Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción. Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas"

Transcripción

1 Gramáticas

2 Introducción Las gramáticas definen las reglas que definen a los lenguajes Las reglas pueden tener una diversa variedad de esquemas En algunos lenguajes, una sucesión de símbolos depende del anterior En algunos lenguajes, es posible separar una palabra en partes más pequeñas, que no dependan unas de otras En un lenguaje, pueden existir elementos que cambien su significado dependiendo de su contexto Algunos lenguajes tienen una estructura general, que no se ajusta a lo ya comentado

3 Análisis Considere el caso del lenguaje asociado a las expresiones matemáticas (8+1) Para estudiar las estructuras que pueden presentarse en los diferentes tipos de lenguaje, se ha diseñado teoría como la Jerarquía de Chomsky

4 Notación Una regla de producción se representa como <término que se define> ::= <definición> Ejemplo <instruccion> ::= <asignacion> <asigancion> ::= <identificador> = <expresion> <expresion> ::= <sumando> <expresion> ::= <sumando> + <expresion> <sumando> ::= <factor> <sumando> ::= <factor> * <sumando> <factor> ::= <identificador> <factor> ::= <numero> <identificador> ::= x <identificador> ::= y <identificador> ::= z

5 Notación Sea Σ un alfabeto y P un conjunto de reglas de producción. Sean u y v dos palabras del mismo alfabeto. Se dice que v deriva directamente de u mediante P, si es posible descomponer u y v de la siguiente manera: u = xyz, v = xwz P contiene la regla y ::= w La derivación directa se representa por: u v Por otro lado, se dice que v deriva de u si existen una secuencia finita tales que: u = u 0 u 1 u n = v La derivación se denota como: u + v Existe una relación Thue entre u y v si: u = v ó u * v

6 Gramática Una gramática se define como la cuádrupla G = (Σ T, Σ N, S, P), donde: Σ T : símbolos terminales Σ N : símbolos no terminales S Σ N : axioma o símbolo inicial P: conjunto finito de reglas de producción Tanto Σ T y Σ N deben de ser conjuntos disjuntos Ejemplo: considere la gramática G = ({0, 1,, 9}, {N,C}, N, P), donde P es el conjunto: N ::= NC N ::= C C ::= 0 C ::= 1 C ::= 9 Verificar si es posible generar la palabra 1230 a partir de esta gramática

7 Notación Backus Si el conjunto de reglas de producción contiene dos reglas de la forma: u ::= v u ::= w Se puede representar de forma abreviada la notación de la forma: u ::= v w Por ejemplo, las reglas de producción del ejemplo anterior se expresan como: N ::= NC C C ::=

8 Lenguaje asociado a una gramática Sea la gramática G = (Σ T, Σ N, S, P), se llama el lenguaje asociado a G al conjunto L(G) = {x S * x, x Σ* T } Se dice que dos gramáticas G1 y G2 son equivalentes cuando describen el mismo lenguaje, es decir, L(G1) = L(G2) Se una gramática G = (ΣΣ T, Σ N, S, P) y v = x u y tal que S * x u y. Se dice que u es una frase de la forma sentencial v respecto del símbolo no terminal U si se verifica que S * xuy U + u

9 Recursividad Una regla de producción es recursiva si tiene la forma U ::= x U y Si x = λ, se dice que la regla es recursiva a la izquierda Si y = λ, se dice que la regla es recursiva a la derecha Sea G = (Σ T, Σ N, S, P), se dice que: G es recursiva en el símbolo no terminal U Σ N si U + xuy Si un lenguaje es infinito, la gramática que lo representa tiene que ser recursiva

10 Clasificación de gramáticas Chomsky clasificó a las gramáticas en 4 grandes grupos Gramáticas de tipo 0 Gramáticas de tipo 1 Gramáticas de tipo 2 Gramáticas de tipo 3

11 Gramáticas Tipo 3 o Regulares Las gramáticas del tipo 3 se clasifican en dos grupos: Gramáticas lineales por la izquierda: sea G = (Σ T, Σ N, S, P), las reglas de producción de P serán de la forma: A ::= a A ::= Va S ::= λ Donde a Σ T, A,V,S Σ N, S es el axioma de la gramática Gramáticas lineales por la derecha: sea G = (Σ T, Σ N, S, P), las reglas de producción de P serán de la forma: A ::= a A ::= av S ::= λ Donde a Σ T, A,V,S Σ N, S es el axioma de la gramática En ambos casos, la última regla puede aparecer únicamente si la gramática no es recursiva en S. Si se desea considerar en el lenguaje representado por la gramática a la palabra vacía, se genera una nueva transición

