DESTILACIÓN FRACCIONADA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DESTILACIÓN FRACCIONADA"

Transcripción

1 UNIVERSIA NACIONAL EXPERIMENTAL RANCISCO E MIRANA ÁREA E TECNOLOGÍA COMPLEJO ACAÉMICO EL SABINO OPERACIONES UNITARIAS II ESTILACIÓN RACCIONAA 7. MÉTOO MCCABE THIELE. udaeto: McCabe y Thiele ha desarrollado u étodo ateático gráfico para deteriar el úero de platos teóricos ecesarios para la separació de ua ezcla biaria de A y B. Este étodo eplea balace de ateria co respecto a ciertas partes de la colua, produciedo líeas de operació y la curva de equilibrio y- para el sistea. El supuesto pricipal cosiste e que debe haber u derrae equiolar a través de la colua, etre la etrada de alietació al plato superior y la etrada de alietació al plato iferior. Las corrietes de líquido y vapor etra a u plato, establece su equilibrio y sale del iso. V,y V+,y+ - + L-,- L, Realizaos u balace de ateria total e el plato lo cual resulta, V = V + L + + L E este plato u balace de copoete respecto a A (ás volátil) da, V. = V. y + L. + y+ + L. eteriació de las líeas de operació. - Secció de eriqueciieto.,, Esta figura os uestra ua colua de destilació cotiua co alietació e u puto iteredio, u producto destilado que sale por la parte superior y u producto líquido W que sale por la parte iferior; la colua opera e estado estacioario. Realizaos u balace total de ateria e la colua, = + W Y u balace global para el copoete A,. =. + W. W W, W igura. Colua de destilació.

2 q c V y 2 3 L 0 V + L + + y = igura 2. Secció de eriqueciieto. 2 2 L = L = L V = V = V = V + igura 3. Costrucció de la LOE. E la figura 2 observaos coo el vapor que abadoa al plato superior V de coposició y pasa al codesador, dode el líquido codesado obteido está a su puto de ebullició. La corriete de reflujo L 0 y el destilado posee la isa coposició, por lo que y =. Puesto que heos supuesto u derrae equiolar, las catidades de líquido y vapor a lo largo de esta secció se atedrá costates, L = L 2 = L y V = V 2 = V = V +. E esta secció (detro de la líea puteada) u balace de ateria total, Y u balace de ateria respecto al copoete A, V + = L + V. y = L Cuado despejaos la fracció olar del vapor y +, obteeos la líea de operació de la secció de eriqueciieto (LOE), L. y + = +. V+ V+ E fució a ua relació de reflujo R (dode R = L/), Puesto que V * = L + + : L L L R = = = V+ L + L + R + * = = = V+ L + L + R + Etoces, la líea de operació epresada e fució de ua relació de reflujo R os queda, R y + = +. R + R + Esta ecuació resulta ua líea recta cuado se gráfica y + vs., relacioado las dos coposicioes de las dos corrietes e cotacto.

3 Así, la pediete es R/(R+) ó L /V +. Cuado = 0, y 0 = ( ). R + Cuado = y, = (Puto de partida de la LOE). eteriaos las etapas teóricas epezado e y escaloado el prier plato hasta (Ver figura 3). Etoces, y 2 es la coposició del vapor que pasa por el líquido. Procedeos de aera siilar co el resto de los platos teóricos que se escaloa hacia debajo de la colua e la secció de eriqueciieto hasta llegar al plato de alietació. - Secció de agotaieto. Correspode a la secció de la colua por debajo de la etrada de alietació e icluye el plato de alietació. V + L + +2 N-2 N- N y W q r L N, N W, W igura 4. Secció de agotaieto. igura 5. Costrucció de la LOA. Para ecotrar su líea de operació, realizaos u balace de ateria total y del copoete A (igura 4). U balace total de ateria resulta, Y u balace de ateria del copoete A, L V = V = L + W W V. y = L. W. Cuado despejaos y + obteeos la líea de operació de la secció de agotaieto (LOA), L W. W y+ =. V+ V+ Puesto que supoeos flujo equiolar, L = L N y V + = V N. La pediete de la LOA es L /V +. Cuado = 0: y( 0) W. W = V+ W

