LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA)"

Transcripción

1 LISTA DE EJERCICIOS PARA ETS DE PROBABILIDAD (IE, ICA, e ISISA) PROBABILIDAD CONDICIONAL 1. Dados P (A) = 0.4, P (B A) = 0.3 y P (B c A c ) = 0.2, determine: a) P (A c ). b) P (B A c ). c) P (B). d) P (A B). e) P (A B). 2. Se tiene una urna verde con 3 fichas negras y una roja y otra urna azul que contiene 2 fichas rojas y 2 negras. Se tira un dado con la condición de que si el número resultante es divisible por tres se elige la urna verde y en cualquier otro caso se elige la urna azul. De la urna elegida se saca una ficha al azar. a) Si la ficha es negra. Cuál es la probabilidad de que haya sido extraída de la urna verde?. b) Si la ficha es roja. Cuál es la probabilidad de que haya sido extraída de la urna azul?. 3. En cierta facultad el 4 % de los hombres y el 1 % de las mujeres tienen más de 6 pies de altura, además el 60 % de los estudiantes son mujeres. Ahora bien si se selecciona al azar un estudiante y es mas alto que 6 pies. a) Cuál es la probabilidad de que el estudiante sea mujer?. b) Cuál es la probabilidad de que el estudiante sea hombre?. 4. De los artículos producidos diariamente por cierta fábrica, 70 % proviene de la línea A y 30 % de la línea B. El porcentaje de defectuosos de la línea A es de 5 %, mientras que el porcentaje de defectuosos de la línea B es de 10 %. Se escoje un artículo al azar de la producción diaria, calcular: a) La probabilidad de que sea defectuoso?. b) Si el artículo es defectuoso, Cuál es la probabilidad de que provenga de la linea A?. 5. En una urna hay cinco fichas de color blanco y cuatro de color negro. Sacamos dos fichas, una a una, sin regresarlas. a) Cuál es la probabilidad de que ambas fichas sean de color blanco?. b) Cuál es la probabilidad de que la primera sea de color negro y la segunda de color blanco?. 1

2 6. Un examen de opción múltiple esta compuesto de 10 preguntas, con cuatro respuestas posibles cada una, de las cuales solamente una es correcta. Supóngase que uno de los estudiantes que realizan el examen contesta las preguntas al azar. a) Cuál es la probabilidad de que conteste correctamente al menos ocho preguntas?. b) Cuál es la probabilidad de que conteste correctamente exactamente seis?. 7. Suponer que se tienen tres urnas de apariencia externa idéntica y que contienen fichas de colores. La urna A contiene una negra, dos rojas y tres verdes; la urna B contiene dos negras, una roja y una verde; la urna C contiene cuatro negras, cinco rojas y tres verdes. Las fichas se revuelven en las urnas y éstas últimas se revuelven entre sí. Después, se selecciona una de las urnas al azar y se extraen dos fichas. Si se extrajerón una negra y una verde. a) Cuál es la probabilidad de que se hayan extraido de la urna B?. DISTRIBUCIONES DISCRETAS 1. Supóngase que en una lotería se venden 10 mil boletos de un peso cada uno. El ganador recibirá un premio cuyo valor es de 500 pesos. Si alguien compra boleto. a) Cuál es su Esperanza?. 2. Un equipo electrónico contiene seis transistores, dos de los cuales son defectuosos. Se seleccionan tres transistores al azar se sacan del equipo y se inspeccionan. Sea X el número de transistores defectuosos observados, donde X = 0, 1, 2. a) Cuál es la distribución de probabilidad de X?. 3. En una gran compañía, 20 % de los empleados son miembros de algún club deportivo. En una muestra aleatoria de 30 empleados, a) Cuál es la probabilidad de que tres, cuatro o cinco pertenezcan a un club de deportes?. 4. Supóngase que la probabilidad de que una partícula emitida por un material radiactivo penetre en cierto campo es de Si se emiten 10 partículas, a) Cuál es la probabilidad de que solo una de ellas penetre en el campo?. 5. Un informe reciente declara que 70 % de los habitantes de cuba ha reducido bastante el uso de energía eléctrica para disfrutar de descuentos en las tarifas. Si se selecciona al azar cinco residentes de la Habana, encuentre la probabilidad de que: 2