12 Gramáticas Tipo 3 o Regulares Ejemplo: G1 = ({0,1}, {A, B}, A, {A ::= B1 1, B ::= A0}) G2 = ({0,1}, {A, B}, A, {A ::= 1B 1, B ::= 0A}) G3 = ({a,b}, {S, A}, S, {S ::= ba, A ::= as a}) Estas gramáticas son del tipo G3? Describe cada lenguaje asociado a las gramáticas descritas

13 Soluciones G1 = ({0,1}, {A, B}, A, {A ::= B1 1, B ::= A0}) L(G1) = {1(01) n : n >=0} G2 = ({0,1}, {A, B}, A, {A ::= 1B 1, B ::= 0A}) L(G2) = {1(01) n : n >= 0} G3 = ({a,b}, {S, A}, S, {S ::= ba, A ::= as a}) L(G3) = {(ba) n : n >= 1}

14 Gramáticas libres de contexto o Tipo 2 Sea G = (Σ T, Σ N, S, P) una gramática, G es gramática tipo 2 o libre de contexto, si las reglas de producción tienen la forma: A ::= v v (Σ T Σ N )* Σ A Σ N Un lenguaje libre de contexto es un lenguaje generado por una gramática libre de contexto

15 Gramáticas libres de contexto o Tipo 2 Ejemplo Considere la gramática G = (Σ T, Σ N, S, P), donde Σ T = {Num, +, -, (, )} Σ N = {Q0, Q1, Op} S = Q1 P esta formado por Q0 ::= Q1 Op Q1 Op ::= +Q1 -Q1 Q1 ::= Num (Q0) Nota: considere que Num es un número.

16 Gramáticas tipo 1 o sensibles al contexto Sea G = (Σ T, Σ N, S, P) una gramática, G es gramática tipo 1 si todas sus producciones P son del tipo: xay ::= xvy A ΣN x,y (Σ T Σ N )* v (ΣΣ T Σ N ) + Esto dice que un símbolo no terminal A se transforma en la cadena v si está flanqueado a la izquierda por la cadena x y a la derecha por la cadena y (contexto). Además, v no puede ser la cadena vacía

17 Gramáticas de tipo 0 Sea G = (Σ T, Σ N, S, P) una gramática, G es gramática tipo 0 si todas sus producciones P son del tipo: u ::= v u, v (Σ T Σ N )* Hay que notar que un lenguaje regular siempre es un lenguaje libre de contexto

18 Ejemplo Considere la gramática G = ({a,b}, {A, B, C}, A, P), donde: A ::= aabc abc CB ::= BC bb ::= bb bc ::= b

Conceptos básicos sobre gramáticas

Conceptos básicos sobre gramáticas Procesamiento de Lenguajes (PL) Curso 2014/2015 Conceptos básicos sobre gramáticas Gramáticas y lenguajes Gramáticas Dado un alfabeto Σ, un lenguaje es un conjunto (finito o infinito) de cadenas de símbolos

Más detalles

Teoría de Autómatas y Lenguajes Formales.

Teoría de Autómatas y Lenguajes Formales. Teoría de Autómatas y Lenguajes Formales Prueba de Evaluación de Lenguajes y Gramáticas Autores: Araceli Sanchis de Miguel Agapito Ledezma Espino Jose A. Iglesias Martínez Beatriz García Jiménez Juan Manuel

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 7 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/20 Lenguajes Formales

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Repaso TALF Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 La Jerarquía de Chomsky Cuatro niveles de lenguajes formales

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 4 de Noviembre de 2015 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/21 Lenguajes Formales

Más detalles

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V.

