- A h h+1 n-1 n

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "- A h h+1 n-1 n"

Transcripción

1 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto de iversió queda defiido por las siguietes variables: : Se le deomia Capital Ivertido, Coste Iicial o Coste de la iversió. : Se deomiada flujo eto de caja (FNC), represetativo de la diferecia de las dos cobros y pagos por caja. VR: u posible valor de veta de los activos e que se materializó la iversió ua vez que quedaro fuera de uso, es decir, ua vez fializado el proyecto. Se le suele deomiar Valor Residual. Teiedo e cueta lo aterior, podemos represetar la dimesió fiaciera de u proyecto de iversió de la siguiete forma: VR MÉTODOS DE VLORCIÓN Y SELECCIÓN DE INVERSIONES 2.1 Métodos estáticos de aálisis de iversioes Existe alguos métodos de selecció de iversioes que o tiee e cueta el eco de que los capitales tiee distitos valores e los diferetes mometos del tiempo. So lo deomiados métodos estáticos o métodos aproximados. Los pricipales métodos estáticos so: 1. El criterio del flujo total por uidad moetaria comprometida. 2. El criterio del flujo de caja medio aual por uidad moetaria comprometida. 3. El criterio del plazo de recuperació. cotiuació se cometa alguos de ellos: a) El criterio del flujo total por uidad moetaria comprometida Seguir este criterio es equivalete a calcular el flujo de caja total por uidad moetaria comprometida, que es igual al cociete de ambas magitudes: r = ( ) El cociete r es la catidad de uidades moetarias que la iversió geera, durate toda su vida, por cada uidad moetaria ivertida. Segú este criterio, ua iversió es mejor cuato mayor sea r. Se realiza la iversió cuado ese importe es superior a la uidad, es idiferete cuado es igual a uo y o efectuable si resulta iferior a la uidad. b) El criterio del flujo de caja medio aual por uidad moetaria comprometida El método cosiste e calcular el flujo eto de caja medio aual, y determiar cuato correspode por cada uidad moetaria ivertida, r. = ( ) Pág. 1

2 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 dode r : r ' = Se realiza la iversió cuado ese valor es superior a la uidad, es idiferete cuado es igual a uo y o efectuable si resulta iferior a la uidad. c) El criterio del plazo de recuperació El plazo de recuperació, o pay-back es el período de tiempo que tarda e recuperase el desembolso iicial co los flujos de caja geerados por la iversió. Este criterio de selecció da preferecia a aquellas iversioes cuyo plazo de recuperació sea meor. Por cosiguiete, se trata de u criterio de liquidez. Se prefiere las iversioes más líquidas. Se calcula acumulado los flujos de caja auales, asta ecotrar el mometo e que se iguale (o supere) al desembolso iicial de la iversió: P: periodo de recuperació de la iversió P =1 = U caso particular, se da cuado todos los so iguales: P = Etre dos proyectos de iversió, el más coveiete, a la luz del criterio tratado, será el de meor plazo de recuperació Ejemplo 1 La empresa INVERSIÓN S.. tiee plaificado los siguietes proyectos de iversió: de iversió Flujos etos de caja ( ) iicial () ño 1 ño 2 ño 3 ño 4 ño 5 ño Se os pide que ordeemos las iversioes atediedo a su mayor retabilidad de acuerdo co los siguietes criterios: a) Criterio del flujo eto de caja por uidad moetaria ivertida. b) Criterio del flujo eto de caja medio aual por uidad moetaria ivertida. c) Criterio del plazo de recuperació o payback. a) Criterio del flujo eto de caja por uidad moetaria ivertida. r = ( ) de iversió iicial () r = Orde , ,00 2 ó , , ,00 2 ó 3 Pág. 2