3 a) Los cinco califiquen para tarifas más favorables?. b) Al menos cuatro califiquen para tarifas más favorables?. 6. La probabilidad de que un enfermo se recupere de un padecimiento gástrico es de 0.8. Suponga que 20 personas han contraído dicho padecimiento. a) Cuál es la probabilidad de que sobrevivan exactamente 14?. b) Cuál es la probabilidad de que sobrevivan al menos 10?. c) Cuál es la probabilidad de que sobreviva un máximo de 16?. 7. Supóngase que % de la población de un país muere debido a cierto tipo de accidente cada año y que una compañía de seguros tiene entre sus clientes 10 mil que están asegurados contra este tipo de accidente. a) Cuál es la probabilidad de que la compañía deba pagar más de tres pólizas en un año dado?. 8. Si la probabilidad de que una persona sufra una reacción nociva debido a una inyección de cierto suero es de a) Cuál es la probabilidad de que entre mil personas, dos o más sufran esa reacción?. 9. La probabilidad de que un ratón inoculado con un suero contraiga la enfermedad es de 0.2. Mediante el uso de una aproximación por Poisson. a) Cuál es la probabilidad de que un máximo de tres ratones entre 30 contraigan la enfermedad?. 10. Si 2.5 % de los conductores de automóviles que pasan por una caseta de cobro tienen el cambio exacto. a) Cuál es la probabilidad de que una muestra tomada al azar de 250 automoviles que pasan por la caseta, cinco tengan el cambio exacto?. DISTRIBUCIONES CONTINUAS 1. Qué valor debe tener la constante k para que f(x) = sea una función de densidad?. { kx si 0 x 2 2. Sea X variable aleatoria con función de densidad f(x) = a) Hallar el valor de k. b) Trazar la grafica de f(x). { k(x 1) si 1 x 2, 3

4 c) Determinar el valor esperado de la variable aleatoria X, y localicelo en la grafica del enciso b. d) Calcule P (X 1). 3. Suponiendo que X es normal con media µ = 0.8 y variancia σ 2 = 4, determine las siguientes probabilidades: a) P (X 2.44). b) P (X -1.66). c) P (X 1.923). d) P (X 1). e) P (X -2.9). f ) P (2 X 10). 4. Suponga que la temperatura ( C) esta distribuida normalmente con esperanza 50( C) y variancia σ 2 = 4, a) Cuál es la probabilidad de que la temperatura T este entre 48( C) y 53( C)?. 5. Si la longitud de roscado de un perno tiene una distribución normal con media µ = 0.6 pgl. y desviación estandar σ = 0.1 pgl. Si se selecciona un perno al azar. a) Cuál es la probabilidad de que la longitud de roscado sea por lo menos de 0.59 pgl?. b) Cuál es la probabilidad de que la longitud de roscado este dentro de una desviación estándar?. c) Si P (X c) = Encuentre el valor de c, y defina a la v.a X?. 6. Suponga que el tiempo de respuesta X en cierta terminal de computadora tiene una distribución exponencial con tiempo de respuesta esperado igual a 7 segundos. a) Cuál es la probabilidad de que el tiempo de respuesta sea a lo sumo 10 segundos?. b) Cuál es la probabilidad de que el tiempo de respuesta este entre 5 y 10 segundos?. 7. El tiempo entre la entrada de correos electrónicos en una computadora tiene una distribución exponencial con una media de dos horas. a) Cuál es la probabilidad de que no se reciba un correo electrónico durante un periodo de dos horas?. 8. El tiempo entre las llamadas telefónicas a una ferretería tiene una distribución exponencial con un tiempo promedio entre las llamadas de 15 minutos. 4

5 a) Cuál es la probabilidad de que no haya llamadas en un intervalo de 30 minutos?. DISTRIBUCIONES CONJUNTAS 1. Suponga que la función de densidad conjunta para dos variables aleatorias continuas x y y, esta dada por: f(x, y) = a) Calcule el valor de la constante c? { cx si 0 x 1; 0 y 1; b) Hallar la función de densidad marginal para la variable aleatoria X? c) Hallar el valor esperado de la variable aleatoria X? 2. Una gasolinería cuenta tanto con islas de autoservicio como de servicio completo. En cada isla, hay una sola bomba de gasolina sin plomo regular con dos mangueras. Sea X el número de mangueras utilizadas en la isla de autoservicio y en un tiempo particular y sea Y el número de mangueras en uso en la isla de servicio completo en ese tiempo. La función de probabilidad conjunta de X y Y aparece en la tabla adjunta: a) Calcule P (X 1 y Y 1)? p(x, y) x b) Describa el evento (X 0 y Y 0). Calcule su probabilidad?. c) Calcule la función de probabilidad marginal de X y Y?. Utilizando p x (x). Cuál es P (X 1)? y 5

TALLER 3 ESTADISTICA I

TALLER 3 ESTADISTICA I TALLER 3 ESTADISTICA I Profesor: Giovany Babativa 1. Un experimento consiste en lanzar un par de dados corrientes. Sea la variable aleatoria X la suma de los dos números. a. Determine el espacio muestral

Más detalles

POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA

POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA POISSON JUAN JOSÉ HERNÁNDEZ OCAÑA Distribución de Poisson Cuando una variable discreta se usa para estimar la cantidad de sucesos u ocurrencia en un determinado intervalo de tiempo o espacio es necesario

Más detalles

Ejercicios elementales de Probabilidad

Ejercicios elementales de Probabilidad Ejercicios elementales de Probabilidad 1. Se extrae una carta de una baraja de 52 naipes. Halla la probabilidad de que sea: (a) Un rey. (b) Una carta roja. (c) El 7 de tréboles. (d) Una figura de diamantes.