Compiladores: Análisis Sintáctico. Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Compiladores: Análisis Sintáctico Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Sintaxis Define la estructura del lenguaje Ejemplo: Jerarquía en

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars)

Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Computabilidad y lenguajes formales: Sesión 19. Gramáticas Incontextuales (Context Free Grammars) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad

Más detalles

GRAMATICAS LIBRES DEL CONTEXTO

GRAMATICAS LIBRES DEL CONTEXTO GRMTICS LIBRES DEL CONTEXTO Estas gramáticas, conocidas también como gramáticas de tipo 2 o gramáticas independientes del contexto, son las que generan los lenguajes libres o independientes del contexto.

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS

PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS Licenciatura en Sistemas de Información PROGRAMACIÓN II AÑO 2009 TALLER 3: TEORÍA DE LENGUAJES Y AUTÓMATAS UNSE FCEyT 1. DESCRIPCIÓN Este taller consta de tres partes. En cada una de ellas se especifican

Más detalles

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales

Teoría de Autómatas y Lenguajes Formales. Introducción a las Gramáticas. Gramáticas incontextuales Teoría de utómatas y Lenguajes Formales Introducción a las ramáticas. ramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Introducción

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

Las Gramáticas Formales

Las Gramáticas Formales Definición de Las Como definir un Lenguaje Formal Universidad de Cantabria Esquema Motivación Definición de 1 Motivación 2 Definición de 3 Problema Motivación Definición de Dado un lenguaje L, se nos presenta

Más detalles

Paréntesis: Una aplicación en lenguajes formales

Paréntesis: Una aplicación en lenguajes formales Paréntesis: Una aplicación en lenguajes formales Vamos a ver una aplicación del Teorema de Immerman-Szelepcsényi en la área de lenguajes formales. IIC3242 Clases de Complejidad 35 / 69 Paréntesis: Una

Más detalles

Generación de Código Intermedio

Generación de Código Intermedio Generación de Código Intermedio Programación II Margarita Álvarez Generación de código intermedio Con la generación de código intermedio se inicia la tarea de síntesis. Aunque un programa fuente se puede

Más detalles

La Jerarquía de Chomsky

La Jerarquía de Chomsky La Apuntes sobre la Complejidad Universidad de Cantabria Esquema Motivación 1 Motivación 2 Ideas y Nociones Motivación Como se ha mencionado anteriormente, los lenguajes son conjuntos de palabras definidos

Más detalles

SSL Guia de Ejercicios

SSL Guia de Ejercicios 1 SSL Guia de Ejercicios INTRODUCCIÓN A LENGUAJES FORMALES 1. Dado el alfabeto = {a, b, c}, escriba las palabras del lenguaje L = {x / x }. 2. Cuál es la cardinalidad del lenguaje L = {, a, aa, aaa}? 3.

Más detalles

16 Análisis sintáctico I

16 Análisis sintáctico I 2 Contenido Recordando la estructura de un compilador Recordando el análisis léxico l análisis sintáctico Comparación con el análisis léxico l Rol del Parser Lenguajes de programación Gramáticas structura

Más detalles

Capítulo 9. Introducción a los lenguajes formales. Continuar

Capítulo 9. Introducción a los lenguajes formales. Continuar Capítulo 9. Introducción a los lenguajes formales Continuar Introducción Un lenguaje es un conjunto de símbolos y métodos para estructurar y combinar dichos símbolos. Un lenguaje también recibe el nombre

Más detalles

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I

Tema 1: Introducción. Teoría de autómatas y lenguajes formales I Tema 1: Introducción Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison Wesley.

Más detalles

Capítulo 3. Gramáticas Formales.

Capítulo 3. Gramáticas Formales. UNIDAD I: LNGUAJS Y GRAMÁTICAS Capítulo 1. Introducción. Capítulo 2. Lenguajes Formales Capítulo 3. Gramáticas Formales. 3.1. Concepto de gramática formal Producciones. Gramática Formal. Lenguaje asociado

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

GRAMÁTICAS LIBRES DE CONTEXTO

GRAMÁTICAS LIBRES DE CONTEXTO GRAMÁTICAS LIBRES DE CONTEXTO Definición Una gramática libre de contexto (GLC) es una descripción estructural precisa de un lenguaje. Formalmente es una tupla G=, donde Vn es el conjunto

Más detalles

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila.

