DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: MADRID

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DELTA MASTER FORMACIÓN UNIVERSITARIA C/ Gral. Ampudia, 16 Teléf.: 91 533 38 42-91 535 19 32 28003 MADRID"

Transcripción

1 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD EXÁMEN NTODUÓN A LA ELETÓNA UM JUNO 008 El examen consta de ses preguntas. Lea detendamente los enuncados. tene cualquer duda consulte al profesor. Todas las respuestas deben razonarse y en los problemas debe nclurse el desarrollo necesaro para obtener el resultado. La hoja de enuncados debe entregarse. La duracón del examen es de 3 horas. POLEMA ( punto) Explque por qué en polarzacón nversa la corrente de un dodo es práctcamente nula, mentras que en polarzacón drecta puede ser muy elevada. En otras palabras, justfque, cualtatvamente, por qué la característca - del dodo es de la forma: 0 exp N T En un dodo en equlbro exste una barrera de potencal en la unón, tal que el lado N está a mayor potencal que el lado P. Esta barrera de potencal frena la dfusón de electrones del lado N al lado P y de huecos del lado P al lado N y crea una corrente de arrastre opuesta a la de dfusón, de tal forma que en equlbro la corrente neta es nula. Al polarzar en drecta, la tensón aplcada hace dsmnur esta barrera de potencal, con lo que la corrente de dfusón aumenta. Al ser esta corrente debda a portadores procedentes del lado en que su concentracón es muy elevada, (podemos hablar en este sentdo de portadores mayortaros), la corrente puede alcanzar valores muy altos. Esta stuacón corresponde al térmno exponencal de la característca. Por el contraro, en polarzacón nversa la tensón aplcada se suma a la barrera de potencal, de tal forma que la corrente de dfusón práctcamente se anula y solo queda el térmno de arrastre. Esta es una corrente debda a huecos que proceden del lado N y a electrones que proceden del lado P; es decr, se debe a portadores cuya concentracón es muy pequeña (hablaríamos de mnortaros). Por esta razón, a pesar de que el campo que provoca la corrente de arrastre aumente, esta corrente se mantene en un valor muy pequeño, práctcamente nulo. Esta stuacón queda descrta por el térmno -0 de la característca. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas

2 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD POLEMA ( puntos) Para el dodo del crcuto de la fgura.a consdere el modelo de tensón de codo con γ 0,7. DATO: 0,5 kω; ref. a) alcule el valor de vo en funcón de s s el dodo está en conduccón (ON). b) alcule el valor de vo en funcón de v s el dodo está en corte (O). c) alcule para qué valores de v el dodo está en cada uno de sus dos estados. d) Dbuje la señal de salda s la entrada es la que se representa en la fgura.b. ndque los valores mínmo y máxmo de la señal de salda. Apartado a) El dodo está en ON entonces: ON D 0,7 O D + E 0,7 +,3 O mn,3 ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas

3 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD Apartado b) El dodo está en O entonces: O v max D 4 v 0 v ,5v Apartado c) e puede calcular partendo del dodo en O, en cuyo caso se cumplen las ecuacones del apartado b) y además debe cumplrse que D < 0,7 mponendo esta condcón D v + E 0,7 v < 0,5 v < 0,7 0,5. v >,6 O <,6 ON + < 0,7 Apartado d) El resultado se dbuja en rojo en la fgura (En verde los valores de ) onocdas las regones ON y O se calculan los valores máxmo y mínmo a partr de las expresones a) y b). (Están especfcados en esos apartados) ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 3

4 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD POLEMA 3 (,5 puntos) En el crcuto de la fgura 3 el transstor es de slco con b º he 40. 3, ; ; 0 kw y 7 kw. a) Determne las correntes del transstor s kw. ompruebe cualquer hpótess que realce. b) Determne el valor mínmo de para que el transstor opere en la regón de saturacón. a) En prmer lugar, vamos a smplfcar el problema. alcularemos el equvalente Thévenn del conjunto formado por, y : La resstenca Thévenn se calcula reemplazando la fuente de tensón por un cortocrcuto y calculando la resstenca equvalente. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 4

5 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD Puede verse que ambas resstencas se encuentran en paralelo y que, por tanto, su resstenca equvalente es: th th KΩ 5.8KΩ La tensón Thévenn equvalente, que no es, se calcula como la tensón exstente entre los puntos A y. omo la fgura 3. no es sno un dvsor de tensones: Por tanto, el crcuto anteror se converte en: 7 th A.3, 0, upongamos ahora que el transstor se encuentra en zona actva drecta. En ese caso, la corrente de base es postva y no nula, la corrente de colector es b y E 0.7. De la ecuacón de la malla de la entrada podemos obtener la tensón entre el colector y el emsor. 0,804 0,7 0, 0mA 5,8KΩ De lo cual se deducría que: β 40.0,0mA, 8mA Y, fnalmente: E +,8 + 0,0, 8mA De la ecuacón de la malla de salda podemos obtener la tensón entre el colector y el emsor. E 0 E KΩ.,8mA 5,6 6, 4 ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 5

6 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD omo este valor de E es mayor que 0., se puede conclur que la hpótess ncal acerca del estado del transstor era correcta y que los valores obtendos son certos. Tambén se podría comprobar que estamos en drecta, calculando la c en saturacón: EAT AT 5, 9 Entonces observamos que la corrente c en drecta es menor que la csat por lo tanto el transstor no ha entrado en la regón de saturacón y la hpótess de que estamos en drecta es correcta. ma b) Para que el transstor se encuentre en la zona de saturacón, es necesaro que se cumplan las sguentes condcones: AT β > > 4,kΩ AT EAT,8,8 40.0,0mA > _ ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 6

7 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD POLEMA 4 (,5 puntos) La fgura 4 muestra las característcas de salda de un transstor bpolar NPN deal de slco. a) Dada una corrente de base fja, por qué en la regón de saturacón la corrente de colector es menor que en la regón actva? En otras palabras, justfque por qué < β.. b) onsdere que el transstor se encuentra en un crcuto, operando en el punto Q. El crcuto se caracterza por las sguentes rectas de carga: + + E E con 0 y,78. Dbuje la recta de salda y calcule aproxmadamente los valores de y. c) Explque cómo se modfcará el punto de operacón s en el crcuto anteror aumenta sn modfcar nngún otro elemento del crcuto. (onsdere que puede llegar a alcanzar valores de hasta 0 kw). AT Apartado a) Es fácl responder a esta pregunta estudando la representacón equvalente del transstor. Por ejemplo, supongamos que representamos el transstor por medo del modelo Pspce o de transporte. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 7