Más detalles

Tema 5 Algunas distribuciones importantes

Tema 5 Algunas distribuciones importantes Algunas distribuciones importantes 1 Modelo Bernoulli Distribución Bernoulli Se llama experimento de Bernoulli a un experimento con las siguientes características: 1. Se realiza un experimento con dos

Más detalles

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad

RELACIÓN DE PROBLEMAS. Distribuciones de probabilidad RELACIÓN DE PROBLEMAS Distribuciones de probabilidad 1. Se lanzan al aire dos monedas tres veces consecutivas. Sea X la v.a. que representa el número de veces que se obtiene cara en ambas monedas en los

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Definición de probabilidad

Definición de probabilidad Tema 5: LA DISTRIBUCIÓN NORMAL 1. INTRODUCCIÓN A LA PROBABILIDAD: Definición de probabilidad Repaso de propiedades de conjuntos (Leyes de Morgan) Probabilidad condicionada Teorema de la probabilidad total

Más detalles

DISTRIBUCIÓN DE POISSON

DISTRIBUCIÓN DE POISSON DISTRIBUCIÓN DE POISSON P O I S S O N Siméon Denis Poisson, (1781-1840), astronauta francés, alumno de Laplace y Lagrange, en Recherchés sur la probabilité des jugements..., un trabajo importante en probabilidad

Más detalles

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA

UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD GUÍA 3: VARIABLES ALEATORIAS DISCRETAS Profesores: Jaime Arrué A. - Hugo S. Salinas. Primer Semestre

Más detalles

ESTADÍSTICA I, curso Problemas Tema 4

ESTADÍSTICA I, curso Problemas Tema 4 ESTADÍSTICA I, curso 007-008 Problemas Tema 4 1. En un problema de una prueba aplicada a niños pequeños se les pide que hagan corresponder tres dibujos de animales con la palabra que identifica a ese animal.

Más detalles

Cálculo de Probabilidades II Preguntas Tema 1

Cálculo de Probabilidades II Preguntas Tema 1 Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga

Más detalles

La distribución normal

La distribución normal La Distribución Normal Es una distribución continua que posee, entre otras, las propiedades siguientes: Su representación gráfica tiene forma de campana ( campana de Gauss ) -6-4 -2 0 2 4 6 2 4 6 8 10

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

Relación de Problemas. Tema 6

Relación de Problemas. Tema 6 Relación de Problemas. Tema 6 1. En una urna hay 5 bolas blancas y 2 negras y se sacan tres bolas sin reemplazamiento. a) Calcular la distribución conjunta del número de bolas blancas y negras de entre

Más detalles

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10

PROBLEMAS DE PROBABILIDAD. 3. Calcula la probabilidad de que al lanzar dos dados la suma de sus puntos sea: a) igual a 5 b) mayor que 10 1. Se lanza un dado. Halla la probabilidad: a) de salir el 3 b) de salir un número par c) de salir un número mayor que 2 PROBLEMAS DE PROBABILIDAD 2. Calcula la probabilidad de que al lanzar dos monedas:

Más detalles

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES

FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES FICHA DE TRABAJO DE CÁLCULO DE PROBABILIDADES EXPERIMENTO ALEATORIO: ESPACIO MUESTRAL Y SUCESOS 1) Se considera el experimento que consiste en la extracción de tres tornillos de una caja que contiene tornillos

Más detalles

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma:

Variables aleatorias. Examen Junio La función de distribución de una variable continua X es de la forma: TEMA 6: Variables aleatorias Examen Junio 003.- La función de distribución de una variable continua X es de la forma: 3 F ( t) = P( X t) = a + bt ct t, Se sabe que la densidad verifica f(-)=f()=0. [ ]

Más detalles

Variables aleatòries vectorials Els problemes assenyalats amb un (*) se faran a classe. 1.- Los estudiantes de una universidad se clasifican de acuerdo a sus años en la universidad (X) y el número de visitas

Más detalles

Variables Aleatorias. Introducción

Variables Aleatorias. Introducción Variables Aleatorias Introducción Concepto de variable aleatoria Es conveniente que los resultados de un experimento aleatorio estén expresados numéricamente. Se prueban tres componentes electrónicos,