Temas. Objetivo. Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2) Definir autómatas de pila. 0 Temas Definición de autómata de pila Autómata de pila determinístico y no determinístico Objetivo Que el estudiante logre: 1) Identificar conceptos constructivos de la Teoría de la Computabilidad. 2)

Más detalles

Compiladores: Sesión 3. Análisis léxico, expresiones regulares

Compiladores: Sesión 3. Análisis léxico, expresiones regulares Compiladores: Sesión 3. Análisis léxico, expresiones regulares Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali 29 de enero de

Más detalles

TEORÍA DE CONJUNTOS.

TEORÍA DE CONJUNTOS. TEORÍA DE CONJUNTOS. NOCIÓN DE CONJUNTO: Concepto no definido del cual se tiene una idea subjetiva y se le asocian ciertos sinónimos tales como colección, agrupación o reunión de objetos abstractos o concretos.

Más detalles

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES

DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES 1 DEFINICIONES BÁSICAS E INTRODUCCIÓN A LENGUAJES FORMALES Los LENGUAJES FORMALES están formados por PALABRAS, las palabras son CADENAS y las cadenas están constituidas por SÍMBOLOS de un ALFABETO. SÍMBOLOS

Más detalles

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales

Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Teoría de Autómatas y Compiladores [ICI-445] Capítulo 1: Lenguajes y Gramáticas Formales Dr. Ricardo Soto [ricardo.soto@ucv.cl] [http://www.inf.ucv.cl/ rsoto] Escuela de Ingeniería Informática Pontificia

Más detalles

Tema 3: Fundamentos de la Teoría de Gramáticas Formales

Tema 3: Fundamentos de la Teoría de Gramáticas Formales Departamento de Tecnologías de la Información Tema 3: Fundamentos de la Teoría de Gramáticas Formales Ciencias de la Computación e Inteligencia Artificial Índice 3.1. Concepto básico de Gramática. Ejemplos

Más detalles

Expresiones regulares, gramáticas regulares

Expresiones regulares, gramáticas regulares Expresiones regulares, gramáticas regulares Los LR en la jerarquía de Chomsky La clasificación de lenguajes en clases de lenguajes se debe a N. Chomsky, quien propuso una jerarquía de lenguajes, donde

Más detalles

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares

Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Autómata = Lógica Nuestro objetivo es demostrar que autómata = lógica Qué significa esto? Queremos encontrar una lógica que defina a los lenguajes regulares Pero antes: Vamos a hacer un breve repaso sobre

Más detalles

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007.

Texto: Hopcroft, J. E., Motwani, R., Ullman, J.D., Introduction to Automata Theory, Languajes, and Computation. 3rd Edition. Addison Wesley, 2007. Universidad de Puerto Rico Recinto de Mayagüez Facultad de Artes y Ciencias DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Programa de Autómata y Lenguajes Formales Curso: Autómata y Lenguajes Formales Codificación:

Más detalles

Mó duló 18: Sumatória

Mó duló 18: Sumatória INTERNADO MATEMÁTICA 2016 Guía del estudiante Mó duló 18: Sumatória Objetivo: Familiarizarse con la notación matemática de sumatoria. En ocasiones es necesario escribir y calcular algunas sumas de números

Más detalles

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto

Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer, utilizar y diseñar gramáticas de libre contexto Universidad Autónoma del Estado de México Centro Universitario UAEM Texcoco Departamento de Ciencias Aplicadas. Ingeniería en Computación. Autómatas y Lenguajes Formales. Unidad de competencia IV: Conocer,

Más detalles

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total.

2do. Parcial. Todos los ejercicios se entregarán en hojas separadas. El examen tipo test cuenta hasta 2 puntos sobre la nota total. U.R.J.C. Ingeniera Técnica en Informática de Sistemas Teoría de Autómatas y Lenguajes Formales Junio 2009 2do. Parcial Normas : La duración del examen es de 2 horas. Todos los ejercicios se entregarán

Más detalles

UNIDAD I: LENGUAJES Y GRAMÁTICAS. Capítulo 3. Gramáticas Formales.