8 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD En zona actva drecta, al estar la unón ase-olector nversamente polarzada, la corrente se puede consderar nula y, por tanto, la fuente de corrente dependente (b ) se anula tambén. En estas crcunstancas, el crcuto anteror se converte en: Es fácl ver que e β β. n embargo, en saturacón las condcones camban ya que la unón ase-olector está drectamente polarzada de modo que la corrente no puede desprecarse. En consecuenca: Operemos ahora con las ecuacones: + ( β ). β. β. β. + β. β + ( + ). Ahora, recordemos que, como β e son cantdades postvas por lo que: β. ( β + ). β. < + + Por otra parte, hay que recordar que exste una propedad matemátca que dce A A A A < ; < que, dados tres números postvos A, y se cumple que + + (Podés comprobar esta afrmacón elgendo una terna de números postvos al azar). Aplcando esta propedad a la desgualdad anteror: ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 8

9 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD β. < + β. < β on lo cual se demuestra matemátcamente lo enuncado. ómo se nterpreta físcamente este hecho? La respuesta es senclla. En zona actva drecta, toda la corrente de base se amplfca de tal modo que la corrente de colector es proporconal a ella. En saturacón, una fraccón de esta corrente pasa al colector de tal modo que no toda la corrente de base se amplfca en el colector, sno solo una parte. No solo eso: Además, la fraccón de la corrente de base que no es amplfcada un factor β es amplfcada un factor β y restada de la corrente de colector. En consecuenca, se concluye q Apartado b) < β Es fácl ver que, en la gráfca, el punto Q tene asocados una corrente de colector de 0 ma y una tensón colector-emsor de 8. Evdentemente, Q es un punto de la recta de carga del transstor de modo que la ecuacón. + tambén se cumple en Q. usttuyendo los valores: E mA + 8 0, 6Ω 0mA 0mA Por otra parte, se puede observar en la gráfca que hay 3 separacones entre las curvas correspondentes a las curvas de base de 0 y 80 ma. Por nterpolacón, se puede deducr que cada línea horzontal corresponde a un ncremento de (80-0)/3 60/3 0 ma. omo el punto Q está una undad por debajo de la línea de 80 ma se deduce que el valor de la corrente de base del transstor será 80 ma-0 ma 60 ma. No se mencona en el enuncado el valor de la tensón base-emsor, E. n embargo, al ser un transstor de slco y encontrarnos en zona actva drecta ( E 8 > 0., e > 0) podemos suponer que la tensón base-emsor es 0.7. Por tanto:.,78 + E.0,6mA + 0,7,78 0,7 0,6mA < β,08 6,75kΩ 0,6mA ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 9

10 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD nalmente, hay que pntar la recta de carga asocada a en la gráfca. Para ello, hacen falta dos puntos. Normalmente se utlzan los puntos de corte con los ejes (c0, ce??) y (ce0, c??) Apartado c) Al varar solo y no otros elementos del crcuto, se deben tener en cuenta los sguentes hechos: N E n, que dependen de y, se ven modfcadas. En el crcuto,, E e están relaconadas por la ecuacón de la recta de carga de modo que cualquer varacón de afecta solo a E e. En consecuenca, del segundo hecho se deduce que se va a producr una varacón de E e y del prmero, que no camba. Por tanto, el punto de operacón puede desplazarse pero nunca abandonará curva asocada a 60 ma. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 0

11 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD En la fgura se ha representado de forma aproxmada la característca 60 ma y la evolucón de las rectas de carga a medda que aumenta. Puede aprecarse que en un prmer momento, no varía sendo E el que dsmnuye. n embargo, al llegar a certo valor crítco, el transstor entra en la regón de saturacón y el valor de cae rápdamente con mínmas varacones de E. Así, como 0kW, el transstor estaría en saturacón con una corrente cercana a. ma y una tensón E cercana a 0. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas

12 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD POLEMA 5 ( puntos) a) Dbuje el crcuto equvalente de pequeña señal a frecuencas ntermedas del amplfcador de la fgura.5. Utlce el modelo completo del transstor. dentfque todas las señales relevantes. b) Explque la funcón que desempeña cada uno de los condensadores. Para dbujar el crcuto de pequeña señal, anulamos la fuente de contnua, y cortocrcutamos los condensadores ya que la frecuenca se supone sufcentemente alta para que su mpedanca sea muy baja. es el paralelo Apartado b) es un condensador de bloqueo: en contnua NO deja pasar la señal, de manera que NO nfluye en la polarzacón y por lo tanto NO modfca el punto Q. En alterna s la frecuenca es sufcentemente alta se susttuye por un cortocrcuto y no tene nfluenca en el resultado. es un condensador de paso: en alterna y puesto que su mpedanca es muy baja cortocrcuta de manera que esta resstenca no nfluye en el crcuto de alterna (no consume potenca) En contnua es un crcuto aberto y por lo tanto no se consdera. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas

13 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD POLEMA 6 ( puntos) Dado el amplfcador de la fgura 6, donde L es la resstenca de carga, calcule las ganancas A o /, A v o / v y A v o / v, así como las mpedancas de entrada y de salda (Z n y Z out ).,5 kw; he 4,5 kw; hfe 0; E 800 W; 0 kw; L 0 kw. Además de las correntes asgnadas en el enuncado, hemos asgnado las correntes e a las ramas en que no había asgnada corrente. El crcuto tene 3 mallas y tres nodos. Además hay una fuente de corrente. Necestaremos dos ecuacones de nodo y dos ecuacones de malla. (No escrbremos la ecuacón de la malla donde se encuentra la fuente de corrente, ya que ntroducríamos una nueva varable que es la caída de tensón en dcha fuente. Además escrbremos ecuacones para v y vo, ya que aparecen en los parámetros que debemos calcular. Así, las ecuacones necesaras para resolver el crcuto son las sguentes, donde ya se ha tendo en cuenta que b. ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 3