3 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 b) Criterio del flujo eto de caja medio aual por uidad moetaria ivertida. ( ) = r ' = de iversió iicial () = r ' = Orde ,00 0, ,00 1, ,00 0, ,33 2, ,00 0,50 3 c) Criterio del plazo de recuperació o payback. Si todos los flujos so iguales: P = Si todos los flujos so iguales: P = : P = = 3 2 : P = = 1 3: P = Si los flujos o so iguales: P =1 = = 5 E resume: Periodo () Periodo () iicial () P Orde ó ó Pág. 3

4 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 E coclusió, el orde depede del criterio que utilicemos: de iversió iicial () a) b) c) ó ó ó ó Métodos diámicos de aálisis de iversioes So métodos de selecció de iversioes que icorpora el factor tiempo, y tiee e cueta el eco de que los capitales tiee distito valor e fució del mometo e que se geere. Los pricipales métodos diámicos de selecció de iversioes so: 1. El valor actual eto, VN. 2. El ídice de retabilidad, IR. 3. La tasa itera de retabilidad, TIR. 4. El plazo de recuperació co descueto, PD. a) El valor actual eto: VN El valor actual eto (VN) o Valor Capital (VC) es u método diámico de selecció de iversioes, es decir, icorpora el factor tiempo, y tiee e cueta el eco de que los capitales tiee distito valor e fució del mometo e el que se geere. Para u proyecto de iversió, la gaacia total eta, o si se quiere, el Valor Capital, vedrá determiado por la suma algebraica de las diferetes gaacias etas auales, es decir: VN = VC = VR ( 1 k ) 1 ( 1 k ) 2 ( 1 k ) 3.. ( 1 k ) k = retabilidad exigida a la iversió, o tasa de actualizació. Si la tasa de actualizació fuese distita para cada periodo: VN = VC = VR.. ( 1 k 1 ) ( 1 k 1 ) ( 1 k 2 ) ( 1 k 1 ) ( 1 k 2 ).( 1 k ) b) Ídice de Retabilidad: IR Este criterio iteta elimiar el icoveiete del VC, respecto a su icosistecia para comparar proyectos de iversió idepedietes y mutuamete excluyetes, co distitos capitales ivertidos. sí, defiimos el Ídice de Retabilidad o aproximado, (IR), como la relació etre el valor capital y la iversió realizada: I R = VC c) La tasa itera de retabilidad: TIR Es u método diámico de selecció de iversioes, y se defie como aquel valor de la tasa de actualizació que aula al Valor Capital. Por cosiguiete: 0 = ( r ) = 1 1 Pág. 4

5 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 Desde otro puto de vista, puede defiirse como el máximo tipo de iterés que se puede pagar por el capital ivertido a largo de la vida de la iversió, si perder el proyecto. Segú lo aterior, el criterio de decisió será: Si r > k, se acepta el proyecto. Si r < k, o es coveiete realizar el proyecto. Si r = k, es idiferete acometer el proyecto. d) El plazo de recuperació o pay-back co descueto: PD Este método es muy semejate al método estático del plazo de recuperació co la diferecia que aora se tiee e cueta el diferete valor que tiee los capitales e los distitos mometos del tiempo. Se defie como el tiempo que tarda e recuperarse, e térmios actuales, el desembolso iicial de ua iversió. La forma de cálculo es la misma, pero es la suma de los flujos de caja actualizados e base a la tasa k: P =1 (1 k) = Segú este método las iversioes so tato mejores cuato meor sea su plazo de recuperació co descueto. Es u criterio que prima la liquidez de las iversioes sobre su retabilidad y que o tiee e cueta los flujos geerados co posterioridad al propio plazo de recuperació. Ejemplo 1 Valorar y jerarquizar cada uo de los proyectos del ejemplo aterior, atediedo a los siguietes métodos de aálisis: a) Valor actual eto (VN). b) Ídice de Retabilidad (IR). c) Tasa itera de retabilidad (TIR). d) Criterio del plazo de recuperació o payback co descueto (PD). El coste de capital para la empresa es del 8%. a) Valor actual eto (VN) VN = VC = VR ( 1 k ) 1 ( 1 k ) 2 ( 1 k ) 3 ( 1 k ) 1 1: 2: 3: VN = x 4 : 0,08 = 312,13 VN = x 2 : 0,08 = 2.349,79 VN = x 6 : 0,08 = - 75,42 4: VN = (1,08) 1 (1,08) 2 (1,08) 3 (1,08) 4 (1,08) 5 (1,08) 6 = ,96 5: VN = (1,08) 2 (1,08) 4 = 888,55 Pág. 5