UNIDAD I: LENGUAJES Y GRAMÁTICAS. Capítulo 3. Gramáticas Formales. UNIDAD I: LNGUAJS Y GRAMÁTICAS Capítulo 1. Introducción. Capítulo 2. Lenguajes Formales Capítulo 3. Gramáticas Formales. 3.1. Concepto de gramática formal Producciones. Gramática Formal. Lenguaje asociado

Más detalles

1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO

1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO 1.-DEFINE EN QUE CONSISTEN LAS GRAMÁTICAS LIBRES DE CONTEXTO una gramática libre de contexto (o de contexto libre) es una gramática formal en la que cada regla de producción es de la forma: V w Donde V

Más detalles

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto

EJERCICIOS del TEMA 3: Lenguajes independientes del contexto EJERCICIOS del TEMA 3: Lenguajes independientes del contexto Sobre GICs (gramáticas independientes del contexto) 1. Sea G una gramática con las siguientes producciones: S ASB ε A aab ε B bba ba c ) d )

Más detalles

Lenguajes y Gramáticas

Lenguajes y Gramáticas Lenguajes y Gramáticas Teoría de Lenguajes Fernando Naranjo Introduccion Se desarrollan lenguajes de programación basados en el principio de gramática formal. Se crean maquinas cada vez mas sofisticadas

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales

Teoría de Lenguajes. Propiedades y caracterizaciones de los lenguajes incontextuales Teoría de Lenguajes Propiedades y caracterizaciones de los lenguajes incontextuales José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Propiedades y caracterizaciones

Más detalles

Expresiones regulares y derivadas

Expresiones regulares y derivadas Expresiones regulares y derivadas Teoría de Lenguajes 1 er cuatrimestre de 2002 1 Expresiones regulares Las expresiones regulares son expresiones que se utilizan para denotar lenguajes regulares. No sirven

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Lenguajes Libres del Contexto

Lenguajes Libres del Contexto Capítulo 3 Lenguajes Libres del Contexto [LP81, cap 3] n este capítulo estudiaremos una forma de representación de lenguajes más potentes que los regulares. Los lenguajes libres del contexto (LC) son importantes

Más detalles

Analizadores sintácticos LR(0) y SLR

Analizadores sintácticos LR(0) y SLR Teoría de Lenguajes Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Clase de Hoy Anteriores: Parsing descendente (LL(1), ELL) Recursivos e iterativos Generan árbol de derivación desde

Más detalles

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo:

No todos los LRs finitos se representan mejor con ERs. Observe el siguiente ejemplo: 1 Clase 3 SSL EXPRESIONES REGULARES Para REPRESENTAR a los Lenguajes Regulares. Se construyen utilizando los caracteres del alfabeto sobre el cual se define el lenguaje, el símbolo y operadores especiales.

Más detalles

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 2.

UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes. Tema 2. UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA Escuela Técnica Superior de Ingeniería Informática Procesadores de Lenguajes Tema 2 Análisis Léxico Javier Vélez Reyes jvelez@lsi.uned.es Objetivos del Tema

Más detalles

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO

TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6 GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO TEMA 6.- GRAMÁTICAS INDEPENDIENTES DEL CONTEXTO 6.1. Gramáticas independientes del contexto. 6.2. Limpieza de Gramáticas Independientes del contexto. 6.3.

Más detalles

Teoría de Lenguajes Solución 2do. Parcial Curso 2013

Teoría de Lenguajes Solución 2do. Parcial Curso 2013 Ejercicio 1 [Evaluación individual del obligatorio] Teoría de Lenguajes Solución 2do. Parcial Curso 2013 a) iv. Cuando se realiza un reduce b) ii. La gramática implementada en el archivo Sintactico.sin

Más detalles

ÁRBOLES DE SINTAXIS. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales.

ÁRBOLES DE SINTAXIS. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales. ÁRBOLES DE SINTAXIS ÁRBOL grafo dirigido acíclico. Los nodos no terminales (nodos interiores) están rotulados por los símbolos no terminales. Los nodos terminales (nodos hojas) están rotulados por los

Más detalles

Tema 2. Fundamentos de la Teoría de Lenguajes Formales

Tema 2. Fundamentos de la Teoría de Lenguajes Formales Departamento de Tecnologías de la Información Tema 2. Fundamentos de la Teoría de Lenguajes Formales Ciencias de la Computación e Inteligencia Artificial Índice 2.1. Alfabeto 2.2. Palabra 2.3. Operaciones