14 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD () + h () h (6) v o fe s fe (4). (5) v h. +. e L. +. (3) v +. + v 0. + o L o +. 0 o E 0 Podemos calcular la gananca en corrente utlzando las ecuacones () y (4). De (4): usttuyendo este valor en () y despejando: A L o hfe A L + 80 La mpedanca de entrada se obtene de las ecuacones (5) y (). mplemente susttuyendo el valor de dado en () y despejando: La gananca en tensón Av se obtene como: Z ( + h ) Z 0, Ω v he + E fe n k n 3 A vo L. o L. A A v Z. Z n n 7,90 Para obtener A recurrmos a la ecuacón (3) y a la defncón de la mpedanca de entrada (ya calculada). A vo A. v A. Zn. Zn A Av v. + v. + Z. + Z s s s n s n 7,78 ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 4

15 DELTA MATE OMAÓN UNETAA / Gral. Ampuda, MADD La mpedanca de salda Zout es la mpedanca equvalente vsta desde L. Para calcularla anulamos la fuente ndependente (como sempre se hace al calcular una resstenca equvalente). Zout deberá verfcar la Ley de Ohm: Z out escrbmos la ecuacón de la malla de la zquerda y tenemos en cuenta que b + hfeb: b + he b + E (+hfe) b 0 e deduce que b 0. Por lo tanto: M M Zout 0kΩ M M ntroduccón a la Electrónca JUNO 008 U.omplutense Lus Mguel Olvas 5

Circuito Monoestable

Circuito Monoestable NGENEÍA ELETÓNA ELETONA (A-0 00 rcuto Monoestable rcuto Monoestable ng. María sabel Schaon, ng. aúl Lsandro Martín Este crcuto se caracterza por presentar un únco estado estable en régmen permanente, y

Más detalles

Tema 4. Transistor Bipolar (BJT)

Tema 4. Transistor Bipolar (BJT) Tema 4. Transstor polar (JT) Joaquín aquero López lectrónca, 2007 Joaquín aquero López 1 Transstor polar (JT): Índce 4.1) Introduccón a los elementos de 3 termnales 4.2) Transstor polar JT (polar Juncton

Más detalles

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II

UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA LABORATORIO DE ELECTRÓNICA II PRACTICA 11: Crcutos no lneales elementales con el amplfcador operaconal OBJETIVO: El alumno se famlarzará con

Más detalles

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos)

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Diodos) PROBLEMAS DE ELECTRÓNCA ANALÓGCA (Dodos) Escuela Poltécnca Superor Profesor. Darío García Rodríguez . En el crcuto de la fgura los dodos son deales, calcular la ntensdad que crcula por la fuente V en funcón

Más detalles

Guía de ejercicios #1

Guía de ejercicios #1 Unversdad Técnca Federco Santa María Departamento de Electrónca Fundamentos de Electrónca Guía de ejerccos # Ejercco Ω v (t) V 3V Ω v0 v 6 3 t[mseg] 6 Suponendo el modelo deal para los dodos, a) Dbuje

Más detalles

AMPLIFICADORES CON BJT.

AMPLIFICADORES CON BJT. Tema 5 MPLIFICDORES CON BJT..- Introduccón...- Prncpo de Superposcón...- Nomenclatura..3.- Recta de Carga Estátca..4.- Recta de Carga Dnámca..- Modelo de pequeña señal del BJT...- El cuadrpolo y el modelo

Más detalles

TEMA 4 Amplificadores realimentados

TEMA 4 Amplificadores realimentados TEM 4 mplfcadores realmentados 4.1.- Introduccón La realmentacón (feedback en nglés) negata es amplamente utlzada en el dseño de amplfcadores ya que presenta múltples e mportantes benefcos. Uno de estos

Más detalles

TEMA 6 AMPLIFICADORES OPERACIONALES

TEMA 6 AMPLIFICADORES OPERACIONALES Tema 6 Amplfcadores peraconales ev 4 TEMA 6 AMPLIFICADES PEACINALES Profesores: Germán llalba Madrd Mguel A. Zamora Izquerdo Tema 6 Amplfcadores peraconales ev 4 CNTENID Introduccón El amplfcador dferencal

Más detalles

EL AMPLIFICADOR OPERACIONAL.

EL AMPLIFICADOR OPERACIONAL. Tema 6. El mplfcador peraconal. Tema 6 EL MPLIFICD PECINL.. Introduccón... Símbolos y termnales del amplfcador operaconal... El amplfcador operaconal como amplfcador de tensón..3. Conceptos báscos de realmentacón..4.

Más detalles

Respuesta A.C. del FET 1/14

Respuesta A.C. del FET 1/14 espuesta A.C. del FET 1/14 1. Introduccón Una ez que se ubca al transstor dentro de la zona saturada o de corrente de salda constante, se puede utlzar como amplfcador de señales. En base a un FET canal

Más detalles

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C

RESISTENCIAS EN SERIE Y LEY DE LAS MALLAS V 1 V 2 V 3 A B C RESISTENCIS EN SERIE Y LEY DE LS MLLS V V 2 V 3 C D Fgura R R 2 R 3 Nomenclatura: Suponemos que el potencal en es mayor que el potencal en, por lo tanto la ntensdad de la corrente se mueve haca la derecha.

Más detalles

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica)

v i CIRCUITOS ELÉCTRICOS (apuntes para el curso de Electrónica) IUITOS EÉTIOS (apuntes para el curso de Electrónca) os crcutos eléctrcos están compuestos por: fuentes de energía: generadores de tensón y generadores de corrente y elementos pasos: resstores, nductores

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Soluconaro 7 Números complejos ACTIVIDADES INICIALES 7.I. Clasfca los sguentes números, dcendo a cuál de los conjuntos numércos pertenece (entendendo como tal el menor conjunto). a) 0 b) 6 c) d) e) 0 f)

Más detalles

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo.