6 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 b) Ídice de Retabilidad (IR) IR = V C 1: 2 : 312, ,79 IR = = 0,104 IR = = 0,7832 3: 4: - 75, ,96 IR = = - 0,07542 IR = = 10,92 5: 888,55 IR = = 0,592 c) Tasa itera de retabilidad (TIR) 0 = ( r ) = 1 1 Nos ayudaremos de la oja de cálculo para obteer el valor de r. 1: 0 = x 4 : r r = 0, r = 12,58 % > k = 8 % 2: 0 = x 2 : r r = 0,618 r = 61,80 % > k = 8 % 3: 0 = x 6 : r r = 0, r = 5,47 % < k = 8 % 4: 0 = (1 r) 1 (1 r) 2 (1 r ) 3 (1 r) 4 (1 r ) 5 (1 r ) 6 r = 0, r = 87,56 % > k = 8 % 5: 0 = (1 r) 2 4 r = 0,27201 r = 27,20 % > 8 % (1 r) d) Criterio del plazo de recuperació o payback co descueto (PD) P =1 (1 k) = Si todos los capitales so iguales, bastará co despejar el valor de p e la expresió correspodiete, utilizado logaritmos. Pág. 6

7 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 1: = x p : 0,08 p = 3,5659 años 2: = x p : 0,08 p = 1,083 años 3: = 200 x p : 0,08 p = 6,6374 años Si los capitales o so iguales iremos realizado la suma de todos los capitales actualizados asta que recuperemos la iversió realizada. Periodo () 4 ( 1 k) (1 k) (1 k) ,19 185, , , ,19-528, , ,34-290, , , , , , ,96 Como vemos la iversió se recupera totalmete e 4, pero realmete correspode al año tercero y parte del cuarto: Si 5.880,24-1 año 290,66 - x X = 0,05 años p = 3,05 años Periodo () 5 ( 1 k) (1 k) (1 k) ,00 0, , , ,01-213, , ,01-213, , ,55 888,55 Si 1.102,54-1 año E coclusió: 213,99 - x X = 0,19 meses p = 3,19 años () VC IR TIR PRD Valore Valore Valore Valores Orde Orde Orde Orde s s s ,13 4 0, ,58 4 3, ,79 2 0, ,80 2 1, ,42 No -0,075 No 5,47 No 6,63 No , , ,56 1 3, ,55 3 0, ,20 3 3,19 3 Pág. 7