4 Cuado y = : = W. eteriaos las etapas teóricas epezado e W y escaloado el prier plato hasta N (Ver figura 5). Etoces, y W es la coposició del vapor que pasa por el líquido N. Procedeos de aera siilar co el resto de los platos teóricos que se escaloa hacia arriba de la colua e la secció de eriqueciieto hasta llegar al plato de alietació. - Codicioes de alietació. Las codicioes de la corriete de alietació que etra a la colua os deteria la relació etre el vapor V e la secció de agotaieto y el vapor V e la secció de eriqueciieto, de igual aera etre los líquidos L y L. Para los cálculos, las codicioes de alietació se preseta co la catidad q, que se defie coo el calor ecesario para vaporzar ol alietado a las codicioes de etrada, etre el calor latete olar de vaporizació de la alietació. E térios de etalpía la ecuació de q la podeos escribir, HV h q = HV hl ode, H V : etalpía de alietació al puto de rocío h : etalpía de alietació e codicioes de etrada h L : etalpía de alietació al puto de burbuja Cuado La alietació es q > Líquido subefriado (h < h L ) q = Líquido saturado (h = h L ) 0 < q < Mezcla (h L < h < H V ) q = 0 Vapor saturado (h = H V ) q < 0 Vapor sobrecaletado (h > H V ) Tabla. Codicioes de la alietació. Tabié cosideraos q coo la relació etre los oles de líquido saturado e el plato de alietació por cada ol alietado a la colua. E la figura 6 apreciaos coo si la alietació posee parte de vapor, se añadirá a V y da V ; si la alietació posee parte de líquido, se agregará a L para dar L.

5 Etoces, L = L + q. (I) V = V + (-q) (II) igura 6. Zoa de alietació. Obteeos el puto de itersecció etre las líeas de operació de agotaieto y eriqueciieto e ua gráfica y coo sigue: a) Escribios las ecuacioes de las LOE y LOA oitiedo los subídices de los platos, LOE: V. y = L. +. (III) LOA: V. y = L. W. (IV) W ode e y os da el puto de itersecció de las dos líeas de operació. b) Restaos las ecuacioes (IV) (III), V V ) y = ( L L ) ( W. +. ) (V) ( W c) Sustituios e la ecuació (V) a las ecuacioes (I), (II) así coo el balace de ateria para el copoete A e la colua y reordeaos, e la ecuació (I): (L L) = q. e la ecuació (II): (V V) = (q-) el balace de A e la colua:. = (W. W +. ) Sustituyedo y despejado y os da coo resultado la líea de operació de la alietació, ( q ). y = q... q y = ( q ) ( q ) Pediete: q/(q-) Cuado y = : = E la figura 7 apreciaos las diversas pedietes de esta líea de operació segú la codició de alietació. (Para su copresió, ver tabié Tabla ).

6 Líquido + Vapor Líquido saturado Líquido frío sat sat < < H h h h sat < h y Vapor Saturado Vapor sobrecaletado h > H sat igura 7. Costrucció de la líea q de alietació. Cälculo de la relació de reflujo. - Reflujo total. El úero de platos ideales ecesarios depede de las líeas de operació. Para fijar estas líeas se establece la relació de reflujo R = Lo/, de la parte superior de la colua. Uo de los valores líites de esta relació de reflujo R es el de reflujo total o R =. Puesto que R depede de Lo, etoces Lo es uy grade lo cual sigifica que la pediete de la LOE R/(R+) es uo () y que las líeas de operació de abas seccioes coicide co la diagoal de 45º (liea y = ). igura 8. eteriació del úero íio de etapas ideales (N). El úero de etapas teóricas lo obteeos escaloado los platos desde hasta W (igura 8). Esto proporcioa el úero íio de etapas (N) que podeos utilizar para obteer cierta separació.