Solución: Se denomina malla en un circuito eléctrico a todas las trayectorias cerradas que se pueden seguir dentro del mismo. 1 A qué se denomna malla en un crcuto eléctrco? Solucón: Se denomna malla en un crcuto eléctrco a todas las trayectoras cerradas que se pueden segur dentro del msmo. En un nudo de un crcuto eléctrco concurren

Más detalles

Capitalización y descuento simple

Capitalización y descuento simple Undad 2 Captalzacón y descuento smple 2.1. Captalzacón smple o nterés smple 2.1.1. Magntudes dervadas 2.2. Intereses antcpados 2.3. Cálculo de los ntereses smples. Métodos abrevados 2.3.1. Método de los

Más detalles

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL

EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL EQUILIBRIO LÍQUIDO VAPOR EN UN SISTEMA NO IDEAL OBJETIVO El alumno obtendrá el punto azeotrópco para el sstema acetona-cloroformo, calculará los coefcentes de actvdad de cada componente a las composcones

Más detalles

NOTAS DE CLASE. Amplificador Operacional IDEAL

NOTAS DE CLASE. Amplificador Operacional IDEAL Unversdad Naconal de osaro Facultad de Cencas Exactas, Ingenería y Agrmensura Escuela de Ingenería Electrónca ELECTÓNICA II NOTAS DE CLASE Amplfcador Operaconal IDEAL Autores: Ing. Sergo Eberlen (Profesor

Más detalles

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA

CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA CÁLCULO DE INCERTIDUMBRE EN MEDIDAS FÍSICAS: MEDIDA DE UNA MASA Alca Maroto, Rcard Boqué, Jord Ru, F. Xaver Rus Departamento de Químca Analítca y Químca Orgánca Unverstat Rovra Vrgl. Pl. Imperal Tàrraco,

Más detalles

Notas para su utilización en aplicaciones de conmutación

Notas para su utilización en aplicaciones de conmutación Transstres Ntas para su utlzacón en aplcacnes de cnmutacón Autr: Fernand fman Transstres Ntas para su utlzacón en aplcacnes de cnmutacón El transstr es un dspstv semcnductr, que presenta ds mds de funcnament:

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL apítulo MPLFDO OPEONL El mplfcador Operaconal es un amplfcador con realmentacón que se encuentra en el mercado como una pastlla de crcuto ntegrado. Es dfícl enumerar la totaldad de las aplcacones de este

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 22 DOCENTE: LIC.GUSTO DOLFO JUEZ GUI DE TJO PCTICO Nº 22 CES: POFESODO Y LICENCITU EN IOLOGI PGIN Nº 132 GUIS DE CTIIDDES Y TJO PCTICO Nº 22 OJETIOS: Lograr que el lumno: Interprete la nformacón de un vector.

Más detalles

Tema 1. Conceptos Básicos de la Teoría de Circuitos

Tema 1. Conceptos Básicos de la Teoría de Circuitos Tema. Conceptos Báscos de la Teoría de Crcutos. Introduccón. Sstema de undades.3 Carga y corrente.4 Tensón.5 Potenca y energía.6 Ley de Ohm.7 Fuentes ndependentes.8 Leyes de Krchhoff.9 Dsores de tensón

Más detalles

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición-

Fisicoquímica CIBEX Guía de Trabajos Prácticos 2010. Trabajo Práctico N 7. - Medida de la Fuerza Electromotriz por el Método de Oposición- Fscoquímca CIBX Guía de Trabajos Práctcos 2010 Trabajo Práctco N 7 - Medda de la Fuerza lectromotrz por el Método de Oposcón- Objetvo: Medr la fuerza electromotrz (FM) de la pla medante el método de oposcón

Más detalles

Relaciones entre variables

Relaciones entre variables Relacones entre varables Las técncas de regresón permten hacer predccones sobre los valores de certa varable Y (dependente), a partr de los de otra (ndependente), entre las que se ntuye que exste una relacón.

Más detalles

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos.

Histogramas: Es un diagrama de barras pero los datos son siempre cuantitativos agrupados en clases o intervalos. ESTADÍSTICA I. Recuerda: Poblacón: Es el conjunto de todos los elementos que cumplen una determnada propedad, que llamamos carácter estadístco. Los elementos de la poblacón se llaman ndvduos. Muestra:

Más detalles

Leyes de tensión y de corriente

Leyes de tensión y de corriente hay6611x_ch03.qxd 1/4/07 5:07 PM Page 35 CAPÍTULO 3 Leyes de tensón y de corrente CONCEPTOS CLAVE INTRODUCCIÓN En el capítulo 2 se presentaron la resstenca así como varos tpos de fuentes. Después de defnr

Más detalles

COMPARADOR CON AMPLIFICADOR OPERACIONAL

COMPARADOR CON AMPLIFICADOR OPERACIONAL COMAADO CON AMLIFICADO OEACIONAL COMAADO INESO, COMAADO NO INESO Tenen como msón comparar una tensón arable con otra, normalmente constante, denomnada tensón de referenca, dándonos a la salda una tensón

Más detalles

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE

DEPARTAMENTO DE INDUSTRIA Y NEGOCIO UNIVERSIDAD DE ATACAMA COPIAPO - CHILE DEPATAMENTO DE NDUSTA Y NEGOCO UNESDAD DE ATACAMA COPAPO - CHLE ESSTENCA EN SEE, PAALELO, MXTO Y SUPEPOSCÓN En los sguentes 8 crcutos calcule todas las correntes y ajes presentes, para ello consdere los

Más detalles

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO

CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO CONCEPTOS GENERALES DEL CAMPO MAGNÉTICO 1 ÍNDICE 1. INTRODUCCIÓN 2. EL CAMPO MAGNÉTICO 3. PRODUCCIÓN DE UN CAMPO MAGNÉTICO 4. LEY DE FARADAY 5. PRODUCCIÓN DE UNA FUERZA EN UN CONDUCTOR 6. MOVIMIENTO DE

Más detalles

Algoritmo para la ubicación de un nodo por su representación binaria

Algoritmo para la ubicación de un nodo por su representación binaria Título: Ubcacón de un Nodo por su Representacón Bnara Autor: Lus R. Morera González En este artículo ntroducremos un algortmo de carácter netamente geométrco para ubcar en un árbol natural la representacón

Más detalles

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández

12-16 de Noviembre de 2012. Francisco Javier Burgos Fernández MEMORIA DE LA ESTANCIA CON EL GRUPO DE VISIÓN Y COLOR DEL INSTITUTO UNIVERSITARIO DE FÍSICA APLICADA A LAS CIENCIAS TECNOLÓGICAS. UNIVERSIDAD DE ALICANTE. 1-16 de Novembre de 01 Francsco Javer Burgos Fernández

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Undad III: ermodnámca del Equlbro Fugacdad Fugacdad para gases, líqudos y sóldos Datos volumétrcos 9/7/ Rafael Gamero Fugacdad ropedades con varables ndependentes y ln f ' Con la dfncón

