.I. -,, Si m -, S.C.I. Solución,, n n Discue el sisema en función del parámero n resuélvelo cuando sea posible. (n n) n n (n ) Si n n, S.C.D., n n Si n, S.I. Si n, S.C.I. -9 -, Discuir para los disinos valores del parámero n el sisema: n n n n n 9

10 Dada la mari del sisema: n n n n n n n n n Se iene que: si n, el sisema es incompaible, la primera ecuación carece de senido. si n, sólo queda la ecuación -, de donde se sabe que el sisema es compaible indeerminado con solución -,, si n n, las dos ecuaciones permanecen, el sisema es compaible indeerminado. Se iene el siguiene sisema: /n Con solución /n,, Deermina m para que sea compaible el sisema: (m ) m m

11 Obenemos primero la mari de los coeficienes,, la mari ampliada,, del sisema: (m) (m) ; m m m Debemos deerminar los valores de m para los que r () r (). Calculemos el deerminane de. (m) (m) (m) m ( ) m 9 () () m m () m () (m) m 9 (m) ( m)( m 9) m m (m )(m ) (m) m m Tomando el menor de orden formado a parir de las primera segunda filas columnas enemos que Si omamos un valor de m o m se iene que el deerminane es cero por lo ano r (), pero si se oman valores disinos a esos el deerminane no es cero por lo ano r (). Veamos ahora qué pasa con odos esos valores en cuano al rango de. si m, la mari queda como: Calculando el siguiene menor de orden enemos: En consecuencia, r () r (). si m, la mari queda como: Calculando el siguiene menor de orden enemos: En consecuencia, r () r (). si m disino de r () r () eso es SCD Dado el sisema: a Discuir si eise algún valor del parámero a para el cual el sisema sea compaible indeerminado.

12 Escribimos primero la mari de coeficienes, M, la mari ampliada, M*, del sisema: a M* ; a M El sisema será compaible indeerminado si r (M) r (M*) < número de incógnias. Calculemos el deerminane de M: M a 9 - a a. Pueso que el deerminane debe ser igual a cero, - a enonces a. Dado que el menor enonces si a, rango(m). Veamos como queda M* si a : M* ) ( enonces r (M*) r (M). En conclusión, no ha ningún valor de a que haga el sisema compaible indeerminado. Esudiar para qué valores de es compaible el sisema siguiene, resolviéndolo para cuando sea indeerminado: / Dada la mari del sisema realicemos las ransformaciones elemenales indicadas: / I I;III() II() Se iene que, si disino de -/, el sisema es compaible deerminado. si -/, sólo queda la ecuación -, de donde se sabe que el sisema es compaible indeerminado con solución, Discue el sisema de ecuaciones propueso según los valores del parámero.

13 Dada la mari de coeficienes del sisema, Se iene que su deerminane es: ) 7 ( Si es nulo, enonces - o -/. si -, la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r (). Orlando ese menor la ercera fila la cuara columna de enemos: en consecuencia r () r () < nº de incógnias. El sisema es compaible indeerminado. si -/ Y la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r (). Orlando ese menor la segunda fila la cuara columna de enemos: 9 Y en consecuencia r () disino de r (). El sisema es incompaible. si el deerminane no es nulo, es disino de -, -/, r () r () nº de incógnias. El sisema es compaible deerminado.

14 7 parir de los diferenes valores de, discue el siguiene sisema de ecuaciones.

15 Dada la mari de coeficienes del sisema, Se iene que su deerminane es: ) 7 ( Si es nulo, enonces - o -/. si -, la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r (). Orlando ese menor la ercera fila la cuara columna de enemos: en consecuencia r () r () < nº de incógnias. El sisema es compaible indeerminado. si -/ Y la mari ampliada queda como: Dado que el deerminane de es nulo el menor:, r (). Orlando ese menor la segunda fila la cuara columna de enemos: 9 Y en consecuencia r () disino de r (). El sisema es incompaible. si el deerminane no es nulo, disino de -, -/, r () r () nº de incógnias. El sisema es compaible deerminado.