8 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM COMPRCIÓN CRITERIOS VN Y TIR - Para u solo proyecto l aalizar u úico proyecto el resultado que obteemos aplicado el criterio VN y el criterio TIR so idéticos. Si el coste de capital (k) es mayor que TIR (r), el VN da u valor egativo, lo que aría recazable la iversió. Lógicamete si la retabilidad de la iversió es meor que el coste del capital o tiee setido ivertir. Estamos pagado más por la fiaciació que lo que vamos a obteer como resultado. Por el cotrario, si el coste de capital es meor que TIR (r), el VN da positivo, lo que idica que la iversió es efectuable. VN > 0 y TIR > k. El proyecto sería efectuable. VN >0 y TIR > k. El proyecto se recazaría - Para más de u proyecto: Los dos criterios puede ser cocidetes e caso de que las curvas o se corte e el primer cuadrate. VN V 1 1 V2 2 r 2 r 1 k El proyecto 1 es preferible al proyecto 2 segú el Va porque V 1 es mayor que V 2. Los dos criterios puede dar lugar a resultados cotradictorios si el VN de uo es meor que el del otro pero la TIR es mayor, lo que sucede siempre que las dos curvas se corta e el primer cuadrate. Este caso correspodería a aquellos proyectos e los que la retabilidad absoluta del primero es mayor que la del segudo, es decir, proporcioa más uidades ecoómicas a la empresa pero, por el cotrario su retabilidad relativa es meor, es decir, restituye meos uidades ecoómicas por uidad ecoómica ivertida. E este caso se produce resultados cotradictorios, ya que segú el VN es más iteresate el proyecto 1 (V1 >V2: el proyecto 1 tiee más retabilidad absoluta que el proyecto 2), pero segú la TIR es más iteresate el proyecto 2 que el 1 TIR 2 > TIR1: el proyecto 2 tiee mayor retabilidad por uidad ivertida que el proyecto 1). Segú el criterio al que le demos preferecia elegiríamos u proyecto iversió u otro. - La tasa de Fiser E estos casos e los que ay discrepacia, la solució ay que buscarla por medio de la tasa de Fiser que va a ser la que os permitirá tomar decisioes acerca de la elecció de u proyecto u otro. Para solucioar la cotradicció se acude a la obteció de F, que es el puto de itersecció que ace equivaletes a las dos iversioes. Si la empresa puede coseguir recursos co u coste iferior a r 0, la iversió 1 es favorable a la 2 porque produce u mayor redimieto absoluto. Si es al revés, debe elegir el proyecto 2. Este criterio se pude deomiar Método de selecció de iversioes por comparació etre la tasa de retoro sobre el coste de Fiser y la tasa de descueto. VN 1 2 Fiser K r 0 Pág. 8

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Divisió de Plaificació, Estudios e Iversió MIDEPLAN Curso: Preparació y Evaluació de Proyectos EVALUACIÓN DE PROYECTOS: Coceptos Básicos Temario Matemáticas

Más detalles

C. INDICADORES DE EVALUACION DE PROYECTOS

C. INDICADORES DE EVALUACION DE PROYECTOS C. INDICADORES DE EVALUACION DE PROYECTOS 1. Matemáticas Fiacieras 1.1 Iterés simple e iterés compuesto Iterés simple es aquel que se calcula siempre sobre el capital origial, y por tato excluye itereses

Más detalles

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández

Tema III: La Elección de Inversiones. Economía de la Empresa: Financiación. Prof. Francisco Pérez Hernández Tema III: La Elecció de Iversioes Ecoomía de la Empresa: Fiaciació Prof. Fracisco Pérez Herádez La Elecció de Iversioes Para ayudar a la elecció de distitas operativas de iversió, se puede seguir distitos

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Selección de inversiones II

Selección de inversiones II Problemas de Ecoomía y Orgaizació de Empresas (º de Bachillerato) Euciado Selecció de iversioes II Problema 6 U fabricate de evases de arcilla para la alimetació está aalizado la posibilidad de istalar

Más detalles

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad.

Slide 1. Slide 2. Slide 3. Universidad Diego Portales Facultad de Economía y Negocios. Capítulo 4 Introducción a la Probabilidad. Slide 1 Uiversidad Diego Portales Facultad de Ecoomía y Negocios Martes 13 de Abril, 2010 Slide 1 Slide 2 Capítulo 4 Itroducció a la Probabilidad Temas Pricipales: Experimetos, Reglas de Coteo, y Asigació

Más detalles

SESIÓN 8 PLAN DE FINANZAS II

SESIÓN 8 PLAN DE FINANZAS II SESIÓN 8 PLAN DE FINANZAS II I. CONTENIDOS: 1. Sistema cotable de la empresa. 1.1. Balace Geeral 1.2. Estado de resultados. 1.3. Capital social: Créditos o fiaciamietos. 2. Idicadores fiacieros. II. OBJETIVOS:

Más detalles

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG

Convolución. Dr. Luis Javier Morales Mendoza. Procesamiento Digital de Señales Departamento de Maestría DICIS - UG Covolució Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice.. Itroducció... Aálisis de Sistemas Discretos Lieales e Ivariates e el Tiempo.... Técicas

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

SUCESIONES. Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja, que se reproduce

Más detalles

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO

LAS SERIES GEOMÉTRICAS Y SU TENDENCIA AL INFINITO LA ERIE GEOMÉTRICA Y U TENDENCIA AL INFINITO ugerecias al Profesor: Al igual que las sucesioes, las series geométricas se itroduce como objetos matemáticos que permite modelar y resolver problemas que

Más detalles

Muestreo sistemático

Muestreo sistemático Capítulo 1 Muestreo sistemático El muestreo sistemático es u tipo de muestreo que es aplicable cuado los elemetos de la població sobre la que se realiza el muestreo está ordeados Este procedimieto de muestreo

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

Unidad 3. Construcción de números índice y aplicaciones al análisis económico

Unidad 3. Construcción de números índice y aplicaciones al análisis económico Uidad 3. Costrucció de úmeros ídice y aplicacioes al aálisis ecoómico Los úmeros ídices, utilizados co frecuecia e Ecoomía, Demografía y diferetes campos de la estadística aplicada, so valores coveietes

Más detalles

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1

Tema 1 Los números reales Matemáticas I 1º Bachillerato 1 Tema 1 Los úmeros reales Matemáticas I 1º Bachillerato 1 TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES. LA RECTA REAL INTRODUCCIÓN: Los úmeros racioales: Se caracteriza porque puede expresarse: E forma

Más detalles

Números racionales. Caracterización.

Números racionales. Caracterización. Números reales Matemáticas I Aplicadas a las Ciecias Sociales 1 Números racioales. Caracterizació. ecuerda que u úmero r es racioal si se puede poer e forma de fracció de úmeros eteros de la forma a b

Más detalles

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre:

IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. 3º ESO A. Nombre: IES ATENEA. EXAMEN DE RECUPERACIÓN DE MATEMÁTICAS. º ESO A Nombre: Evaluació: Primera. Feca: 0 de diciembre de 00 NOTA Ejercicio º.- Aplica el orde de prioridad de las operacioes para calcular: 64 : 5

Más detalles

UD 9. LA INVERSIÓN EN LA EMPRESA

UD 9. LA INVERSIÓN EN LA EMPRESA UD 9. LA INVERSIÓN EN LA EMPRESA 1. LA FUNCIÓN FINANCIERA DE LA EMPRESA La empresa, tato para iiciar su actividad como para realizarla co eficiecia, ecesita recursos fiacieros. Para su fucioamieto, la

Más detalles

1 EXPRESIONES ALGEBRAICAS

1 EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS E el leguaje matemático, se deomia expresioes algebraicas a toda combiació de letras y/o úmeros viculados etre si por las operacioes de suma, resta, multiplicació y poteciació de

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

Tema 8 Límite de Funciones. Continuidad

Tema 8 Límite de Funciones. Continuidad Tema 8 Límite de Fucioes. Cotiuidad 1. Operacioes co límites. Los límites de las sucesioes a b, c, d y e so los idicados e la tabla siguiete:, a b c d e - 0 1 Di cual es el límite de: a) lim( a b ) c)

Más detalles

Series de potencias. Desarrollos en serie de Taylor

Series de potencias. Desarrollos en serie de Taylor Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de

Más detalles

Técnicas para problemas de desigualdades

Técnicas para problemas de desigualdades Técicas para problemas de desigualdades Notas extraídas del libro de Arthur Egel [] 5 de marzo de 00 Medias Comezamos co dos de las desigualdades más básicas pero al mismo tiempo más importates Sea x,