Más detalles

EBAS Exámenes resueltos

EBAS Exámenes resueltos www.smplyjarod.com EAS Exámenes resueltos -9 pto. de Electrónca Físca Examen de: ELETÓNA ÁSA(Feb/) PÁGNA N o APELLOS NOME N o N ALFAÓN ANTES E EMPEZA lea atentamente estas NSTUONES Mantenga en lugar SLE

Más detalles

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE 25 AÑOS MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES PRUEBAS DE ACCESO A LAS UNIVERSIDADES DE ANDALUCÍA PARA MAYORES DE AÑOS EXÁMENES PROPUESTOS Y RESUELTOS DE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES CONVOCATORIAS DE --- F Jménez Gómez Este cuaderno

Más detalles

Guía de Electrodinámica

Guía de Electrodinámica INSTITITO NACIONAL Dpto. de Físca 4 plan electvo Marcel López U. 05 Guía de Electrodnámca Objetvo: - econocer la fuerza eléctrca, campo eléctrco y potencal eléctrco generado por cargas puntuales. - Calculan

Más detalles

Matemática Financiera Sistemas de Amortización de Deudas

Matemática Financiera Sistemas de Amortización de Deudas Matemátca Fnancera Sstemas de Amortzacón de Deudas 7 Qué aprendemos Sstema Francés: Descomposcón de la cuota. Amortzacones acumuladas. Cálculo del saldo. Evolucón. Representacón gráfca. Expresones recursvas

Más detalles

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire

Unidad II: Análisis de la combustión completa e incompleta. 2. 1. Aire 4 Undad II: Análss de la combustón completa e ncompleta. 1. Are El are que se usa en las reaccones de combustón es el are atmosférco. Ya se djo en la Undad I que, debdo a que n el N n los gases nertes

Más detalles

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1

Econometría. Ayudantía # 01, Conceptos Generales, Modelo de Regresión. Profesor: Carlos R. Pitta 1 Escuela de Ingenería Comercal Ayudantía # 01, Conceptos Generales, Modelo de Regresón Profesor: Carlos R. Ptta 1 1 cptta@spm.uach.cl Escuela de Ingenería Comercal Ayudantía 01 Parte 01: Comentes Señale

Más detalles

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF)

PROPORCIONAR RESERVA ROTANTE PARA EFECTUAR LA REGULACIÓN PRIMARIA DE FRECUENCIA ( RPF) ANEXO I EVALUACIÓN DE LA ENERGIA REGULANTE COMENSABLE (RRmj) OR ROORCIONAR RESERVA ROTANTE ARA EFECTUAR LA REGULACIÓN RIMARIA DE FRECUENCIA ( RF) REMISAS DE LA METODOLOGÍA Las pruebas dnámcas para la Regulacón

Más detalles

Simulador Convertidores DC-DC

Simulador Convertidores DC-DC Dept d'eng. Electrònca, Elèctrca, Automàtca (DEEEA) Escola Tècnca Superor d'engnyera (ETSE) Unverstat ovra rgl (U) Proyecto Fnal de arrera Smulador onvertdores D-D AUTO: íctor Galera Ortega DIETO: Abdelal

Más detalles

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013

Prof. Antonio Santillana del Barrio y Ainhoa Herrarte Sánchez Universidad Autónoma de Madrid Curso 2012-2013 Tema 6 El modelo IS-LM Prof. Antono Santllana del Barro y Anhoa Herrarte Sánchez Unversdad Autónoma de Madrd Curso 2012-2013 Bblografía oblgatora Capítulo 5, Macroeconomía, (Blanchard et al) Apuntes de

Más detalles

Equilibrio termodinámico entre fases fluidas

Equilibrio termodinámico entre fases fluidas CAPÍTULO I Equlbro termodnámco entre fases fludas El conocmento frme de los conceptos de la termodnámca se consdera esencal para el dseño, operacón y optmzacón de proyectos en la ngenería químca, debdo

Más detalles

1.- Una empresa se plantea una inversión cuyas características financieras son:

1.- Una empresa se plantea una inversión cuyas características financieras son: ESCUELA UNIVERSITARIA DE ESTUDIOS EMPRESARIALES. Departamento de Economía Aplcada (Matemátcas). Matemátcas Fnanceras. Relacón de Problemas. Rentas. 1.- Una empresa se plantea una nversón cuyas característcas

Más detalles

COMPONENTES ELEMENTALES

COMPONENTES ELEMENTALES Capítulo COMPONENTES ELEMENTALES.. Modelos de Componentes Una componente eléctrca se descrbe por una relacón entre sus arables termnales, la que se denomna relacón de equlbro. El oltaje y la corrente,

Más detalles

Análisis de Regresión y Correlación

Análisis de Regresión y Correlación 1 Análss de Regresón y Correlacón El análss de regresón consste en emplear métodos que permtan determnar la mejor relacón funconal entre dos o más varables concomtantes (o relaconadas). El análss de correlacón

Más detalles

Trabajo y Energía Cinética

Trabajo y Energía Cinética Trabajo y Energía Cnétca Objetvo General Estudar el teorema de la varacón de la energía. Objetvos Partculares 1. Determnar el trabajo realzado por una fuerza constante sobre un objeto en movmento rectlíneo..

Más detalles

5. LNAs y Mezcladores

5. LNAs y Mezcladores 5. Ns y Mezcladores 5.1 Característcas de los N El N (ow Nose mplfer es el prmer eslabón de la cadena del receptor. En el caso de un transceptor (transmsor-receptor que use FDD (frequency-dson duplexng

Más detalles

GANTT, PERT y CPM INDICE

GANTT, PERT y CPM INDICE GANTT, PERT y CPM INDICE 1 Antecedentes hstórcos...2 2 Conceptos báscos: actvdad y suceso...2 3 Prelacones entre actvdades...3 4 Cuadro de prelacones y matrz de encadenamento...3 5 Construccón del grafo...4

Más detalles

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado

De factores fijos. Mixto. Con interacción Sin interacción. No equilibrado. Jerarquizado Análss de la varanza con dos factores. Introduccón Hasta ahora se ha vsto el modelo de análss de la varanza con un factor que es una varable cualtatva cuyas categorías srven para clasfcar las meddas de