Más detalles

Variables aleatorias bidimensionales discretas

Variables aleatorias bidimensionales discretas Universidad de San Carlos de Guatemala Facultad de Ingeniería Área de Estadística VARIABLES ALEATORIAS BIDIMENSIONALES Concepto: Sean X e Y variables aleatorias. Una variable aleatoria bidimensional (X,

Más detalles

C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES:

C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES: C. EXPERIMENTOS ALEATORIOS- SUCESOS- PROBABILDADES: 1. Los pacientes que llegan a una clínica pueden seleccionar una de tres secciones para ser atendidos. Supongamos que los médicos se asignan al azar

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Primer Semestre. EstadísTICa Curso Primero Graduado en Geomática y Topografía Escuela Técnica Superior de Ingenieros en Topografía, Geodesia y Cartografía. Universidad Politécnica

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL

DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL DISTRIBUCIONES DE PROBABILIDAD DE VARIABLE DISCRETA. LA BINOMIAL Página 4 REFLEXIONA Y RESUELVE Recorrido de un perdigón Dibuja los recorridos correspondientes a: C + C C, + C + C, + C C C, + + + +, C+CC

Más detalles

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B).

Ejercicio 2. Sean A, B dos sucesos tales que P (A) = 0 4, P (B) = 0 65 y P ( (A B) (A B) ) = Hallar P (A B). Ignacio Cascos Fernández Departamento de Estadística Universidad Carlos III de Madrid Hoja 2, curso 2006 2007. Ejercicio 1. Dados cuatro sucesos A, B, C y D, la probabilidad de que ocurra al menos uno

Más detalles

a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria

a) Definir un espacio muestral S apropiado para este experimento. b) Consideremos la variable aleatoria 7 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2 1. Se eligen tres autos al azar y cada uno es clasificado N si tiene motor naftero o D si tiene motor diesel (por ejemplo, un resultado posible sería N N D).

Más detalles

1. La Distribución Normal

1. La Distribución Normal 1. La Distribución Normal Los espacios muestrales continuos y las variables aleatorias continuas se presentan siempre que se manejan cantidades que se miden en una escala continua; por ejemplo, cuando

Más detalles

UNIVERSIDAD POPULAR DEL CESAR DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA TALLER DE DISTRIBUCIONES DE PROBABILIDADES.

UNIVERSIDAD POPULAR DEL CESAR DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA TALLER DE DISTRIBUCIONES DE PROBABILIDADES. UNIVERSIDAD POPULAR DEL CESAR DEPARTAMENTO DE MATEMÁTICA Y ESTADÍSTICA TALLER DE DISTRIBUCIONES DE PROBABILIDADES. DISTRIBUCION DE PROBABILIDADES. 1. Se extraen sin reposición cuatro fichas de una urna

Más detalles

5 Variables aleatorias contínuas

5 Variables aleatorias contínuas 5 Variables aleatorias contínuas Una variable aleatoria continua puede tomar cualquier valor en un intervalo de números reales.. Función de densidad. La función de densidad de una variable aleatoria continua

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección?

Un juego de azar consiste en escoger 3 números distintos del 1 al 7. De cuántas formas se puede realizar esta selección? . Un juego de azar consiste en escoger números distintos del al 7. De cuántas formas se puede realizar esta selección?. 7 0 4 840 De cuántas maneras distintas se pueden ordenar personas en un círculo?.

Más detalles

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00

Nº Hermanos 30 Alumnos X i f i P(X i ) 0 8 0, , , , , ,00 U.D.3: Distribuciones Discretas. La Distribución Binomial 3.1 Variable Aleatoria Discreta. Función o Distribución de Probabilidad. Variable Aleatoria: - En un experimento aleatorio, se llama variable aleatoria

Más detalles

Matemática 3 Curso 2014

Matemática 3 Curso 2014 Matemática 3 Curso 2014 Practica Nº 1: Espacios muestrales y eventos - Asignación de probabilidades. 1) Un experimento implica lanzar un par de dados, uno verde y uno rojo, y registrar los números que

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b).