Más detalles

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1

TEMAS 1 y 3.- NÚMEROS REALES Y ÁLGEBRA- 1 1º Bachillerato - Matemáticas I Dpto de Matemáticas- I.E.S. Motes Orietales (Izalloz)-Curso 2011/2012 TEMS 1 y 3.- NÚMEROS RELES Y ÁLGEBR- 1 1.- TIOS DE NÚMEROS. ROXIMCIONES DECIMLES 1.1.- Tipos de úmeros

Más detalles

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos:

La sucesión de Fibonacci y el número Φ Si dividimos cada dos términos consecutivos de la sucesión de Fibonacci, obtenemos: SUCESIONES Págia 50 PARA EMPEZAR, REFLEXIONA Y RESUELVE Cuátas parejas de coejos? Cuátas parejas de coejos se producirá e u año, comezado co ua pareja úica, si cada mes cualquier pareja egedra otra pareja,

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5

UNIDAD 3. b b.1 Es una P.G. con a 1 5 y d 0,5. Por tanto: a n a 1 n 1 d 5 n 1 0,5 5 0,5n 0,5 0,5n 4,5 a n 0,5n 4,5 UNIDAD 3 a Escribe los cico primeros térmios de las sucesioes: a.1) a 2, a 3 1 2 a a a 1 2 a.2 b 2 + 1 b Halla el térmio geeral de cada ua de estas sucesioes: b.1 3, 1, 1, 3, 5,... b.2 2, 6, 18, 54,...

Más detalles

por Claudia Nerina Botteon

por Claudia Nerina Botteon CUÁNDO Y CUÁNTO: OPTIMIZANDO LAS DECISIONES DE INVERSIÓN EN CONTEXTOS DE CERTIDUMBRE por Claudia Neria Botteo Uiversidad Nacioal de Cuyo Agosto 2005 CUÁNDO Y CUÁNTO: OPTIMIZANDO LAS DECISIONES DE INVERSIÓN

Más detalles

Probabilidad FENÓMENOS ALEATORIOS

Probabilidad FENÓMENOS ALEATORIOS Probabilidad FENÓMENOS ALEATORIOS E el mudo real hay feómeos regidos por leyes de tipo empírico (basadas e la experiecia), lógico o deductivo, e los que el efecto está determiado por ciertas causas. El

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática

Solución del Examen Extraordinario de Algebra y Matemática Discreta, Primer Curso, Facultad de Informática Solució del Exame Extraordiario de Algebra y Matemática Discreta, 0-09-2008. Primer Curso, Facultad de Iformática Putuació Máxima Posible: 20 putos Ejercicio Primero (Grafos, etc). a) ( puto) Defia Grafo

Más detalles

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7

( ) = 1= + + ( ) + + lim 3x 5 = lim 3x lim5 = lim3 lim x lim5 = = 12 5 = 7 LÍMITES DE FUNCIONES POLINÓMICAS Límites de ua fució costate f k, k El límite de ua fució costate es la misma costate f k f k k k a a Límites de la fució idetidad I I a a a I I Límites e u puto fiito.

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

ECONOMÍA TEMA 50 RIESGO, INFLACIÓN E IMPUESTOS EN LAS DECISIONES DE INVERSION. MODELOS DE PROGRAMACIÓN DE INVERSIONES.

ECONOMÍA TEMA 50 RIESGO, INFLACIÓN E IMPUESTOS EN LAS DECISIONES DE INVERSION. MODELOS DE PROGRAMACIÓN DE INVERSIONES. ECONOMÍA TEMA 50 RIESGO, INFLACIÓN E IMPUESTOS EN LAS DECISIONES DE INVERSION. MODELOS DE PROGRAMACIÓN DE INVERSIONES. 0. INTRODUCCIÓN. 1. RIESGO, INFLACIÓN E IMPUESTOS EN LAS DECISIONES DE 1.1. EL EFECTO

Más detalles

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC.