7 Esta codició de reflujo total se puede iterpretar coo u requisito de taaños ifiitos de codesador, rehervidor y diáetro de la colua para deteriada velocidad de alietació. - Reflujo íio. Es la razó de reflujo (R) que requerirá u úero ifiito de platos para la separació deseada de destilado y residuo. Esto correspode a u flujo íio de vapor e la colua y por tato a taaños íios de codesador y rehervidor. (a) (b) igura 9. eteriació del reflujo íio. isiuyedo R la pediete de la LOE disiuye y la itersecció de la LOE co la LOA se acerca a la curva de equilibrio. Cuado esta itersecció toca a la líea de equilibrio se produce u puto copriido dode el úero de escaloes requerido se vuelve ifiito (igura 9(a)). R ' La pediete de la LOE será: y = R + ' Y el itercepto cuado = 0: y 0 = ( ) R + E alguos casos cuado la líea de equilibrio tiee ua ifleió (Ver igura 9(b)), la líea de operació a reflujo íio será tagete a la líea de equilibrio, es decir, el puto copriido estará e el puto de ifleió. - Reflujo de operació. La relació de reflujo de operació que debeos aplicar e realidad está situada etre el líite del reflujo total (úero íio de platos) y el líite de reflujo íio (úero ifiito de platos). Para seleccioar el valor apropiado de R se requiere u balace ecoóico copleto de los costos fijos de la colua y de los de operació.

8 Se ha deostrado e uchos casos que para lograr esto, la relació de reflujo de operació debeos situarla etre,2 a,5 el valor de reflujo íio. 8. ESTILACIÓN EN COLUMNAS COMPLEJAS. Iyecció directa de vapor. Cuado estaos destilado ua solució acuosa de u copuesto A ás volátil y agua B, el calor requerido podeos suiistrarlo iyectado directaete vapor abierto al fodo de la colua. E este caso NO se ecesita rehervidor. Líea de agotaieto (a) igura 0. Caso de iyecció directa de vapor. (b) El vapor S se iyecta al líquido e fora de pequeñas burbujas e el fodo de la colua (igura 0(a)), cuado eiste suficiete cotacto el vapor que se separa del líquido está e equilibrio co él. Realizaos u balace de ateria e la colua para obteer las líeas de operació. U balace de ateria total: Y respecto al copoete A: Y para el copoete A, espejaos a y +, + S = + W. =. + W. La líea de eriqueciieto (LOE) posee la isa ecuació que cuado o se iyecta directaete vapor. Para la líea de agotaieto (LOA) u balace de ateria total os resulta, L + S = V+ + W L. + W. W + S( 0 ) = V+. y+ L W. W y+ = V+ V+ W

9 Si se iyecta vapor saturado, S = V + y L = W, etoces la líea de operació de la secció de agotaieto os queda (igura 0(b)), Cuado y =, W. W = ( W S) y+ = W S W. W S Cuado y = 0, = W Observeos que el corte co el valor de W lo obteeos cuado y = 0, a diferecia de la LOA que opera co u rehervidor cuyo corte co el valor de W lo obteeos cuado y =. (Copareos las iguras 5 y 0(b)). Salidas laterales. Alguas veces ecesitaos etraer productos iteredios o corrietes laterales de seccioes de ua colua. Estas corietes puede ser vapor o líquido y se etrae por ecia o por debajo de la alietació, depediedo de la coposició deseada. Ejeplo: Cosidereos ua colua co corriete líquida lateral O, etraída por ecia de la etrada de la alietació. q c V y, L, 2 3 L S, V S+ s+ s+2 s O, O igura. Ejeplo de salida lateral. La líea de operació de eriqueciieto por ecia de la corriete lateral, la líea de agotaieto y la líea q de alietació, se deteria de aera usual. La corriete líquida lateral altera la velocidad del líquido que está por debajo y tabié afecta al balace de ateria y a la líea de operació de ua porció iteredia ubicada etre el plato de alietació y la corriete lateral. U balace de ateria total, VS + = LS + O + Coo la corriete lateral es líquido saturado, Y co respecto al copoete A, L = L O y V V + S + S + S + S S S + = V. y = L. + O. +. O

10 espejaos y S+ para ecotrar la líea de operació para esta regió iteredia, ys + LS =. S VS + O. O +. + VS + Múltiples alietacioes. Si vaos a fraccioar dos solucioes de cocetracioes diferetes para obteer los isos productos, las dos solucioes podeos aejarlas e el iso fraccioador. Cada ua de las alietacioes la cosiderareos por separado (coo si igua de ellas supiera de la presecia de la otra). y w 2 igura 2.Caso alietacioes últiples. La líea de operació superior se localiza e la fora usual (igura 2). La líea de operació iteredia, para la secció de la colua etre las alietacioes, iterseca a la líea de eriqueciieto e la líea q de la alietació ás cercaa (correspoderá a la priera alietació que atravesaos durate el trazado de la líea de eriqueciieto). La líea de agotaieto iterseca a la líea iteredia e la últia líea q (la que ecotreos ás cercaa al trazado de la LOA).