16 Sean S S' dos sisemas de ecuaciones lineales con la misma mari de coeficienes. Jusificar con un ejemplo que uno de los dos sisemas puede ser compaible el oro incompaible. Si ambos sisemas son compaibles, puede ser uno deerminado el oro indeerminado? Raonar las respuesas. Sea S S' los sisemas que siguen, ambos con la misma mari de coeficienes M: M 7 S' S Se observa que r (M) pueso que: Las marices ampliadas correspondienes son: 7 N' N Observamos que el deerminane de N es igual cero por lo ano r (N) r (M), luego el sisema es compaible; pero el deerminane de N' es, disino de cero por lo ano r (N') disino de r (M), luego el sisema es incompaible. 9 Esudiar la compaibilidad de los siguienes sisemas de ecuaciones lineales: c) ; b) ; a)

17 a) El rango de la mari de coeficienes es dos, pues la mari del sisema: es equivalene a la mari: 9 Cuo rango es dos. La mari ampliada: Tiene rango dos. Enonces, el Teorema de Rouchè esablece que el sisema es compaible ( deerminado, pues el número de incógnias coincide con el rango). b) El rango de la mari de coeficienes es uno, pues la segunda fila se obiene muliplicando la primera por -. El rango de la mari ampliada es uno, pues: Enonces se iene un sisema compaible. c) El rango es uno, de la mari de coeficienes: Pues: El rango de la mari ampliada es dos, pues: Enonces se iene un sisema incompaible. Escribir un sisema de dos ecuaciones lineales con dos incógnias que sea incompaible, compruebe la incompaibilidad. Es evidene que el siguiene sisema es incompaible: Efecivamene si operamos con marices se iene que: De donde la ecuación no iene solución. 7

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014

ÁLGEBRA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE ÁLGEBRA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014 ÁLGEBR (Selecividad 04) LGUNOS PROBLEMS DE ÁLGEBR PROPUESTOS EN LS PRUEBS DE SELECTIVIDD DE 04 Casilla y León, junio 4 a a+ a+ Sea la mariz = a a+ 3 a+ 4 a a+ 5 a+ 6 a) Discuir su rango en función de los

Más detalles

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D.

MATEMÁTICAS II. ANDALUCÍA Pruebas de acceso a la Universidad SOLUCIONES 1. (2001-1A-3) Tienen inversa las matrices A y D. MTEMÁTICS II NDLUCÍ Pruebas de acceso a la Universidad ÁLGEBR SOLUCIONES. (--) Tienen inversa las marices y D. = y D =. (-B-) a) Rango de. Si a y Si a = o Sisema = B a, ( ) R = a =, ( ) R = Si a y a, S.C.D.

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS.

TEMA 1: SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. TEMA : SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS. RELACIÓN DE PROBLEMAS. Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: a) Compaible deerminado b)

Más detalles

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz.

Ejercicios Selectividad Matemáticas Apl. CCSS II. Operaciones con matrices. Matrices inversas. Ecuaciones matriciales. Rango de una matriz. Ejercicios Selecividad Maemáicas pl. SS II loque: Álgebra lineal. MTRIES Operaciones con marices. Marices inversas. Ecuaciones mariciales. Rango de una mari.. Si son dos marices cualesquiera, es correca

Más detalles

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo

MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS y = C, siendo MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA CURSOS 0- y 0 - Ejercicio. (Examen Junio 0 Específico Opción A) ['5 punos] Considera las marices 0 A = 0 B = 0 0 y C = 0 Deermina, si exise, la mariz X

Más detalles

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES

MATEMÁTICAS I. TEMA 1: ECUACIONES Y SISTEMAS DE ECUACIONES Cód. 87 Avda. de San Diego, 8 Madrid Tel: 978997 98 Fa: 9789 Email: rldireccion@planalfa.es de No se auoria el uso comercial de ese Documeno. MATEMÁTICAS I. TEMA : ECUACIONES Y SISTEMAS DE ECUACIONES..

Más detalles

Unidad 5 Geometría afín en el espacio

Unidad 5 Geometría afín en el espacio Unidad 5 Geomería afín en el espacio 5 SOLUCIONES. a) Los componenes de los vecores pedidos son: b) Eisen infinias parejas de punos C D que cumplan la condición pedida. Por ejemplo, C(,,) D (,,). c) Sea

Más detalles

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x

C cos x sen x 0 x sen x x cos x x sen x cos x x C 1 x 0. Calculamos la matriz adjunta de C: sen x 0 cox 0 cos x sen x. sen x x 1 x 1 sen x Prueba de Acceso a la Universidad. SEPTIEMBRE. Maemáicas II. Insrucciones: Se proponen dos opciones A y B. Debe elegirse una y conesar a sus cuesiones. La punuación de cada cuesión aparece en la misma.

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

XA + A B = A, siendo 0 0 1

XA + A B = A, siendo 0 0 1 MATEMÁTICAS II PROBLEMAS DE ÁLGEBRA PAU ANDALUCÍA Ejercicio. (Examen Junio 202 Específico Opción A) 2 0 [2'5 punos] Considera las marices AA = 0 2, BB = 0 2 0 y CC = 0 2. 2 Deermina, si exise, la mariz

Más detalles

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos:

1. Realizando las operaciones indicadas y aplicando la igualdad de matrices, obtenemos: Unidad 1 Marices 5 SOLUCIONES 1. Realizando las operaciones indicadas y aplicando la igualdad de marices, obenemos: Resolviendo el sisema, a = 5, b = 12, c = 6, d= 4. 2. La solución en cada caso queda:

Más detalles

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer.