Hoja 2 Probabilidad. 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, Además, resolver el ejercicio 3 desde (5.a) y (5.b). Hoja 2 Probabilidad 1.- Sean Ω un espacio muestral y A P(Ω) una σ-álgebra. Para A A fijado, se define A A = {B Ω : B = A C con C A}. Demostrar que A A P(A) es σ-álgebra. 2.- Sea {A n : n 1} A una sucesión

Más detalles

EJERCICIOS DE PROBABILIDADES

EJERCICIOS DE PROBABILIDADES Ejercicios : 1. Se lanza un dado y se observa que número de aparece en la cara superior. 2. Se lanza una moneda cuatro veces y se cuenta el número total de caras obtenidas 3. El ala de un aeroplano se

Más detalles

TEMA 1: PROBABILIDAD

TEMA 1: PROBABILIDAD TEMA 1: PROBABILIDAD Ejercicios 1- alcular el espacio muestral asociado a los siguientes experimentos: a) Lanzar una moneda b) Tirar un dado c) Lanzar un dado de quinielas d) Extraer una bola de una caja

Más detalles

Probabilidad Condicional

Probabilidad Condicional Probabilidad Condicional Algunas veces la ocurrencia de un evento A puede afectar la ocurrencia posterior de otro evento B; por lo tanto, la probabilidad del evento B se verá afectada por el hecho de que

Más detalles

Ejercicios de la Distribución Normal

Ejercicios de la Distribución Normal 1 Ejercicios de la Distribución Normal 1. Encuentre las siguientes probabilidades, siendo Z una variable aleatoria normal estándar a.p (Z < 1,00) b.p (Z < 0,63) c.p (Z < 1,38) d.p (Z > 1,15) e.p (Z > 2,13)

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas

JUEGO DE BASKETBALL. Repaso de Distribuciones de Probabilidad Discretas y Continuas JUEGO DE BASKETBALL Repaso de Distribuciones de Probabilidad Discretas y Continuas PREGUNTA #1 Qué es una variable aleatoria uniforme discreta? Cómo es su distribución? Qué es una variable aleatoria uniforme

Más detalles

GUÍA EXÁMENES FINALES Y EXTRAORDINARIO DE PROBABILIDAD Y ESTADÍSTICA. Ciclo

GUÍA EXÁMENES FINALES Y EXTRAORDINARIO DE PROBABILIDAD Y ESTADÍSTICA. Ciclo Página: 1 Docente: Judith Ávila Jáen Instrucciones: resuelve lo que a continuación se indica. 1. Resolver las siguientes operaciones con de conjuntos si se tiene, U 0,1,2,3,4,5,6,7,8, 9 A 1,2,3,4, 5 B

Más detalles

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace.

Álgebra lineal. Curso Tema 5. Hoja 1. Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. Álgebra lineal. Curso 2007-2008. Tema 5. Hoja 1 Tema 5. PROBABILIDAD. 1. Probabilidad: conceptos fundamentales. Regla de Laplace. 1. Un dado se lanza dos veces. Se pide: (a) Construir el espacio muestral.

Más detalles

Departamento de Estadística y Econometría. Curso EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2

Departamento de Estadística y Econometría. Curso EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2 Departamento de Estadística y Econometría. Curso 2002-2003 EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2 1.- Una empresa de elaboración de materiales pone en práctica un nuevo método

Más detalles

Resuelve los ejercicios de Probabilidades condicionales

Resuelve los ejercicios de Probabilidades condicionales Resuelve los ejercicios de Probabilidades condicionales 1. Supón que una organización de investigación del consumidor ha estudiado el servicio de garantía que ofrecen los 200 distribuidores de neumáticos

Más detalles

DISTRIBUCIONES DE VARIABLE CONTINUA

DISTRIBUCIONES DE VARIABLE CONTINUA DISTRIBUCIONES DE VARIABLE CONTINUA Página 63 REFLEXIONA Y RESUELVE Tiempos de espera Los trenes de una cierta línea de cercanías pasan cada 0 minutos. Cuando llegamos a la estación, ignoramos cuándo pasó

Más detalles

Análisis de Datos Práctica 1

Análisis de Datos Práctica 1 Análisis de Datos 2013 - Práctica 1 1. Sea = f1; 2; 3; 4; 5; 6; 7g, E = f1; 3; 5; 7g, F = f7; 4; 6g, G = f1; 4g. Describir: a) E \ F c) E \ G 0 e) E 0 \ (F [ G) b) E [ (F \ G) d) (E \ F 0 ) [ G f) (E \

Más detalles

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016

ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 ESTADÍSTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES Práctico 2 Curso 2016 Ejercicio 1 Una empresa de selección de personal llama a 12 postulantes para una entrevista de empleo. Se sabe por experiencia

Más detalles

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema:

Modelos de probabilidad. Modelos de probabilidad. Modelos de probabilidad. Proceso de Bernoulli. Objetivos del tema: Modelos de probabilidad Modelos de probabilidad Distribución de Bernoulli Distribución Binomial Distribución de Poisson Distribución Exponencial Objetivos del tema: Al final del tema el alumno será capaz