Destilación. Columna de destilación

Destilación. Columna de destilación estilació Columa de destilació Plato Reboiler estilació mezclas biarias a separació requiere Ua seguda fase debe ser formada tal que las fases de liquido vapor está presetes pueda estar e cotacto e cada

Más detalles

Universidad de Los Andes Facultad de Ingeniería Escuela de Ingeniería Química Dpto. de Operaciones Unitarias y Proyectos. Destilación. Fundamentos.

Universidad de Los Andes Facultad de Ingeniería Escuela de Ingeniería Química Dpto. de Operaciones Unitarias y Proyectos. Destilación. Fundamentos. Uiversidad de os Ades Facultad de Igeiería Escuela de Igeiería Química pto. de Operacioes Uitarias Proectos estilació. Fudametos. Prof. Jesús F. Otiveros Coteido Separació e Etapas Múltiples. Separació

Más detalles

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4

ÁREA DE INGENIERÍA QUÍMICA Prof. Isidoro García García. Operaciones Básicas de Transferencia de Materia. Tema 4 ÁRE DE IGEIERÍ QUÍMIC Operacioes Básicas de Trasferecia de Materia Tea 4 Operacioes Básicas de Trasferecia de Materia ITRODUCCIÓ a aoría de las corrietes de u proceso quíico está costituidas por varios

Más detalles

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Capítulo6.LugardelasRaíces. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Autoáca Capítulo6.LugardelasRaíces JoséRaóLlataGarcía EstherGozálezSarabia DáasoFerádezPérez CarlosToreFerero MaríaSadraRoblaGóez DepartaetodeTecologíaElectróica eigeieríadesisteasyautoáca Lugar de las

Más detalles

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568.

1. Hallar un número cuadrado perfecto de cinco cifras sabiendo que el producto de esas cinco cifras es 1568. Hoja de Probleas º Algebra. Hallar u úero cuadrado perfecto de cico cifras sabiedo que el producto de esas cico cifras es 568. Solució: Sea x 0 4 x 0 3 x 3 0 x 4 0 x 5 el úero que buscaos y sea a 0 b 0

Más detalles

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto

EJERCICIOS DISOLUCIONES (ejercicios fáciles para iniciarse) Primero debemos poner la fórmula con la que se calcula el %masa: masasoluto EJERCICIOS DISOLUCIONES (ejercicios fáciles para iiciarse) Solució: Priero debeos poer la fórula co la que se calcula el %asa: asa % asa asadisolució El (copoete ioritario) es la glucosa y el disolvete

Más detalles

Figura 6.7: Diagrama de una columna de absorción 32

Figura 6.7: Diagrama de una columna de absorción 32 39 Ua vez calculados los fraccioaietos se chequea la codició (6.6). Para el flujo de vapores, se obtuvo que y, 997, ietras que para el flujo de líquido se obtuvo que i x i 1,. 6.3 La absorció La absorció

Más detalles

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES

DIFERENCIAL DE UNA FUNCIÓN REAL DE DOS VARIABLES REALES Cálculo III- Dierecial-TVMCD-Geeralizació Diereciabilidad DIFERENCIL DE UN FUNCIÓN REL DE DOS VRILES RELES a R : R b R R z : E las codicioes ateriores si llaaos a la ució : R R observaos que es ua trasoració

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

UNIDAD 1: MATRICES Y DETERMINANTES

UNIDAD 1: MATRICES Y DETERMINANTES IES NERVIÓN. MTEMÁTICS PLICDS CIENCIS SOCILES II Uidad 1: MTRICES Y DETERMINNTES UNIDD 1: MTRICES Y DETERMINNTES 1. MTRICES 1.1. DEFINICIONES BÁSICS Matriz de orde : es ua serie de úeros reales distribuidos

Más detalles

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera

La característica más resaltante de la capitalización con tasa de. interés simple es que el valor futuro de un capital aumenta de manera La Capitalizació co ua Tasa de Iterés Siple El Iterés Siple La característica ás resaltate de la capitalizació co tasa de iterés siple es que el valor futuro de u capital aueta de aera lieal. Sea u pricipal