El sistema es incompatible. b) El sistema es compatible determinado. Lo resolvemos por la regla de Cramer. Prueba de Acceso a la Universidad. JUNIO 0. Maemáicas II. El alumno debe responder a una de las dos opciones propuesas, A o B. En cada preguna se señala la punuación máima. OPCIÓN A a y z A. Sean a un

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente:

Unidad 1 Matrices PÁGINA 7 SOLUCIONES. 1. La resolución de los sistemas puede expresarse de la forma siguiente: Unidad 1 Marices PÁGINA 7 SOLUCIONES 1. La resolución de los sisemas puede expresarse de la forma siguiene: La segunda mariz proporciona la solución x = 5,y = 6. La úlima mariz proporciona la solución

Más detalles

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n:

{ } n 2 n n. n n n n. n n 3 n. a b c. A = = ; calcular el valor de 2, 2 t t. a Calcular el siguiente determinante de orden n: EJERCICIOS. PLICCIONES DE LOS DETERMINNTES.. Calcular el siguiene deerminane de orden n: n n n n n n n n n n n n n. Demosrar que si es una mariz al que n n, se verifica lo anerior? =, enonces. Y si es

Más detalles

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3.

DETERMINANTES. DETERMINANTES DE ORDEN 1, 2 y 3. Determinantes de orden 1. Determinantes de orden 2. Determinantes de orden 3. DETERMINNTES DETERMINNTES DE ORDEN 1, 2 y 3 El deerminane de una mariz cuadrada es un número real asociado a dicha mariz que se obiene a parir de sus elemenos. Lo denoamos como de () o. Llamamos orden

Más detalles

Ecuaciones Matriciales y Determinantes.

Ecuaciones Matriciales y Determinantes. Ecuaciones Mariciales y Deerminanes. Ecuaciones Mariciales. Tenemos que obener la mariz incógnia, que generalmene se denoa como X, despejándola de la igualdad. Para conseguirlo enemos las siguienes reglas:

Más detalles

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015

ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2015 GEOMETRÍA (Selecividad 15) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 15 1 Andalucía, junio 15 Sean los punos A(, 1, 1), B(, 1, ), C( 1,, ) y D(, 1, m) a) [,75 punos]

Más detalles

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4

x + y + 3z = 0 y = 1, z = 0 x = 1 z = 1= x = 10 = 4 Marices ANTES DE COMENZAR RECUERDA resuelve esos sisemas. a) x + y + z x y z x y + z b) y + z x + y z x y z 7 a) x + y + z x x y z y z ( yz) y z x y + z yz y+ z y 7z y 7z 6z z z y z y x + y + z y, z x

Más detalles

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz

Elementos de Cálculo Numérico (Ciencias Biológicas) Trabajo Práctico N 5 Subespacios, Rango de una matriz Elemenos de álculo Numérico Trabajo Prácico N o Elemenos de álculo Numérico (iencias Biológicas) Trabajo Prácico N Subespacios, Rango de una mariz Deerminar cuáles de los siguienes subconjunos son subespacios

Más detalles

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales

Soluciones a los ejercicios propuestos Unidad 3. Ecuaciones, inecuaciones y sistemas Matemáticas aplicadas a las Ciencias Sociales Soluciones a los ejercicios propuesos Unidad cuaciones inecuaciones sisemas Maemáicas aplicadas a las Ciencias Sociales CUACIONS D SGUNDO GRADO Resuelve e inerprea gráficamene las soluciones de las ecuaciones:

Más detalles

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1

rango( A ) = 3 porque A tiene sólo 3 filas y A contiene a A Es un SI A = F3 F Página 1 º BACHILLERATO B MATEMÁTICAS II RESOLUCIÓN EJERCICIOS DE ÁLGEBRA SELECTIVIDAD 5 (Profesor: Rafael Núñez) Considera el sisema dado por AX = B α x A = B = α y X = y 3 4 α 3 z a) [ 75 punos] Deermina, si

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO 2011 (GENERAL) (RESUELTOS por Antonio Menguiano) Tiempo máximo: 1 horas y 30 minutos IES CSTELR BDJOZ PRUEB DE CCESO (LOGSE) UNIVERSIDD DE BLERES JUNIO (GENERL) (RESUELTOS por nonio Menguiano) MTEMÁTICS II Tiempo máimo: horas y minuos Conese de manera clara y razonada una de las dos opciones