Más detalles

Clase 25. Macroeconomía, Sexta Parte

Clase 25. Macroeconomía, Sexta Parte Introduccón a la Facultad de Cs. Físcas y Matemátcas - Unversdad de Chle Clase 25. Macroeconomía, Sexta Parte 12 de Juno, 2008 Garca Se recomenda complementar la clase con una lectura cudadosa de los capítulos

Más detalles

Correlación y regresión lineal simple

Correlación y regresión lineal simple . Regresón lneal smple Correlacón y regresón lneal smple. Introduccón La correlacón entre dos varables ( e Y) se refere a la relacón exstente entre ellas de tal manera que a determnados valores de se asocan

Más detalles

Convertidores Digital-Analógico y Analógico-Digital

Convertidores Digital-Analógico y Analógico-Digital Convertdores Dgtal-Analógco y Analógco-Dgtal Conversón Dgtal-Analógca y Analógca-Dgtal Con estos crcutos se trata de consegur una relacón bunívoca entre una señal analógca y una dgtal o vceversa. Las magntudes

Más detalles

Electrónicos y Fotónicos

Electrónicos y Fotónicos 2º parcal de Tecnología y omponentes Electróncos y Fotóncos, GTE. 1 Unversdad de Sevlla Escuela Superor de ngeneros DEPARTAMENTO DE NGENERÍA ELETRÓNA APUNTES DEL SEGUNDO PARAL DE LA ASGNATURA: Tecnología

Más detalles

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS

OPERACIONES ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS P L V S V LT R A BANCO DE ESPAÑA OPERACIONES Gestón de la Informacón ARMONIZACION DE CRITERIOS EN CALCULO DE PRECIOS Y RENDIMIENTOS El proceso de ntegracón fnancera dervado de la Unón Monetara exge la

Más detalles

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I*

Ejercicios y Problemas Resueltos. Paquete didáctico para el curso de Macroeconomía I* Ejerccos y Problemas Resueltos Paquete ddáctco para el curso de Macroeconomía I* AZCAPOTZALCO Departamento de Economía Ma. Beatrz García Castro** Mayo de 2003 *Agradezco a la ayudante de nvestgacón Paola

Más detalles

3. DETECTORES ÓPTICOS

3. DETECTORES ÓPTICOS C3-Detectores 1 3. DETECTORES ÓPTICOS 3.1 Detectores: clasfcacón y prncpos de operacón 3.1.1 Efectos térmcos y fotoeléctrcos. Exsten dos tpos de foto-detectores que son de uso común: Detectores térmcos:

Más detalles

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED

CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED Modelo en red para la smulacón de procesos de agua en suelos agrícolas. CAPÍTULO IV: MODELOS MATEMÁTICOS Y MODELOS EN RED IV.1 Modelo matemátco 2-D Exsten dos posbldades, no ndependentes, de acuerdo con

Más detalles

2.5 Especialidades en la facturación eléctrica

2.5 Especialidades en la facturación eléctrica 2.5 Especaldades en la facturacón eléctrca Es necesaro destacar a contnuacón algunos aspectos peculares de la facturacón eléctrca según Tarfas, que tendrán su mportanca a la hora de establecer los crteros

Más detalles

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS

CAPÍTULO V ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 7 CAPÍTULO V ESTRUCTURAS ALGEBRAICAS Estructura Algebraca es todo conjunto no vacío en el cual se han defndo una o más leyes de composcón nterna, luego de cumplr certas propedades

Más detalles

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS

CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS CAPÍTULO 5 REGRESIÓN CON VARIABLES CUALITATIVAS Edgar Acuña Fernández Departamento de Matemátcas Unversdad de Puerto Rco Recnto Unverstaro de Mayagüez Edgar Acuña Analss de Regreson Regresón con varables

Más detalles

Tema 3: Adaptadores de Señal

Tema 3: Adaptadores de Señal Tema 3: Adaptadores de Señal Sstema GENERAL de nstrumentacón (bloques( funconales): Señal sensor Fltrado, A/D Amplfcacón Rado, nternet bus de datos Medo Sensor prmaro Transductor de entrada Adaptacón de

Más detalles

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas

IES Menéndez Tolosa (La Línea) Física y Química - 1º Bach - Gráficas IES Menéndez Tolosa (La Línea) Físca y Químca - 1º Bach - Gráfcas 1 Indca qué tpo de relacón exste entre las magntudes representadas en la sguente gráfca: La gráfca es una línea recta que no pasa por el

Más detalles

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia

Investigación y Técnicas de Mercado. Previsión de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): Ajustes de Tendencia Investgacón y Técncas de Mercado Prevsón de Ventas TÉCNICAS CUANTITATIVAS ELEMENTALES DE PREVISIÓN UNIVARIANTE. (IV): s de Tendenca Profesor: Ramón Mahía Curso 00-003 I.- Introduccón Hasta el momento,

Más detalles

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo

1. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA. Definición del álgebra geométrica del espacio-tiempo EL ÁLGEBRA GEOMÉTRICA DEL ESPACIO Y TIEMPO. GENERALIDADES DEL ÁLGEBRA GEOMÉTRICA Defncón del álgebra geométrca del espaco-tempo Defno el álgebra geométrca del espaco y tempo como el álgebra de las matrces

Más detalles

OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 )

OP-AMP ideal. Circuito equivalente. R o. i o. R i. v o. i 2 + v 2. A(v 1 v 2 ) El amplfcador operaconal Símbolos y termnales El amplfcador operaconal op amp es un crcuto ntegrado básco utlzado en crcutos analógcos. Aplcacones: amplfcacón/escalamento de señales de entrada nversón

Más detalles

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización.

Simulación y Optimización de Procesos Químicos. Titulación: Ingeniería Química. 5º Curso Optimización. Smulacón y Optmzacón de Procesos Químcos Ttulacón: Ingenería Químca. 5º Curso Optmzacón. Programacón Cuadrátca Métodos de Penalzacón Programacón Cuadrátca Sucesva Gradente Reducdo Octubre de 009. Programacón

Más detalles

TEMA 8: PRÉSTAMOS ÍNDICE

TEMA 8: PRÉSTAMOS ÍNDICE TEM 8: PRÉSTMOS ÍNDICE 1. CONCEPTO DE PRÉSTMO: SISTEMS DE MORTIZCIÓN DE PRÉSTMOS... 1 2. NOMENCLTUR PR PRÉSTMOS DE MORTIZCIÓN FRCCIOND... 3 3. CUDRO DE MORTIZCIÓN GENERL... 3 4. MORTIZCIÓN DE PRÉSTMO MEDINTE

Más detalles

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c.