Más detalles

Tema 7: FLEXIÓN: HIPERESTATICIDAD

Tema 7: FLEXIÓN: HIPERESTATICIDAD Tea 7: Flexió: Hiperestaticidad Tea 7: FEXÓN: HPERESTTCDD Prof.: Jaie Sato Doigo Satillaa E.P.S.-Zaora (U.S.) - 008 Tea 7: Flexió: Hiperestaticidad 7..- NTRODUCCÓN Segú vios e la secció 4.4 ua viga o ua

Más detalles

Capítulo 5. Oscilador armónico

Capítulo 5. Oscilador armónico Capítulo 5 Oscilador aróico 5 Oscilador aróico uidiesioal 5 Reescalaieto 5 Solució e series 53 Valores propios 54 Noralizació 55 Eleetos de atriz 5 Operadores de creació y de aiquilació 5 Ecuació de valores

Más detalles

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1

Principio de multiplicación. Supongamos que un procedimiento designado como 1, puede hacerse de n 1 MÉTODOS DE ENUMERACIÓN Y CONTEO. Pricipio de ultiplicació. Supogaos que u procediieto desigado coo puede hacerse de aeras. Supogaos que u segudo procediieto desigado coo se puede hacer de aeras. Tabié

Más detalles

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }.

A lo largo de este tema vamos a considerar que en conjunto ρν no contiene al elemento 0. Por tanto ρν={1, 2, 3, }. 1. SUCESIONES DE NÚMEROS REALES. A lo largo de este tea vaos a cosiderar que e cojuto ρν o cotiee al eleeto 0. Por tato ρν={1,, 3, }. DEF Llaareos sucesió de Núeros Reales a toda aplicació f: ρν ΙΡ. Es

Más detalles

P en su plano, siendo C las correspondientes

P en su plano, siendo C las correspondientes PRINIPIO DE OS TRBJOS VIRTUES El Pricipio de los Trabajos Virtuales se expresa diciedo: Para ua deforació virtual ifiitaete pequeña de u cuerpo que se ecuetra e equilibrio, el trabajo virtual de las fuerzas

Más detalles

Regla de Tres. Prof. Maria Peiró

Regla de Tres. Prof. Maria Peiró Regla de Tres Prof. Maria Peiró .- Regla de Tres: Es ua fora de resolver probleas que utiliza ua proporció etre tres o ás valores coocidos y u valor descoocido. La Regla de Tres puede ser siple ó copuesta.

Más detalles

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y

FUNCIONES. ( a) IGUALDAD DE FUNCIONES Sí y son dos funciones, diremos que las funciones f y CALCULO P.C.I. PRIMER SEMESTRE 04 FUNCIONES Sí A y B so dos cojutos o vacío, ua fució de A e B asiga a cada elemeto a perteeciete al cojuto A u úico elemeto b de B que deomiamos image de a. Además diremos

Más detalles

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse.

Números complejos. Un cuerpo conmutativo es un conjunto de números que pueden sumarse, restarse, multiplicarse y dividirse. Núeros coplejos 1. Cuerpos U cuerpo coutativo es u cojuto de úeros que puede suarse, restarse, ultiplicarse y dividirse. Los úeros racioales, esto es, los úeros que puede escribirse e fora de fracció,

Más detalles

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas.

a. Tetraedro: Tiene 4 caras (triángulos equiláteros), 4 vértices, 6 aristas. POLIEDROS Y VOLUMEN POLIEDRO: Cuerpo liitado por cuatro o ás polígoos dode cada polígoo se deoia cara, sus lados so aristas y la itersecció de las aristas se llaa vértices. PRISM: Poliedro liitado por

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano

Área de Matemáticas. Curso 2015/2016 RELACIÓN DE EJERCICIOS RESUELTOS TEMA 8 Geometría Analítica en el Plano Área de Mateáticas. Curso 05/06 TEMA 8 Geoetría Aalítica e el Plao Ejercicio º a Escribe la ecuació de la recta r que pasa por los putos. b Obté la ecuació de la recta s que pasa por tiee pediete. c Halla

Más detalles

Coeficiente de escorrentía C

Coeficiente de escorrentía C EXAMEN Febrero 2010 iempo 90 miutos EJERCICIO 1 (10 putos) e pide que dimesioes, utilizado el método racioal, los colectores AB y BC de la red de saeamieto uitaria de la urbaizació que aparece e la Figura