Más detalles

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante

MATEMÁTICAS II Examen del 28/05/2012 Solución Importante MATEMÁTICAS II Examen del 8/05/0 Solución Imporane Las calificaciones se harán públicas en el aula virual el 08/06/0. La revisión será el /06/0 y el /06/0 de -3 horas en la sala D-4-. MATEMÁTICAS II 8/05/0

Más detalles

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho

IES CASTELAR BADAJOZ Examen Junio de 2011(General) Solución Antonio Mengiano Corbacho IES CASTELAR BADAJOZ Eamen Junio de (General) Anonio Mengiano Corbacho PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE BALEARES JUNIO (GENERAL) MATEMÁTICAS II Tiempo máimo: horas y minuos Conese de manera clara

Más detalles

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis.

Matrices Matriz: Es el ordenamiento rectangular de escalares en filas y columnas, encerradas en un corchete ó paréntesis. Marices Mariz: Es el ordenamieno recangular de escalares en filas y columnas, encerradas en un corchee ó parénesis. Las marices se designan así: æa11 a1 a13 a1 n ö a1 a a3 an a31 a3 a33 a 3n am 1 am am3

Más detalles

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3

(a-3)x+(a-2)y+2z=-1 (2a-6)x+(3a-6)y+5z=-1 (3-a)x+(a-2)z=a 2-4a+5. a-3. a 2-4a a 2-4a+3 EXTRAORDINARIO DE 8. PROBLEMA A. Esudia el siguiene sisema de ecuaciones lineales dependiene del parámero real a y resuélvelo en los casos en que es compaible: Aplicamos el méodo de Gauss: a-3 (a-3) 3-a

Más detalles

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1

1 a 1 a 1. 0 a 1 a a 0. 0 a 1 a 1 a a 1 a 1 a 1 a 1 a a 1 a 1 a 1 a 1. a 1 a 1 a 1 a 1 0 a 1, a 1 Pruebas de Apiud para el Acceso a la Universidad. JUNIO 1998. Maemáicas II. OPCIÓN A 1. Discuir el sisema a z solución del mismo cuando a = [1 puno] (a 1) y a z 1 (a 1) y (a 1) z según sea el valor del

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES Tema 1 ECUACIONES DIFERENCIALES EJERCICIO 1 Comprobar que la función y() = c 2 ++3 es una solución del problema de valor inicial 2 y 2y + 2y = 6, y(0) = 3, y (0) = 1, (1.1) en <

Más detalles

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS

PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS Maemáicas Problemas resuelos por el Méodo de Gauss PROBLEMAS RESUELTOS POR EL MÉTODO DE GAUSS ) Resolver el siguiene sisema por Gauss Para resolver el sisema por el méodo de Gauss, hemos de riangulariarlo.

Más detalles

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Prácicas de Maemáicas II con DERIVE-5 16 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

IES Fernando de Herrera Curso 2013 / 14 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE:

IES Fernando de Herrera Curso 2013 / 14 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE: IES ernando de Herrera Curso / Primer rimesre - Primer eamen º Bach CCSS NOMBRE: ) Clasifique el siguiene sisema de ecuaciones resuélvalo, si es posible. Además, si uviera más de una solución, diga dos

Más detalles

Unidad 4 Espacios vectoriales. Aplicaciones lineales

Unidad 4 Espacios vectoriales. Aplicaciones lineales Unidad 4 Espacios vecoriales. Aplicaciones lineales 5 6 SOLUCIONES. Las propiedades asociaiva y conmuaiva se verifican ya que la suma de números reales que se esablecen en los elemenos de las marices cumple

Más detalles

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea:

Método de Gauss. Pon un ejemplo, cuando sea posible, de un sistema de dos ecuaciones con tres incógnitas que sea: Méodo de Gauss Ejercicio nº.- Pon un ejemplo, cuando sea posible, de un sisema de dos ecuaciones con res incógnias que sea: compaible deerminado compaible indeerminado c) incompaible Jusifica en cada caso

Más detalles

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES

4º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES º ESO ACADÉMICAS ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una lera (incógnia o variable). El valor de la variable que

Más detalles

EJERCICIOS DE VECTORES

EJERCICIOS DE VECTORES EJERCICIOS DE ESPACIOS VECTORIALES CURSO 0-0 CONCEPTO DE ESPACIO VECTORIAL EJERCICIOS DE VECTORES. En el conjuno se definen las operaciones siguienes: x y x y x x y y x y x Suma + :, ', ' ', ' Produco

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio, Opción Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