Continua: Corriente cuyo valor es siempre constante (no varía con el tiempo). Se denota como c.c. .. TIPOS DE CORRIENTES Y DE ELEMENTOS DE CIRCUITOS Contnua: Corrente cuyo valor es sempre constante (no varía con el tempo). Se denota como c.c. t Alterna: Corrente que varía snusodalmente en el tempo.

Más detalles

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada.

CAPITULO 3.- ANÁLISIS CONJUNTO DE DOS VARIABLES. 3.1 Presentación de los datos. Tablas de doble entrada. Introduccón a la Estadístca Empresaral Capítulo - Análss conjunto de dos varables Jesús ánchez Fernández CAPITULO - AÁLII COJUTO DE DO VARIABLE Presentacón de los datos Tablas de doble entrada En el capítulo

Más detalles

Capítulo 7 El transistor bipolar

Capítulo 7 El transistor bipolar apítul 7 l transstr bplar l transstr bplar de unnes, cncd tambén pr JT (sglas de su denmnacón nglesa plar Junctn Transstr), es un dspstv de tres termnales denmnads emsr, base y clectr. La prpedad más destacada

Más detalles

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República.

ALN - SVD. Definición SVD. Definición SVD (Cont.) 29/05/2013. CeCal In. Co. Facultad de Ingeniería Universidad de la República. 9/05/03 ALN - VD CeCal In. Co. Facultad de Ingenería Unversdad de la Repúblca Índce Defncón Propedades de VD Ejemplo de VD Métodos para calcular VD Aplcacones de VD Repaso de matrces: Una matrz es Untara

Más detalles

TÉCNICAS AUXILIARES DE LABORATORIO

TÉCNICAS AUXILIARES DE LABORATORIO TÉCNICAS AUXILIARES DE LABORATORIO I.- ERRORES 1.- Introduccón Todas las meddas epermentales venen afectadas de una mprecsón nherente al proceso de medda. Puesto que en éste se trata, báscamente, de comparar

Más detalles

EXPERIMENTACIÓN COMERCIAL(I)

EXPERIMENTACIÓN COMERCIAL(I) EXPERIMENTACIÓN COMERCIAL(I) En un expermento comercal el nvestgador modfca algún factor (denomnado varable explcatva o ndependente) para observar el efecto de esta modfcacón sobre otro factor (denomnado

Más detalles

Fundamentos de Física Estadística: Problema básico, Postulados

Fundamentos de Física Estadística: Problema básico, Postulados Fundamentos de Físca Estadístca: Problema básco, Postulados y Formalsmos. Problema básco de la Mecánca Estadístca del Equlbro (MEE) El problema básco de la MEE es la determnacón de la relacón termodnámca

Más detalles

El costo de oportunidad social de la divisa ÍNDICE

El costo de oportunidad social de la divisa ÍNDICE El Costo de Oportundad Socal de la Dvsa El costo de oportundad socal de la dvsa ÍNDICE. INTRODUCCIÓN. EL MARCO TEÓRICO 3. CÁLCULO DEL COSTO DE OPORTUNIDAD SOCIAL DE LA DIVISA 3. Nvel agregado 3. Nvel desagregado

Más detalles

AMPLIFICADOR OPERACIONAL

AMPLIFICADOR OPERACIONAL Fundamentos de Electrónca Amplfcador Operaconal 4 1 CAPÍTULO 4 AMPLIFICADO OPEACIONAL 4.1 PESENTACIÓN El amplfcador operaconal (A.O.) se puede consderar como un amplfcador unersal debdo a su gran ersatldad

Más detalles

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D

+12V +12V +12V 2K 15V. Problema 2: Determinar el punto de funcionamiento del transistor MOSFET del siguiente circuito: I(mA) D PROBEMAS E IRUITOS ON TRANSISTORES Problema : eermnar los punos de funconameno de los dsposvos semconducores de los sguenes crcuos: +2V +2V +2V β= β= K β= β= (a) (b) (c) (d) Problema 2: eermnar el puno

Más detalles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles

Unidad I. 1. 1. Definición de reacción de combustión. 1. 2. Clasificación de combustibles 2 Undad I.. Defncón de reaccón de combustón La reaccón de combustón se basa en la reaccón químca exotérmca de una sustanca (o una mezcla de ellas) denomnada combustble, con el oxígeno. Como consecuenca

Más detalles

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo

2.2 TASA INTERNA DE RETORNO (TIR). Flujo de Caja Netos en el Tiempo Evaluacón Económca de Proyectos de Inversón 1 ANTECEDENTES GENERALES. La evaluacón se podría defnr, smplemente, como el proceso en el cual se determna el mérto, valor o sgnfcanca de un proyecto. Este proceso

Más detalles

www.fisicaeingenieria.es

www.fisicaeingenieria.es 2.- PRIMER PRINCIPIO DE LA TERMODINÁMICA. 2.1.- Experencas de Joule. Las experencas de Joule, conssteron en colocar una determnada cantdad de agua en un calorímetro y realzar un trabajo, medante paletas

Más detalles

INTRODUCCION A LOS METODOS ELECTROANALITICOS

INTRODUCCION A LOS METODOS ELECTROANALITICOS Introduccón a los Métodos Electro-analítcos 2 Tema 7 INTRODUCCION A LOS METODOS ELECTROANALITICOS Los métodos electroquímcos de análss, o métodos electro-analítcos, son, en general, menos utlzados que

Más detalles

SISTEMAS COMBINACIONALES

SISTEMAS COMBINACIONALES Tema 2 SISTEMAS COMBINACIONALES En este tema se estudarán algunas de las funcones combnaconales más utlzadas, las cuales se mplementan en chps comercales Como estas funcones son relatvamente complejas,

Más detalles

Análisis de error y tratamiento de datos obtenidos en el laboratorio

Análisis de error y tratamiento de datos obtenidos en el laboratorio Análss de error tratamento de datos obtendos en el laboratoro ITRODUCCIÓ Todas las meddas epermentales venen afectadas de una certa mprecsón nevtable debda a las mperfeccones del aparato de medda, o a