Más detalles

18 Análisis sintáctico III Compiladores - Profr. Edgardo Adrián Franco Martínez. Clasificación de métodos de análisis sintáctico Análisis descendente

18 Análisis sintáctico III Compiladores - Profr. Edgardo Adrián Franco Martínez. Clasificación de métodos de análisis sintáctico Análisis descendente 2 Contenido Clasificación de métodos de análisis sintáctico Análisis descendente Análisis descendente recursivo Análisis descendente predictivo Métodos deterministas Problemas del análisis descendente

Más detalles

Teoría de Lenguajes. Gramáticas incontextuales

Teoría de Lenguajes. Gramáticas incontextuales Teoría de Lenguajes Gramáticas incontextuales José M. Sempere Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia Gramáticas incontextuales 1. Definiciones básicas.

Más detalles

Capítulo 7: Expresiones Regulares

Capítulo 7: Expresiones Regulares Capítulo 7: Expresiones Regulares 7.1. Concepto de expresión regular 7.1.1. Definición 7.1.2. Lenguaje descrito 7.1.3. Propiedades 7.2. Teoremas de equivalencia 7.2.1. Obtener un AFND a partir de una expresión

Más detalles

Tema: Autómata de Pila

Tema: Autómata de Pila Facultad: Ingeniería Escuela: Computación Asignatura: Compiladores 1 Tema: Autómata de Pila Contenido La presente guía aborda los autómatas de pila, y se enfoca en la aplicación que se le puede dar a estas

Más detalles

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y

autómatas finitos y lenguajes regulares LENGUAJES FORMALES Y CONTENIDO Reconocedores [HMU2.1]. Traductores [C8]. Diagramas de Estado [HMU2.1]. Equivalencia entre AF deterministas y no deterministas [HMU2.2-2.3]. Expresiones [HMU3]. Propiedades de [HMU4]. Relación

Más detalles

Tema 2 Gramáticas y Lenguajes Libres de Contexto

Tema 2 Gramáticas y Lenguajes Libres de Contexto Tema 2 Gramáticas y Lenguajes Libres de Contexto 1. Definiciones Básicas 2. 3. Forma Normal de Chomsky 4. Autómatas de Pila 5. Propiedades de los Lenguajes Libres de Contexto 1. Definiciones básicas 1.

Más detalles

06 Análisis léxico II

06 Análisis léxico II 2 Contenido Alfabetos, símbolos y cadenas Operaciones con cadenas Concatenación de dos cadenas Prefijos y sufijos de una cadena Subcadena y subsecuencia Inversión de una cadena Potencia de una cadena Ejercicios

Más detalles

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos

Sumario: Máquinas Secuenciales, Autómatas y Lenguajes Formales. Tema 1: Conceptos básicos (parte 1) Tema 1: Conceptos básicos Formales Tema 1: Conceptos básicos (parte 1) Holger Billhardt holger.billhardt@urjc.es Sumario: Tema 1: Conceptos básicos 1. Lenguajes Formales 2. Gramáticas Formales 3. Autómatas Formales 2 1 Sumario:

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

Equivalencia Entre PDA y CFL

Equivalencia Entre PDA y CFL Equivalencia Entre PDA y CFL El Lenguaje aceptado por un Autómata con Pila Universidad de Cantabria Esquema 1 Introducción 2 3 Lenguaje Aceptado por un Autómata Como en los autómatas finitos, se puede

Más detalles

Clase 17: Autómatas de pila

Clase 17: Autómatas de pila Solicitado: Ejercicios 14: Autómatas de pila de GLC M. en C. Edgardo Adrián Franco Martínez http://computacion.cs.cinvestav.mx/~efranco @efranco_escom edfrancom@ipn.mx 1 Contenido Autómata de pila Definición

Más detalles

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad

Relaciones. Estructuras Discretas. Relaciones. Relaciones en un Conjunto. Propiedades de Relaciones en A Reflexividad Estructuras Discretas Relaciones Definición: relación Relaciones Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Sean

Más detalles

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO

GRAMÁTICAS y LENGUAJES INDEPENDIENTES DEL CONTEXTO Dpto. de Informática (ATC, CCIA y LSI). Universidad de Valladolid. TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES I Ingeniería Técnica en Informática de Sistemas. Curso 2011-12 GRAMÁTICAS y LENGUAJES INDEPENDIENTES