9. SISTEMAS DE ECUACIONES LINEALES.

9. SISTEMAS DE ECUACIONES LINEALES. Sisemas de ecuaciones lineales. 15 9. SISTEMAS DE ECUACIONES LINEALES. En ese aparado vamos a analiar los conenidos básicos para la discusión resolución de sisemas de ecuaciones lineales. 9.1.DISCUSIÓN

Más detalles

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t

ω ω ω y '' + 3 y ' y = 0 en la que al resolver se debe obtener la función y. dx = + d y y+ m = mg k dt d y dy dx dx = x y z d y dy u u x t t E.D.O para Ingenieros CAPITULO INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES Las ecuaciones diferenciales son ecuaciones en las que conienen derivadas, Por ejemplo: '' + ' = en la que al resolver se debe

Más detalles

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante

MATEMÁTICAS II. Examen del 11/09/2006 Soluciones. Importante MATEMÁTICAS II Examen del /09/006 Soluciones Imporane Las calificaciones se harán públicas en la página web de la asignaura y en el ablón de anuncios del Dpo. de Méodos Cuaniaivos en Economía y Gesión,

Más detalles

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA

GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA GRÁFICA DE CURVAS EN FORMA PARAMÉTRICA Una curva C se dice definida paraméricamene por medio de un parámero, si las coordenadas afines de sus punos M se expresan en función de ese parámero, cuando varía

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013

ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN 2013 GEOMETRÍA (Selecividad ) ALGUNOS PROBLEMAS DE SELECTIVIDAD PROPUESTOS EN Aragón junio a) Pueden eisir vecores u v ales que u v u v = 8? Jusifica la respuesa b) Deermina odos los posibles vecores u = (a

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 4, Opción

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Escribe una mariz A de orden 4 al que: i + j si i > j aij ij si i j i ( j) si i < j Haciendo los cálculos correspondienes enemos 6 9 8 A 5 4. Los

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de mari. Una mari de orden m n es un conjuno de m n elemenos perenecienes a un conjuno, que para nosoros endrá esrucura de cuerpo conmuaivo y lo denoaremos por K, dispuesos en m filas

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma:

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales. Un sistema de ecuaciones lineales es un conjunto de ecuaciones lineales de la forma: Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Sistemas de Ecuaciones Lineales 1) SISTEMAS DE ECUACIONES LINEALES Un sistema de ecuaciones lineales es un conjunto de ecuaciones

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Soluciones modelo (Sepiembre de 009) Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f( ) -+. Deermina la asínoa de la gráfica Evidenemene, la función no iene asínoas vericales,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES Junio, Ejercicio 3, Opción B Reserva 2, Ejercicio 3, Opción A Reserva 3, Ejercicio 3, Opción B Reserva 4,

Más detalles

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0

y + y = tan(x) + 3x 1. Solución: Primero resolvamos la ecuación diferencial homogénea: y + y = 0 Semesre Primavera Jueves, 4 de Noviembre PAUTA SOLEMNE N ECUACIONES DIFERENCIALES Encuenre la solución general de la ecuación y + y an(x) + 3x Solución: Primero resolvamos la ecuación diferencial homogénea:

Más detalles

SEGUNDO EXAMEN EJERCICIOS RESUELTOS

SEGUNDO EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II (G I T I SEGUNDO EXAMEN 13 1 EJERCICIOS RESUELTOS EJERCICIO 1 Considera el cuerpo de revolución que se genera al girar alrededor del eje OX la gráfica de la función x α f(x = x (, + (x +

Más detalles

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos

CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.1. Introducción 5.2. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resueltos CAPÍTULO 5. INTEGRACIÓN DE FUNCIONES TRIGONOMÉTRICAS 5.. Inroducción 5.. Cambios de variable 5.3. Transformación en sumas 5.4. Problemas resuelos 5.5. Inegración por recurrencia Capíulo 5 Inegración de

Más detalles

( ) ( 15 50) 0

( ) ( 15 50) 0 PRUE DE CCESO L UNIVERSIDD JUNIO 7 OPCION ) Deermina dos números reales posiivos sabiendo que su suma es y que el produco de sus cuadrados es máximo. Sean x e y los números reales que suman y P x y odos

Más detalles

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m

n. Los elementos a La matriz anterior tiene m filas y n columnas. Se suele decir que es de orden o dimensión m . Primeras definiciones Una mariz es un conjuno de elemenos (números) ordenado en filas y columnas. En general una mariz se nombra con una lera mayúscula y a sus elemenos con leras minúsculas indicando

Más detalles

Autómata Finito de 4 Estados y una Variables de Entrada.

Autómata Finito de 4 Estados y una Variables de Entrada. Auómaa Finio de 4 Esados y una Variables de Enrada. Vamos a diseñar un Auómaas Finio (AF) mediane el Procedimieno General de ínesis y a implemenarlo usando bieables D y cuanas pueras lógicas sean necesarias..