APLICACIONES INFORMÁTICAS EN QUÍMICA. Problemas Tema 2.3: Series, representación de funciones y construcción de tablas en HC. APLICACIONES INFORMÁTICAS EN QUÍMICA Problemas Tema 2.3: Series, represetació de fucioes y costrucció de tablas e HC Grado e Química º SEMESTRE Uiversitat de Valècia Facultad de Químicas Departameto de

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

ORGANIZACIÓN DE LOS DATOS.

ORGANIZACIÓN DE LOS DATOS. ORGANIZACIÓN DE LOS DATOS. La toma de datos es ua de las partes de mayor importacia e el desarrollo de ua ivestigació. Así los datos obteidos mediate u primer proceso recibe el ombre de datos si tratar

Más detalles

LAS SUCESIONES Y SU TENDENCIA AL INFINITO

LAS SUCESIONES Y SU TENDENCIA AL INFINITO LAS SUCESIONES Y SU TENDENCIA AL INFINITO Sugerecias al Profesor: Resaltar que las sucesioes geométricas ifiitas so objetos matemáticos que permite modelar alguos procesos ifiitos, y que a la vez su costrucció

Más detalles

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN

DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN DISCUSIÓN Y RESOLUCIÓN DE ECUACIONES LINEALES. TEOREMA DE ROUCHE. REGLA DE CRAMER. MÉTODO DE GAUSS-JORDAN Ídice. INTRODUCCIÓN2 2. SISTEMAS DE ECUACIONES LINEALES2 Defiicioes básicas.2 Iterpretació vectorial3

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES

6. Sucesiones y Series numéricas Sucesiones numéricas DEFINICIONES 6. Sucesioes y Series uméricas 6.. Sucesioes uméricas 6... DEFINICIONES Sucesioes de úmeros reales Se llama sucesió de úmeros reales a cualquier lista ordeada de úmeros reales: a, a 2, a 3,..., a,...,

Más detalles

Escena 5 Planificación contra stock

Escena 5 Planificación contra stock Método de Plaificació propuesto 67 Escea 5 Plaificació cotra stock Ua vez coocidos los protagoistas la escea busca ordear los pedidos de la forma más eficiete, respetado los requisitos del cliete. Es e

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20

Técnicas Cuantitativas II Muestra y Estadísticos Muestrales. TC II Muestra y Estadísticos Muestrales 1 / 20 Técicas Cuatitativas II 2012-2013 Muestra y Estadísticos Muestrales TC II Muestra y Estadísticos Muestrales 1 / 20 Ídice Ídice Cocepto de muestra y Alguos ejemplos de variaza de la media Cocepto de muestra

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca Facultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas Fiacieras Ejercicios resueltos sobre series uiformes Ejemplo

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 DEPARTAMENTO DE FÍSICA APLICADA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS Y DE MONTES UNIVERSIDAD DE CÓRDOBA FUNDAMENTOS FÍSICOS DE LA INGENIERIA SESIÓN DE PRÁCTICAS 0 1. Itroducció al cálculo de

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita "x" que se verifica para valores mayores que 4.

INECUACIONES. Ejemplo: La desigualdad 2x+l>x+5, es una inecuación por que tiene una incógnita x que se verifica para valores mayores que 4. INECUACIONES DEFINICIÓN: Ua iecuació es ua desigualdad e las que hay ua o más catidades descoocidas (icógita) y que sólo se verifica para determiados valores de la icógita o icógitas. Ejemplo: La desigualdad

Más detalles

UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO

UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO UNIDAD 3: ANÁLISIS DE SERIES DE TIEMPO Ua serie de tiempo establece las variacioes existetes etre ciertas magitudes. El aálisis de series temporales es u método cuatitativo que se utiliza para detectar

Más detalles

Unidad N 2. Medidas de dispersión

Unidad N 2. Medidas de dispersión Uidad N 2 Medidas de dispersió Ua seguda propiedad importate que describe ua serie de datos uméricos es ua variació. La variació es la catidad de dispersió o propagació e los datos. Dos series de datos