Más detalles

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL

ESTIMACION DE LA PRESION DE CONVERGENCIA, CONSTANTE DE EQUILIBRIO Y FASES DEL GAS NATURAL República Bolivariaa de Veezuela Miisterio del Poder Popular para la Educació Superior Uiversidad Nacioal Experimetal Rafael María Baralt Programa: Igeiería y Tecología Proyecto: Igeiería e Gas Profesor:

Más detalles

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA

ANÁLISIS DIMENSIONAL Y SEMEJANZA DINÁMICA ANÁISIS IENSIONA Y SEEJANZA INÁICA PROOIPOS Y OEOS os procediietos aalíticos basados e las ecuacioes geerales de la ecáica de los fluidos, o perite resolver, adecuadaete, todos los probleas que se preseta

Más detalles

Ejemplo de Diseño de un Reactor Batch

Ejemplo de Diseño de un Reactor Batch Ejemplo de Diseño de u Reactor Batch La zeolita es u cojuto de alumiosilicatos hidratados que es ampliamete utilizada como catalizador e la idustria. Usualmete se sitetiza a partir de solucioes acuosas

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

α β la cual puede presentar

α β la cual puede presentar 5.4 Covergecia de ua serie de Fourier 8 5.4 Covergecia de ua serie de Fourier Teorema de covergecia de las series de fourier Ua serie de Fourier es ua fució ( ) f x cotiua e [, ] α β la cual puede presetar

Más detalles

Formato para prácticas de laboratorio

Formato para prácticas de laboratorio Forato para prácticas de laboratorio CRRER PLN DE ESTUDIO CLVE SIGNTUR NOMBRE DE L SIGNTUR TRONCO COMÚN 00-447 ESTÁTIC PRÁCTIC NO. LBORTORIO DE CIENCIS BÁSICS DURCIÓN(HORS) EST-08 NOMBRE DE L PRÁCTIC CENTRO

Más detalles

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan

MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL. Resumen: En este artículo se muestra como las transformaciones de funciones resultan MOSAICOS Y POLIEDROS REGULARES. UN PUNTO DE VISTA FUNCIONAL Viceç Fot Departamet de Didàctica de les CCEE i de la Matemàtica de la Uiversitat de Barceloa Resume: E este artículo se muestra como las trasformacioes

Más detalles

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas

TEMA 5: Gráficos de Control por Atributos. 1. Gráfico de control para la fracción de unidades defectuosas TEMA 5: Gráficos de Cotrol por Atributos 1 Gráfico de cotrol para la fracció de uidades defectuosas 2 Gráfico de cotrol para el úmero medio de discoformidades por uidad Selecció del tamaño muestral 3 Clasificació

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos.

Existen varios montajes experimentales que permiten la determinación del momento magnético. Aquí discutiremos tres de ellos. Solució Problea xiste varios otajes experietales que perite la deteriació del oeto agético. Aquí discutireos tres de ellos. 1) Atracció frotal etre iaes La figura uestra el otaje experietal que propoeos

Más detalles

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)

Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11) Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA

Más detalles

UNIONES ATORNILLADAS

UNIONES ATORNILLADAS PROBLEMA Nº4 Diseñar ediate torillos resistetes al deslizaieto e ELU la uió últiple de la pieza co secció e cajó y plata e T a la placa frotal, teiedo e cueta las diesioes y la solicitació de servicio

Más detalles

2 CARTAS DE CONTROL POR ATRIBUTOS

2 CARTAS DE CONTROL POR ATRIBUTOS 2 CARTAS DE CONTROL POR ATRIBUTOS Cualquier característica de calidad que pueda ser clasificada de forma biaria: cumple o o cumple, fucioa o o fucioa, pasa o o pasa, coforme o discoforme defectuoso, o

Más detalles

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN

FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA 2- Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN FUNDAMENTOS DE DIRECCIÓN FINANCIERA TEMA - Parte I CONCEPTO DE INVERSIÓN Y CRITERIOS PARA SU VALORACIÓN 1 INVERSIÓN La iversió es u acto mediate el cual se produce el cambio de ua satisfacció imediata