Más detalles

5. Planos y rectas en el espacio

5. Planos y rectas en el espacio 5. Planos recas en el espacio ACTIVIDADES INICIALES 5.I Calcula el valor de los siguienes deerminanes a) 5 b) 5 4 c) d) 5.II Esudia la compaibilidad de los siguienes sisemas resuélvelos en los casos en

Más detalles

IES Fernando de Herrera Curso 2017 / 18 Primera evaluación - Prueba de observación continua escrita nº 1 II Bach CCSS NOMBRE:

IES Fernando de Herrera Curso 2017 / 18 Primera evaluación - Prueba de observación continua escrita nº 1 II Bach CCSS NOMBRE: IES Fernando de Herrera Curso 7 / 8 Primera evaluación - Prueba de observación coninua escria nº II Bach CCSS NOMBRE: Insrucciones: ) Todos los folios deben ener el nombre y esar numerados en la pare superior.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA : ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son

Sean A y B dos matrices cuadradas de orden 3 cuyos determinantes son TEMA : MATRICES Y DETERMINANTES 0.- 0 Dada la mariz A a) Calcula los valores de para los que la mariz A A no iene inversa. b) Para 0, halla la mariz X que verifica la ecuación AX A I, siendo I la mariz

Más detalles

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1

Unidad Nº 1 Sistemas de ecuaciones. Método de Gauss 1 Unidd Nº Sisems de ecuciones. Méodo de Guss Memáics plicds ls Ciencis Sociles II. ANAYA JRCICIOS PROPUSTOS (págin Sin resolverlos, son equivlenes esos sisems? b, d c ---oooo--- Se r de prir de uno de los

Más detalles

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C.

EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. 3t t dt 3 dt 3t C 3 x2 1 C. 2 2x 2 1 dx 1 arctg 2x C. 5x dx arctg 5x3 C. Ln t C Ln Ln x C. EJERCICIOS RESUELTOS DE INTEGRALES INDEFINIDAS. Para resolverla planeamos la susiución, de la que se sigue que d. Por ano,. 5 5.986 d d d C C. 5 5.986 Ln 5.986 C.. arcg C.. 5 5. 5 6 5 5 6 5 5 arcg5 C.

Más detalles

Matemáticas aplicadas a las Ciencias Sociales

Matemáticas aplicadas a las Ciencias Sociales Maemáicas aplicadas a las Ciencias Sociales UNIDAD : Polinomios. Fracciones algebraicas ACTIVIDADES-PÁG.. El valor = es la solución de la primera ecuación. El valor = es solución de la segunda ecuación,

Más detalles

Geometría Vectorial, Afín y Euclídea

Geometría Vectorial, Afín y Euclídea Geomería Vecorial, Afín Euclídea PROBLEMAS CLASIFICADOS DE ESPACIOS VECTORIALES, AFIN Y EU- CLIDEO PROPUESTOS EN LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD. VECTORES. COMBINACIONES LINEALES. DEPENDENCIA LINEAL.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 3: ESPACIO AFÍN Y EUCLÍDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA : ESPACIO AFÍN Y EUCLÍDEO Junio, Ejercicio, Opción A Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva, Ejercicio 4, Opción

Más detalles

ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( )

ECUACIONES DE 1º GRADO 1. Resuelve las siguientes ecuaciones de 1º grado en función de los parámetros que llevan: ; ( ) ECUACIONES DE º GRADO. Resuelve las siguienes ecuaciones de º grado en función de los parámeros que llevan a) a b ( c) b) b ( a) a( b) c) ( b a) a b b d) a a 7 a e) a b b a a. a b ( c). Para resolver la

Más detalles

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS.

5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. Espacios vesoriales euclídeos. Proyecciones orogonales. Mínimos cuadrados. 5. ESPACIOS VECTORIALES EUCLÍDEOS. PROYECCIONES ORTOGONALES. MÍNIMOS CUADRADOS. SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA.-

Más detalles

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce (rafael.dearce@uam.es) INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros

Más detalles

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009

EXAMEN DE MATEMÁTICAS I (Primer Parcial) 11 de febrero de 2009 EXAMEN DE MATEMÁTICAS I (Primer Parcial) de febrero de 9 Sólo una respuesa a cada cuesión es correca. Respuesa correca:. punos. Respuesa incorreca: -. punos Respuesa en blanco: punos.- Sea ABC un riángulo

Más detalles

Geometría del espacio

Geometría del espacio Geomería del espacio º) Dados los vecores u = (,, ) v = (,, ), calcula: a) sus módulos. b) su produco escalar. c) el coseno del ángulo que forman. d) el valor de w para que el vecor w (w,, ) sea perpendicular