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES CREDITO HIPOTECARIO

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES CREDITO HIPOTECARIO FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES CREDITO HIPOTECARIO Cosideracioes Para el fiaciamieto de compra, costrucció o remodelació de vivieda La tasa de iterés del ejemplo es referecial

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN)

ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) Ecoomía de la Empresa (Fiaciació) ECONOMÍA DE LA EMPRESA (FINANCIACIÓN) 3ºLiceciatura e Derecho y Admiistració y Direcció de Empresas Prof. Dr. Jorge Otero Rodríguez 1/118 Ecoomía de la Empresa (Fiaciació)

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

Tema 6. Empréstitos de obligaciones

Tema 6. Empréstitos de obligaciones Tema 6. Empréstitos de obligacioes 1. Cocepto y clases. Cocepto Los empréstitos so operacioes de amortizació e las que el capital prestado se divide e u úmero geeralmete muy elevado de operacioes de préstamo

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

UNEFA C.I.N.U. Matemáticas

UNEFA C.I.N.U. Matemáticas RADICACIÓN: DEFINICIÓN Y PROPIEDADES Ates de etrar e el tema Radicació, vamos a comezar por recordar u poco sore Poteciació: Saemos que e lugar de escriir, utilizamos la otació: de Poteciació, dode el

Más detalles

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos

Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

4 El Perceptrón Simple

4 El Perceptrón Simple El Perceptró Simple. Itroducció Ua de las características más sigificativas de las redes euroales es su capacidad para apreder a partir de algua fuete de iformació iteractuado co su etoro. E 958 el psicólogo

Más detalles

Expresiones Algebraicas

Expresiones Algebraicas Semiario Uiversitario Matemática Módulo Expresioes Algebraicas Difícilmete se pueda estudiar cualquier rama de la matemática actual si u maejo algebraico razoable. Usamos la palabra maejo y o la de estudio,

Más detalles

Entrenamiento estatal.

Entrenamiento estatal. Etreamieto estatal. Combiatoria. Coteo. Problemas de caletamieto. 1. Cuátos códigos diferetes de cico dígitos puede hacerse? 2. Si para ir de A a B hay 3 camios, para ir de A a C hay dos camios, Para ir

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

LECCIÓN Nº 13 y 14 DEPRECIACION.

LECCIÓN Nº 13 y 14 DEPRECIACION. LECCIÓN Nº 13 y 14 DEPRECIACION. OBJETIVO: Coocer la termiología básica de la recuperació del capital que utiliza la depreciació. Utilizar el modelo de depreciació e líea recta. Utilizar el modelo de depreciació

Más detalles

INTRODUCCIÓN A LA PROBABILIDAD

INTRODUCCIÓN A LA PROBABILIDAD INTRODUIÓN L PROBBILIDD EXPERIMENTOS LETORIOS Y DETERMINISTS Los experimetos o feómeos cuyo resultado o puede coocerse hasta haber realizado la experiecia se llama aleatorios o estocásticos. uado el resultado

Más detalles

OPCIÓN A EJERCICIO 1_A

OPCIÓN A EJERCICIO 1_A IES Fco Ayala de Graada Sobrates de 005 (Modelo 4) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A 1 3 (1 puto) Sea las matrices A= 0 1 y B = 1-1 - 0 1 1 De las siguietes operacioes, alguas o se puede

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) FCEyN - UBA - 1er cuatrimestre 015 Divisibilidad y algoritmo de divisió Álgebra I Práctica 3 - Números eteros (Parte 1 1. Decidir cuáles de las siguietes afirmacioes so verdaderas a, b, c Z i a b c a c

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuáto vale ua Letra del Tesoro, e tato por cieto de omial, si calculamos su valor al 3% de iterés y falta 5 días para su vecimieto? A) 97, % B)

Más detalles