Más detalles

Distribución de Probabilidades con Nombre Propio Problemas Propuestos

Distribución de Probabilidades con Nombre Propio Problemas Propuestos Distribución de Probabilidades con Nombre Propio Problemas Propuestos DISTRIBUCIÓN BINOMIAL (BERNOULLI) 2.167 Hallar la probabilidad de que al lanzar una moneda honrada 6 veces aparezcan (a) 0, (b) 1,

Más detalles

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B:

PROBABILIDAD. 3.-Determina si son compatibles o incompatibles los sucesos A y B: Ejercicios y problemas 2º Bachillerato C.C.S.S. PROBABILIDAD 1.- Justifica gráficamente las siguientes igualdades: 2.- Tenemos dos urnas la urna I con 1 bola negra, 2 rojas y 3 verdes, y la urna II con

Más detalles

ESTADÍSTICA INFERENCIAL

ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL ESTADÍSTICA INFERENCIAL 1 Sesión No. 4 Nombre: Distribuciones de probabilidad para variables Contextualización En la sesión anterior se definió el concepto de variable aleatoria

Más detalles

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado.

PROBABILIDAD. Es el conjunto de todos los resultados posibles de un experimento aleatorio. Por ejemplo: Experimento: tirar un dado. 1 PROBABILIDAD EXPERIMENTOS Al fijar las condiciones iniciales para un experimento se da lugar a dos tipos de situaciones: a) Experimentos determinísticos: se conoce el resultado. Por ejemplo: si suelto

Más detalles

5 DISTRIBUCIONES BINOMIAL Y DE POISSON

5 DISTRIBUCIONES BINOMIAL Y DE POISSON 5 DISTRIBUCIONES BINOMIAL Y DE POISSON La repetición sucesiva de n pruebas (ensayos) de BERNOUILLI de modo independiente y manteniendo constante la probabilidad de éxito p da lugar a la variable aleatoria

Más detalles

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria

Objetivos. 1. Variable Aleatoria y Función de Probabilidad. Tema 4: Variables aleatorias discretas Denición de Variable aleatoria Tema 4: Variables aleatorias discretas Objetivos Dominar el uso de las funciones asociadas a una variable aleatoria discreta para calcular probabilidades. Conocer el signicado y saber calcular la esperanza

Más detalles

Prueba Integral Lapso /6

Prueba Integral Lapso /6 Prueba Integral Lapso 2 009-2 76 - /6 Universidad Nacional Abierta Probabilidad y Estadística I (76) Vicerrectorado Académico Cód. Carrera: 06-20 - 508 Fecha: 2-2 - 2 009 MODELO DE RESPUESTAS Objetivos,

Más detalles

Distribuciones de Probabilidad

Distribuciones de Probabilidad Distribuciones de Probabilidad Variables Aleatorias Ahora se introducirá el concepto de variable aleatoria y luego se introducirán las distribuciones de probabilidad discretas más comunes en la práctica

Más detalles

PROBLEMAS DE LA ASIGNATURA MA2139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD

PROBLEMAS DE LA ASIGNATURA MA2139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD PROBLEMAS DE LA ASIGNATURA MA139 ESTADISTICA APLICADA CORRESPONDIENTES AL CAPITULO 1 : MODELOS DE DISTRIBUCION DE PROBABILIDAD Distribuciones de probabilidad 1/4 PROBLEMAS DE DISTRIBUCIONES DE PROBABILIDAD

Más detalles

Grupo 23 Semestre Segundo examen parcial

Grupo 23 Semestre Segundo examen parcial Probabilidad Grupo 23 Semestre 2015-2 Segundo examen parcial La tabla siguiente presenta 20 postulados, algunos de los cuales son verdaderos y otros son falsos. Analiza detenidamente cada postulado y elige

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Variable Aleatoria Continua. Principales Distribuciones

Variable Aleatoria Continua. Principales Distribuciones Variable Aleatoria Continua. Definición de v. a. continua Función de Densidad Función de Distribución Características de las v.a. continuas continuas Ejercicios Definición de v. a. continua Las variables

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado.

Conceptos. Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Teresa Pérez P DíazD Profesora de matemática tica Conceptos Experimento Aleatorio: Es un fenómeno en el que interviene el azar, es decir no se puede predecir el resultado. Ejemplos: E : Lanzar un dado,

Más detalles

DISTRIBUCIÓN N BINOMIAL

DISTRIBUCIÓN N BINOMIAL DISTRIBUCIÓN N BINOMIAL COMBINACIONES En muchos problemas de probabilidad es necesario conocer el número de maneras en que r objetos pueden seleccionarse de un conjunto de n objetos. A esto se le denomina

Más detalles

Tema 13: Distribuciones de probabilidad. Estadística

Tema 13: Distribuciones de probabilidad. Estadística Tema 13: Distribuciones de probabilidad. Estadística 1. Variable aleatoria Una variable aleatoria es una función que asocia a cada elemento del espacio muestral, de un experimento aleatorio, un número