Más detalles

Gramáticas libres de contexto

Gramáticas libres de contexto Gramáticas libres de contexto Conceptos básicos El siguientes es un ejemplo de una gramática libre de contexto, a la cual llamaremos G1. A 0A1 A B B # Una gramática consiste de una colección de reglas

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Práctica 5 - Simplificación de gramáticas incontextuales 1. Objetivos 2. Representación de los datos en Mathematica 3. Eliminación de símbolos inútiles 3.1. Símbolos

Más detalles

Procesadores de Lenguaje

Procesadores de Lenguaje Procesadores de Lenguaje Analizadores sintácticos descendentes: LL(1) Cristina Tîrnăucă Dept. Matesco, Universidad de Cantabria Fac. Ciencias Ing. Informática Primavera de 2013 Analizadores sintácticos

Más detalles

La Ambigüedad en el Parsing

La Ambigüedad en el Parsing La en el Parsing Definición y Ejemplos Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema En nuestra busqueda por encontrar la estructura exploraremos como elegir una derivación

Más detalles

Traductores Push Down

Traductores Push Down Push Down Extensión de Autómatas Universidad de Cantabria Outline El Problema 1 El Problema 2 3 El Problema Hemos estudiado anteriormente los autómatas con pila y hemos visto su relación con los lenguajes

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Tema 2: Autómatas finitos

Tema 2: Autómatas finitos Tema 2: Autómatas finitos Departamento de Sistemas Informáticos y Computación DSIC - UPV http://www.dsic.upv.es p. 1 Tema 2: Autómatas finitos Autómata finito determinista (AFD). Formas de representación

Más detalles

ARITMÉTICA MODULAR. Unidad 1

ARITMÉTICA MODULAR. Unidad 1 Unidad 1 ARITMÉTICA MODULAR 9 Capítulo 1 DE LA TEORÍA DE CONJUNTOS Objetivo general Presentar y afianzar algunos conceptos de la Teoría de Conjuntos relacionados con el estudio de la matemática discreta.

Más detalles

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014

Teoría de Lenguajes. Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 Teoría de Lenguajes Clase Teórica 7 Autómatas de Pila y Lenguajes Independientes del Contexto Primer cuartimestre 2014 aterial compilado por el Profesor Julio Jacobo, a lo largo de distintas ediciones

Más detalles

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO

AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO Autómatas de pila y lenguajes independientes del contexto -1- AUTÓMATAS DE PILA Y LENGUAJES INDEPENDIENTES DEL CONTEXTO AUTÓMATAS DE PILA - Son autómatas finitos con una memoria en forma de pila. - Símbolos

Más detalles

Sentido de recorrido. q i

Sentido de recorrido. q i Sentido de recorrido σ Cinta Cabeza de lectura γ Pila i Unidad de control de estados Componentes básicos de un autómata con pila. σ i 1 σ i j σ i j+1 σ i p Z (a) γ l 1 γ l 2 γ l σ i 1 σ i j σ i j+1 σ i

Más detalles

Lenguajes Formales y Monoides

Lenguajes Formales y Monoides Universidad de Cantabria Esquema 1 2 3 La operación esencial sobre Σ es la concatenación o adjunción de palabras: : Σ Σ Σ (x, y) x y es decir, si x = x 1 x n e y = y 1 y m, entonces x y = x 1 x n y 1 y

Más detalles

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1 Matrices José Vicente Romero Bauset ETSIT-curso 2009/2010 José Vicente Romero Bauset Tema 1- Matrices 1 Introducción Por qué estudiar las matrices? Son muchas las situaciones de la vida real en las que

Más detalles

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales

Sumario: Teoría de Autómatas y Lenguajes Formales. Capítulo 2: Lenguajes Formales. Capítulo 2: Lenguajes Formales Teoría de Autómatas y Lenguajes Formales Capítulo 2: Lenguajes Formales Holger Billhardt holger.billhardt@urjc.es Sumario: Capítulo 2: Lenguajes Formales 1. Concepto de Lenguaje Formal 2. Operaciones sobre

Más detalles

1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos).