Más detalles

Problemas donde intervienen dos o más variables numéricas

Problemas donde intervienen dos o más variables numéricas Análss de Regresón y Correlacón Lneal Problemas donde ntervenen dos o más varables numércas Estudaremos el tpo de relacones que exsten entre ellas, y de que forma se asocan Ejemplos: La presón de una masa

Más detalles

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I

MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I MATEMÁTICA DE LAS OPERACIONES FINANCIERAS I CURSO 0/04 PRIMERA SEMANA Día 7/0/04 a las 6 horas MATERIAL AUXILIAR: Calculadora fnancera DURACIÓN: horas. a) Captal fnancero aleatoro: Concepto. Equvalente

Más detalles

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V)

V1 = A1 = V2 = A2 = V3 = L e) Construir el diagrama fasorial de voltajes. V. Nombre: Lecturas amperímetros (en ma) Lecturas voltímetros (en V) FÍSICA APICADA. EXAMEN ODINAIO MAYO 013. MODEO A Nombre: TEOÍA (.5 p) A) Una carga puntual postva que sgue una trayectora rectlínea entra en un campo magnétco perpendcularmente a las líneas del campo.

Más detalles

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS101M. Sección 03. José Mejía López. jmejia@puc.cl PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE FACULTAD DE FISICA FISICA I FIS11M Seccón 3 José Mejía López jmeja@puc.cl http://www.s.puc.cl/~jmeja/docenca/s11m.html JML s11m-1 Capítulo Dnámca Trabajo y energía

Más detalles

Diseño óptimo de un regulador de tensión en paralelo

Diseño óptimo de un regulador de tensión en paralelo Deño óptmo de un regulador de tenón en paralelo Federco Myara 1. egulador mple con un dodo de ruptura El cao má mple e el regulador con un dodo zener, ndcado en la fgura 1. S ben el crcuto parece muy encllo,

Más detalles

FUNDAMENTOS QUIMICOS DE LA INGENIERIA

FUNDAMENTOS QUIMICOS DE LA INGENIERIA FUNDAMENTOS QUIMICOS DE LA INGENIERIA (BLOQUE DE INGENIERIA QUIMICA) GUION DE PRACTICAS DE LABORATORIO ANTONIO DURÁN SEGOVIA JOSÉ MARÍA MONTEAGUDO MARTÍNEZ INDICE PRACTICA PAGINA BALANCE MACROSCÓPICO DE

Más detalles

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad,

La variable compleja permite resolver problemas muy diferentes dentro de. áreas tan variadas como pueden ser hidráulica, aerodinámica, electricidad, 17 Análss matemátco para Ingenería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Los números complejos La varable compleja permte resolver problemas muy dferentes dentro de áreas tan varadas

Más detalles

TEMA 4. TRABAJO Y ENERGIA.

TEMA 4. TRABAJO Y ENERGIA. TMA 4. TRABAJO Y NRGIA. l problema undamental de la Mecánca es descrbr como se moverán los cuerpos s se conocen las uerzas aplcadas sobre él. La orma de hacerlo es aplcando la segunda Ley de Newton, pero

Más detalles

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO

Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO CUESTIONARIO Capítulos 1-3: CAPITALIZACIÓN Y DESCUENTO 1. Cuánto vale una Letra del Tesoro, en tanto por cento de nomnal, s calculamos su valor al 3% de nterés y faltan 5 días para su vencmento? A) 97,2

Más detalles

TEMA 2 Amplificadores con transistores: Modelos de pequeña señal

TEMA 2 Amplificadores con transistores: Modelos de pequeña señal Tema 2 TMA 2 Amplfcadores con transstores: Modelos de pequeña señal 2..- Introduccón La polarzacón de un transstor es la responsable de establecer las correntes y tensones que fjan su punto de trabajo

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE CCESO L UNVERSDD L.O.G.S.E CURSO 004-005 CONVOCTOR SEPTEMRE ELECTROTECN EL LUMNO ELEGRÁ UNO DE LOS DOS MODELOS Crteros de calfcacón.- Expresón clara y precsa dentro del lenguaje técnco y gráfco

Más detalles

METODOS VOLTAMPEROMETRICOS

METODOS VOLTAMPEROMETRICOS Métodos Voltamperométrcos 2 Tema 9 METODOS VOLTAMPEROMETRICOS Los métodos voltamperométrcos ncluyen un conjunto de métodos electroanalítcos en los que la nformacón sobre el analto se obtene a partr de

Más detalles

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO

http://www.rubenprofe.com.ar biofisica@rubenprofe.com.ar RESISTENCIAS EN PARALELO bofsca@rubenprofe.com.ar El crcuto funcona así: ESISTENCIS EN PLELO.- Las cargas salen del extremo postvo de la fuente y recorren el conductor (línea negra) hasta llegar al punto, allí las cargas se dvden

Más detalles

Gráficos de flujo de señal

Gráficos de flujo de señal UNIVRSIDAD AUTÓNOMA D NUVO ÓN FACUTAD D INGNIRÍA MCANICA Y ÉCTRICA Gráfcos de flujo de señal l dagrama de bloques es útl para la representacón gráfca de sstemas de control dnámco y se utlza extensamente

Más detalles

Medidas de centralización

Medidas de centralización 1 Meddas de centralzacón Meda Datos no agrupados = x X = n = 0 Datos agrupados = x X = n = 0 Medana Ordenamos la varable de menor a mayor. Calculamos la columna de la frecuenca relatva acumulada F. Buscamos

Más detalles

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden

Tema 5. Análisis Transitorio de Circuitos de Primer y Segundo Orden Tema 5. Análss Transoro de Crcuos de Prmer y egundo Orden 5.1 Inroduccón 5.2 Crcuos C sn fuenes 5.3 Crcuos C con fuenes 5.4 Crcuos L 5.5 Crcuos LC sn fuenes v() 5.6 Crcuos LC con fuenes () C () C v( )

Más detalles

Medidas de Tendencia Central y de Variabilidad

Medidas de Tendencia Central y de Variabilidad Meddas de Tendenca Central y de Varabldad Contendos Meddas descrptvas de forma: curtoss y asmetría Meddas de tendenca central: meda, medana y moda Meddas de dspersón: rango, varanza y desvacón estándar.

Más detalles