Más detalles

Variable Aleatoria. Relación de problemas 6

Variable Aleatoria. Relación de problemas 6 Relación de problemas 6 Variable Aleatoria. Consideremos el experimento aleatorio consistente en lanzar dos dados equilibrados y observar el número máximo de los dos números obtenidos en ellos. Si X es

Más detalles

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA

Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA Requisito para el examen de 3ta. Y 5ta. Oportunidad de PROBABILIDAD Y ESTADISTICA INSTRUCCIONES: Escribe el enunciado del problema con su procedimiento correspondiente. ENCIERRA TUS RESPUESTAS. PROBLEMA

Más detalles

Para analizar y organizar los datos que se recogen en un estudio, la estadística ofrece diferentes herramientas, entre ellas las frecuencias.

Para analizar y organizar los datos que se recogen en un estudio, la estadística ofrece diferentes herramientas, entre ellas las frecuencias. TALLER DE REPASO ESTADÍSTICA GRADO NOVENO. RECORDEMOS: Para analizar y organizar los datos que se recogen en un estudio, la estadística ofrece diferentes herramientas, entre ellas las frecuencias. La frecuencia

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos.

PROBABILIDADES Y ESTADÍSTICA (C) Práctica Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. PROBABILIDADES Y ESTADÍSTICA (C) Práctica 1 1. Se arroja dos veces un dado equilibrado, registrándose los resultados obtenidos. a) Definir un espacio muestral S apropiado para este experimento. b) Describir

Más detalles

Guía Matemática NM 4: Probabilidades

Guía Matemática NM 4: Probabilidades Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof.: Ximena Gallegos H. Guía Matemática NM : Probabilidades Nombre: Curso: Aprendizaje Esperado: Determinar la probabilidad de ocurrencia de

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

Unidad 1: Espacio de Probabilidad

Unidad 1: Espacio de Probabilidad Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar

Más detalles

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved.

Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Capítulo 4 Probabilidad TÉCNICAS DE CONTEO Copyright 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. 4.1-1 Técnicas de conteo En muchos problemas de probabilidad, el reto mayor es encontrar

Más detalles

Distribuciones de probabilidad discretas

Distribuciones de probabilidad discretas Lind, Douglas; William G. Marchal y Samuel A. Wathen (2012). Estadística aplicada a los negocios y la economía, 15 ed., McGraw Hill, China. Distribuciones de probabilidad discretas Capítulo 6 FVela/ McGraw-Hill/Irwin

Más detalles

Problemas propuestos en pruebas de Selectividad de Madrid desde 2007 hasta 2014 Estadística: Resolución de los ejercicios propuestos

Problemas propuestos en pruebas de Selectividad de Madrid desde 2007 hasta 2014 Estadística: Resolución de los ejercicios propuestos Problemas propuestos en pruebas de Selectividad de Madrid desde 2007 hasta 2014 Estadística: de los ejercicios propuestos 1º El contenido en alquitrán de una determinada marca de cigarrillos se puede aproximar

Más detalles

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD

HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD pág.45 HOJA 32: EJERCICIOS DE REPASO DE PROBABILIDAD 1.- De una baraja española de 40 cartas se extrae una al azar, cuál es la probabilidad de que sea bastos o menor que 5? 2.- Dos jugadores (A y B) inician

Más detalles

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha:

Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: Área de Matemática Fecha: Integral Lapso 2010-2 745 1/5 Universidad Nacional Abierta Estadística General (745) Vicerrectorado Académico Cód. Carrera: 610-612-613 Fecha: 26-02-2011 OBJ. 2 PTA 1 MODELO DE RESPUESTAS Objetivos 2,

Más detalles

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i

ESTADÍSTICA. Kilómetros recorridos: x i Número de bicicletas: f i ESTADÍSTICA 1.- Un equipo ciclista quiere estudiar el estado de las bicicletas a lo largo de cuatro años. Toma una muestra de 20 bicicletas y mira los Kilómetros que han recorrido: Kilómetros recorridos:

Más detalles

Variables aleatorias continuas, TCL y Esperanza Condicional

Variables aleatorias continuas, TCL y Esperanza Condicional Variables aleatorias continuas, TCL y Esperanza Condicional FaMAF 17 de marzo, 2011 1 / 37 Poisson P(λ) Número de éxitos en una cantidad grande de ensayos independientes Rango: {0, 1, 2,... } = {0} N Función

Más detalles

CÁLCULO DE PROBABILIDADES

CÁLCULO DE PROBABILIDADES CÁLCULO DE PROBABILIDADES 1. Regla de Laplace. Ejercicio 1. (2005) Ejercicio 2. (2004) María y Laura idean el siguiente juego: cada una lanza un dado, si en los dos dados sale el mismo número, gana Laura;

Más detalles

Prof. Eliana Guzmán U. Semestre A-2015

Prof. Eliana Guzmán U. Semestre A-2015 Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial.