1. Define que es un Autómatas finitos determinanticos y cuáles son sus elementos constitutivos (explique cada uno de ellos). Unidad 2.- Lenguajes Regulares Los lenguajes regulares sobre un alfabeto dado _ son todos los lenguajes que Se pueden formar a partir de los lenguajes básicos?, {_}, {a}, a 2 _, por medio De las operaciones

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

Modelos del Lenguaje. Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D

Modelos del Lenguaje. Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D Modelos del Lenguaje Qué es un ML? Modelos basados en N-gramas Modelos basados en Gramáticas Propuesta de T.D Modelos De Lenguaje Qué es un modelo de lenguaje? Mecanismo para definir la estructura del

Más detalles

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria

Las Gramáticas LL. Gramáticas con Parsing Eficiente. Universidad de Cantabria Las (k) Las Gramáticas con Parsing Eficiente Universidad de Cantabria Outline Las (k) 1 Las (k) 2 3 Las (k) Formalizalización del Concepto LL Definición Una gramática libre de contexto G = (V, Σ, Q 0,

Más detalles

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales

6. Autómatas a Pila. Grado Ingeniería InformáDca Teoría de Autómatas y Lenguajes Formales 6. Autómatas a Pila Araceli Sanchis de Miguel Agapito Ledezma Espino José A. Iglesias Mar

Más detalles

22, 23 y 24 Análisis sintáctico V Compiladores - Profr. Edgardo Adrián Franco Martínez

22, 23 y 24 Análisis sintáctico V Compiladores - Profr. Edgardo Adrián Franco Martínez 2 Contenido Análisis Sintáctico Ascendente Métodos Ascendentes Método Ascendente SLR Pasos para el método SLR Ejemplo SLR Resumen Ejercicios Compiladores (Análisis Sintáctico VI - Análisis Ascendente -

Más detalles

PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07

PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 PROCESADORES DE LENGUAJE EXAMEN FINAL 8-JUNIO-07 1. En qué método de análisis sintáctico puede suceder que en la construcción del árbol de derivación de las posibles expansiones de un símbolo no terminal

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011

El análisis descendente LL(1) 6, 7 y 13 de abril de 2011 6, 7 y 13 de abril de 2011 Analizadores sintácticos (repaso) Los analizadores descendentes: Corresponden a un autómata de pila determinista. Construyen un árbol sintáctico de la raíz hacia las hojas (del

Más detalles

Algoritmos y programas. Algoritmos y Estructuras de Datos I

Algoritmos y programas. Algoritmos y Estructuras de Datos I Algoritmos y programas Algoritmos y Estructuras de Datos I Primer cuatrimestre de 2012 Departamento de Computación - FCEyN - UBA Programación funcional - clase 1 Funciones Simples - Recursión - Tipos de

Más detalles

Unidad III Análisis Léxico. M.C. Juan Carlos Olivares Rojas

Unidad III Análisis Léxico. M.C. Juan Carlos Olivares Rojas Unidad III Análisis Léxico M.C. Juan Carlos Olivares Rojas Agenda 3.1 Introducción a los Autómatas finitos y expresiones regulares. 3.2 Analizador de léxico. 3.3 Manejo de localidades temporales de memoria

Más detalles

INDUCCIÓN. Inducción - 2

INDUCCIÓN. Inducción - 2 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

Analizador Sintáctico Ascendente

Analizador Sintáctico Ascendente Analizador Sintáctico Ascente Un Analizador Sintáctico (A. St.) Ascente construye el árbol desde las hojas hacia la raíz. Funciona por reducción-desplazamiento, lo cual quiere decir que, siempre que puede,

Más detalles

Lenguajes (gramáticas y autómatas)

Lenguajes (gramáticas y autómatas) Lenguajes (gramáticas y autómatas) Elvira Mayordomo Universidad de Zaragoza 19 de septiembre de 2013 Elvira Mayordomo (Universidad de Zaragoza) Lenguajes (gramáticas y autómatas) 19 de septiembre de 2013

Más detalles

SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7

SECCIÓN 7.3 INTRODUCCION A VECTORES. Capítulo 7 SECCIÓN 7.3 INTRODUCCION A VECTORES Capítulo 7 Introducción Cantidades tales como área, volumen, longitud, temperatura y tiempo se componen únicamente de una magnitud y se pueden describir completamente

Más detalles