Más detalles

Posiciones relativas entre rectas y planos

Posiciones relativas entre rectas y planos Maemáicas II Geomeía del espacio Posiciones elaivas ene ecas planos Obsevación: La maoía de los poblemas esuelos a coninuación se han popueso en los eámenes de Selecividad.. Discui según los valoes del

Más detalles

Opción A Ejercicio 1.-

Opción A Ejercicio 1.- Colegio Lux Mundi (Cajar-Granada) Examen Sepiembre de 009 Javier Cosillo Iciarra Opción A Ejercicio.- ['5 punos] Se considera la función f: [, + ) R definida por f ( x ) x -x+x. Deermina la asínoa de la

Más detalles

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1:

PROBLEMA 3. a) Determina el valor de a para que la siguiente función sea continua en x = 1: EXAMEN COMPLETO Baremo: Se elegirá el o el EJERCICIO B, del que SOLO se harán TRES de los cuaro problemas. LOS TRES PROBLEMAS PUNTÚAN POR IGUAL. Cada esudiane podrá disponer de una calculadora cienífica

Más detalles

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE:

IES Fernando de Herrera Curso 2014 / 15 Primer trimestre - Primer examen 2º Bach CCSS NOMBRE: IES Fernando de Herrera Curso / Primer rimesre - Primer eamen º Bach CCSS NOMBRE: ) a) Clasificar el siguiene sisema de ecuaciones en función del parámero a: (, pos) a a b) Resolverlo cuando a. (, punos)

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES IES Padre Poveda (Guadi) Maemáicas plicadas a las SS II EJERIIOS UNIDDES : MTRIES Y DETERMINNTES (6-M--) a) ( punos) Si es una mariz de dimensión m n, indique la dimensión de una I mariz si se verifica

Más detalles

a) en [0, 2] ; b) en [-1, 1]

a) en [0, 2] ; b) en [-1, 1] UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO FACULTAD DE CIENCIAS NATURALES CATEDRA: Maemáica I CURSO: 04 TRABAJO PRACTICO Nº -Tercera Pare Pare III. Aplicaciones de la derivada TEOREMA DE ROLLE

Más detalles

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas

1. Desarrollo Preguntas. Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Universidad Simón Bolívar Deparameno de Maemáicas Puras y Aplicadas Maemáicas IV (MA-5 Sepiembre-Diciembre 8 4 ra Auoevaluación Maerial Cubiero: La presene auoevaluación versa sobre el maerial cubiero

Más detalles

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES hp://elefonica.ne/web/imm EJERCICIOS DE ECUACIONES EN DIFERENCIAS PROPUESTOS EN EXÁMENES.- En las ecuaciones lineales en diferencias, enemos el modelo de la elaraña, que se refiere a la versión discrea

Más detalles

Material sobre Diagramas de Fase

Material sobre Diagramas de Fase Maerial sobre Diagramas de Fase Ese maerial esá dedicado a los esudianes de Conrol 1, para inroducirse a los diagramas de fase uilizados para el Análisis de Esabilidad de los punos de equilibrio del sisema

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-07-2-V--00-208 CURSO: Maemáica Inermedia CÓDIGO DEL CURSO: 07 SEMESTRE: Primer Semesre JORNADA: Vesperina

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMS RESUELTOS SELECTIVIDD NDLUCÍ 0 MTEMÁTICS II TEM : MTRICES Y DETERMINNTES Junio, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva, Ejercicio 3, Opción B Reserva, Ejercicio 3, Opción Reserva

Más detalles

Fundamentos Básicos Sistemas y Señales

Fundamentos Básicos Sistemas y Señales Fundamenos Básicos Sisemas y Señales Preparado por : jhuircan Depo. Ingeniería Elécrica Universidad de La Fronera Objeivos q Revisar los concepos básicos de la Teoría de Sisemas q Revisar los concepos

Más detalles

Solución 3.- OPERACIONES CON MATRICES y 1 1 0

Solución 3.- OPERACIONES CON MATRICES y 1 1 0 .- CONCEPTO DE MATRIZ 3 7 Escriba la mariz 2 x 3 en la que a ij = 5i 4j Solución : 6 2 2 2 Calcule, si es posible, los valores de a y b para que sean iguales las marices 3a b 9 b a 7 2b a 7 A= B= a+ b

Más detalles

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es

CÁLCULO DE INTEGRALES. Solución: Todas ellas se resuelven por partes y la fórmula del método es CÁLCULO DE NTEGRALES.-Calcula las siguienes inegrales: a) d ; b) sen d ; c) Ld ; e Todas ellas se resuelven por pares y la fórmula del méodo es u. dv u. v v. du a) e d. u du d dv e. d v e d e e e d e e