Algunas Distribuciones Estadísticas Teóricas. c) Relación entre la Distribuciones de Poisson y Exponencial. Algunas Distribuciones Estadísticas Teóricas Distribución Continuas: a) Distribución Uniforme b) Distribución de Exponencial c) Relación entre la Distribuciones de Poisson y Exponencial. d) Distribución

Más detalles

Distribución normal estándar. Juan José Hernández Ocaña

Distribución normal estándar. Juan José Hernández Ocaña Distribución normal estándar Juan José Hernández Ocaña Tipos de variables jujo386@hotmail.com Tipos de variables Cualitativas Son las variables que expresan distintas cualidades, características o modalidades.

Más detalles

EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON

EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON EJERCICIOS DE DISTRIBUCION NORMAL, BINOMIAL Y POISSON 1. Si 15 de 50 proyectos de viviendas violan el código de construcción, Cuál es la probabilidad de que un inspector de viviendas, que selecciona aleatoriamente

Más detalles

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8.

= 10. pertenece al intervalo en el que estamos, es decir, en 2,8. ROBLEMAS SOLUCIONADOS SOBRE VARIABLES ALEATORIAS CONTINUAS DIST NORMAL AROX DE LA DIST BINOMIAL ROFESOR ANTONIO IZARRO 1º (Castilla y León, Junio, 99 Sea X una variable aleatoria cuya función de distribución

Más detalles

Tema 4: Probabilidad y Teoría de Muestras

Tema 4: Probabilidad y Teoría de Muestras Tema 4: Probabilidad y Teoría de Muestras Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Probabilidad y Teoría de Muestras Curso 2008-2009

Más detalles

AÑOS

AÑOS Unidad 0. Distribuciones de probabilidad Matemáticas aplicadas a las Ciencias Sociales I Resuelve Página 9 Distribución de edades Las edades de los habitantes de una población se distribuyen según la gráfica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 5: PROBABILIDAD Junio, Ejercicio 3, Parte I, Opción A Junio, Ejercicio 3, Parte I, Opción B Reserva 1,

Más detalles

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas

Colegio SSCC Concepción - Depto. de Matemáticas. Aprendizajes Esperados: Calcular probabilidades condicionales en situaciones problemáticas Colegio SSCC Concepción - Depto. de Matemáticas Unidad de Aprendizaje: PROBABILIDAD Capacidades/Destreza/Habilidad: Racionamiento Matemático/ Aplicación / Calcular, Resolver Valores/ Actitudes: Respeto,

Más detalles

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana.

Muchas variables aleatorias continuas presentan una función de densidad cuya gráfica tiene forma de campana. Página 1 de 7 DISTRIBUCIÓN NORMAL o campana de Gauss-Laplace Esta distribución es frecuentemente utilizada en las aplicaciones estadísticas. Su propio nombre indica su extendida utilización, justificada

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD PROBABILIDAD MISCELANEA DE EJERCICIOS UNIDAD 2

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNAD PROBABILIDAD MISCELANEA DE EJERCICIOS UNIDAD 2 EJERCICIOS CAPITULO 4 1.- Un inspector de aduanas decide revisar 2 de 6 embarques provenientes de Madrid por la vía aérea. Si la selección es aleatoria y 3 de los embarques contienen contrabando; Encuentre

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.

Más detalles

Ejercicios Tema 3 Variables aleatorias

Ejercicios Tema 3 Variables aleatorias Ejercicios Tema 3 Variables aleatorias 1. Si consideramos el lanzamiento de tres monedas no trucadas, calcula la unción de distribución de la variable X que cuenta el número de caras obtenido en el lanzamiento

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

-100 0.10 0 0.20 50 0.30 100 0.25 150 0.10 200

-100 0.10 0 0.20 50 0.30 100 0.25 150 0.10 200 ESTADISTICA Y PROBABILIDAD Orientadores:. Arch. Taller3_est.doc 1. El siguiente es un ejemplo de experimentos y variables aleatorias asociadas. Identifique en cada caso los valores que la variables aleatoria

Más detalles

3 PROBABILIDAD Y DISTRIBUCION NORMAL

3 PROBABILIDAD Y DISTRIBUCION NORMAL 3 PROBABILIDAD Y DISTRIBUCION NORMAL La probabilidad puede ser considerada como una teoría referente a los resultados posibles de los experimentos. Estos experimentos deben ser repetitivos; es decir poder

Más detalles