Más detalles

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2005 (Modelo 3) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 005 (Modelo 3) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO _A ( putos) Dibuje el recito defiido por las siguietes iecuacioes: + y 6; 0 y; / + y/3 ; 0; ( puto) Calcule

Más detalles

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5

2,0 1,5. 1/v. Cooperatividad negativa 1,0 0,5 Ezimología Efecto cooperatio 1 EFECTO COOPERATIVO El efecto cooperatio ocurre e ezimas oligoméricas que posee arios sitios para la uió de sustrato y es el feómeo por el cual la uió de u ligado a ua ezima

Más detalles

Capítulo V. Teoría cinética elemental de los procesos de transporte

Capítulo V. Teoría cinética elemental de los procesos de transporte Capítulo V. Teoría ciética eleetal de los procesos de trasporte Lecció Gas diluido. Desequilibrio. Colisioes. Recorrido libre edio Lecció Viscosidad y trasporte de oeto. Coeficiete de iscosidad de u gas

Más detalles

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal

DISOLUCIONES. Sistema material. Mezcla. Mezcla. coloidal DISOLUCIONES CONTENIDOS 1.- Sistemas materiales. 2.- Disolucioes. Compoetes. Clasificacioes. 3.- Cocetració de ua disolució 3.1. E g/l (repaso). 3.2. % e masa (repaso). 3.3. % e masa/volume. 3.4. Molaridad.

Más detalles

CAPÍTULO VII FONDOS DE AMORTIZACIÓN

CAPÍTULO VII FONDOS DE AMORTIZACIÓN CAPÍTULO VII FONDOS DE AORTIZACIÓN 340 7.1.- FONDOS DE AORTIZACIONES 7.1.1.- CONCEPTOS BÁSICOS Habiedo estudiado las aortizacioes e el puto aterior, ahora presetaos el odelo ateático para costituir u Fodo

Más detalles

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II)

CAPÍTULO 5: SEGMENTOS PROPORCIONALES (II) PÍTULO 5: SEGMENTOS PROPORIONLES (II) Date Guerrero-haduví Piura, 2015 FULTD DE INGENIERÍ Área Departaetal de Igeiería Idustrial y de Sisteas PÍTULO 5: SEGMENTOS PROPORIONLES (II) Esta obra está bajo ua

Más detalles

Transporte de portadores. Corriente en los semiconductores

Transporte de portadores. Corriente en los semiconductores Trasporte de portadores Corriete e los semicoductores Movimieto térmico de los portadores Detro del semicoductor los portadores de corriete está sometidos a u movimieto de agitació térmica (movimieto browiao).

Más detalles

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III

Universidad Nacional Autónoma de Honduras Facultad de Ciencias Económicas Guía de Ejercicios No. 2 DET 385, Métodos Cuantitativos III : Derivadas de orde superior: Elaborada por: Wilfredo Saravia M Uiversidad Nacioal Autóoma de Hoduras Facultad de Ciecias Ecoómicas Guía de Ejercicios No DET 85, Métodos Cuatitativos III E los ejercicios

Más detalles

- A h h+1 n-1 n

- A h h+1 n-1 n 1º DMINISTRCIÓN Y FINNZS GESTIÓN FINNCIER. TEM 9 TEM Nº 9: SELECCIÓN DE INVERSIONES 1. DIMENSIÓN FINNCIER DE UN PROYECTO DE INVERSIÓN Desde el puto de vista fiaciero, es decir, moetario, cualquier proyecto

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas.

Se plantean una serie de cuestiones y ejercicios resueltos relacionados con la cinética de las reacciones químicas. ESUEL UNIVERSIRI DE INGENIERÍ ÉNI INDUSRIL UNIVERSIDD POLIÉNI DE MDRID Roda de Valecia, 3 80 Madrid www.euiti.upm.es sigatura: Igeiería de la Reacció Química Se platea ua serie de cuestioes y ejercicios

Más detalles

GUÍA NÚMERO 18 CUERPOS POLIEDROS: Están limitados por superficies planas y de contorno poligonal. Se clasifican en: > Regulares > Irregulares

GUÍA NÚMERO 18 CUERPOS POLIEDROS: Están limitados por superficies planas y de contorno poligonal. Se clasifican en: > Regulares > Irregulares Sait Gaspar College MISIONEROS DE L PRECIOS SNGRE Forado Persoas Ítegras Departaeto de Mateática RESUMEN PSU MTEMTIC GUÍ NÚMERO 8 CUERPOS POLIEDROS: Está liitados por superficies plaas y de cotoro poligoal.