Más detalles

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es

Álgebra Manuel Hervás Curso EJERCICIOS DE AUTOVALORES Y AUTOVECTORES. R es Álgebra Manuel Hervás Curso - EJERCICIOS DE AUTOVALORES Y AUTOVECTORES EJERCICIO. MATRIZ DIAGONAL La mariz de un endomorfismo en R es A. Calcular los auovalores su muliplicidad algebraica. Calcular los

Más detalles

SERIE DE ECUACIONES DIFERENCIALES

SERIE DE ECUACIONES DIFERENCIALES SERIE DE ECUACIONES DIFERENCIALES PROFESOR: PEDRO RAMÍREZ MANNY TEMA ) Clasifique cada una de las ecuaciones diferenciales siguienes indicando orden (O), grado (G) y si es lineal (L) o no (NL). a) ( y)

Más detalles

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 1 y 2: MATRICES Y DETERMINANTES ES Padre Poveda (Guadi) Maemáicas plicadas a las SS EJEROS UNDDES : MTRES Y DETERMNNTES (-M--) Sean las marices D a) ( punos) Resuelva la ecuación maricial D ( D) b) ( puno) Si las marices D son las marices

Más detalles

2. Encuentra las soluciones de los sistemas siguientes por el método de Gauss, expresándolos en forma matricial:

2. Encuentra las soluciones de los sistemas siguientes por el método de Gauss, expresándolos en forma matricial: UNIDAD : Marices CUESTIONES INICIALES-PÁG. 0. Los elecrodomésicos que vende una cadena en una gran ciudad los iene en cuaro comercios C, C, C 3 y C 4. Vende res marcas de elevisores TV, TV y TV 3. En un

Más detalles

Examen Final de Ecuaciones Diferenciales Septiembre 2007

Examen Final de Ecuaciones Diferenciales Septiembre 2007 Eamen Final de Ecuaciones Diferenciales Sepiembre 007 Problema La siguiene ecuación diferencial de primer orden se puede resolver por diferenes méodos según cómo se planee. d d = + () Conesar las siguienes

Más detalles

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x

ÁLGEBRA MANUEL HERVÁS CURSO SOLUCIONES ESPACIO EUCLÍDEO. los escalares 1, 2, 0 respectivamente. Solución x ÁLGEBRA MANUEL HERVÁS CURSO - Enunciado Se considera el espacio vecorial SOLUCIONES ESPACIO EUCLÍDEO referido a la base B e, e, e coordenadas en la base dual B* f, f, f. Hallar las de la forma lineal que

Más detalles

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan

Señales Elementales. Dr. Luis Javier Morales Mendoza. FIEC Universidad Veracruzana Poza Rica Tuxpan Señales Elemenales Dr. Luis Javier Morales Mendoza FIEC Universidad Veracruzana Poza Rica Tuxpan Índice 3.1. Señales elemenales en iempo coninuo: impulso uniario, escalón uniario, rampa uniaria y la señal

Más detalles

Figura 1. Coordenadas de un punto

Figura 1. Coordenadas de un punto 1 Tema 1. Sección 1. Diagramas espacio-iempo. Manuel Guiérrez. Deparameno de Álgebra, Geomería y Topología. Universidad de Málaga. 2971-Málaga. Spain. Marzo de 21. En la mecánica es usual incluir en los

Más detalles

Reducción de matrices. Caso no diagonalizable

Reducción de matrices. Caso no diagonalizable Tema 5 Reducción de marices. Caso no diagonaliable Ejemplo inroducorio. El siguiene es un ejemplo de lo que se llama una recurrencia vecorial. Un curso de Algebra Ecuaciones Diferenciales se impare en

Más detalles

Como el sistema es homogéneo, sabemos que es compatible ( rang(a) = rang(a ) ). Estudiemos el máximo rango posible de A,

Como el sistema es homogéneo, sabemos que es compatible ( rang(a) = rang(a ) ). Estudiemos el máximo rango posible de A, OPCIÓN A, se pide: Problema A.. Dado el sistema de ecuaciones lineales a)deducir, raonadamente, para qué valores de α el sistema sólo admite la solución (,, ) (0,0,0). (5 puntos) Solución: Estudiemos el

Más detalles

Actividades de recuperación

Actividades de recuperación Acividades de recuperación.- Dados los vecores a y b de la figura. Calcula: a) a + b ; b) a b + c ; c) a ; d) a b..- Dados los punos A(3, -), B(4, 3) y C(5, -3), se pide: a) Hallar las coordenadas de los

Más detalles