Más detalles

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES

CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES MATEMÁTICA I - 0 - Capítulo 6 ------------------------------------------------------------------------------------ CRIPTOGRAFIA BASICA Y SISTEMAS DE ECUACIONES LINEALES Las matrices iversas se puede usar

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

5.- Teoremas de Cauchy y del Residuo

5.- Teoremas de Cauchy y del Residuo 5.- Teoreas de auchy y del esiduo a) Itroducció. b) Putos sigulares aislados. c) esiduo. d) Teorea de auchy. e) esiduos y polos. f) eros de fucioes aalíticas. g) Aplicació de los residuos. a).- Itroducció.

Más detalles

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico

GUINV004M2-A17V1. Guía: Operando en un nuevo conjunto numérico Matemática GUINV004M2-A17V1 Guía: Operado e u uevo cojuto umérico Matemática - Segudo Medio Secció 1 Me cocetro Objetivos Idetificar los úmeros irracioales como úmeros decimales que tiee desarrollo ifiito

Más detalles

Teorema del Muestreo

Teorema del Muestreo Teorema del Muestreo Dr. Luis Javier Morales Medoza Procesamieto Digital de Señales Departameto de Maestría DICIS - UG Ídice 1.1. Itroducció 1.2. Coversió aalógico-digital y digital-aalógico 1.3. Proceso

Más detalles

REFRACCIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted:

REFRACCIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted: REFRACCIÓN OBJETIVOS Después de copletar el estudio de este tea podrá usted:. Defiir el ídice de refracció y expresar tres leyes que describe el coportaieto de la luz refractada.. Aplicar la ley de Sell

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: CORRIGIÓ:REVISÓ: 4 5 NOTA Todas sus respuestas debe ser justificadas

Más detalles

CAPÍTULO 9. DISEÑO DE LA MAMPOSTERÍA

CAPÍTULO 9. DISEÑO DE LA MAMPOSTERÍA CAPÍTULO 9. DISEÑO DE LA MAMPOSTERÍA 9.1. REQUISITOS GENERALES 9.1.1. ALCANCE Este Capítulo provee los requisitos íios para el diseño por resistecia de estructuras de apostería. El requisito básico para

Más detalles

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007

CÁLCULO Ejercicios Resueltos Semana 1 30 Julio al 3 Agosto 2007 CÁLCULO Ejercicios Resueltos Semaa 0 Julio al Agosto 007 Ejercicios Resueltos. Estime el área ecerrada por la curva de ecuació y, el eje X y, para ello, divida el itervalo [0,] e cico partes iguales, y

Más detalles

DISEÑOS MUESTRALES ALFREDO ALIAGA CEPAL

DISEÑOS MUESTRALES ALFREDO ALIAGA CEPAL 475 DISEÑOS MUESTRALES ALFREDO ALIAGA CEPAL 476 Diseños uestrales ÍNDICE Páia 1. Diseño de la Muestra... 477 1.1 Marco de la ecuesta... 477 1.2 Foració de uidades de uestreo... 477 1.3 Estratificació...

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

OPERACIONES CON POLINOMIOS.

OPERACIONES CON POLINOMIOS. OPERACIONES CON POLINOMIOS. EXPRESIONES ALGEBRAICAS. Ua epresió ateática que usa úeros o variables o abos para idicar productos o cocietes es u tério. Los térios,, (ab), so todos epresioes algebraicas.

Más detalles

Proceso de enfriamiento en un metal puro. Predicción del tiempo de solidificación. Proceso de enfriamiento en un metal puro

Proceso de enfriamiento en un metal puro. Predicción del tiempo de solidificación. Proceso de enfriamiento en un metal puro Predicció del tiempo de solidificació La catidad de calor a ser removida es directamete proporcioal a la catidad de supercalor y a la catidad de material. La habilidad de remover calor está directamete

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Capítulo 10 Transporte y Transbordo

Capítulo 10 Transporte y Transbordo Capítulo Trasporte y Trasbordo Fuetes Destios D S P O N B L D A a F C X D b R C JX J E C X Q U C i X i E F C i ij X ij R a i D j b J M C i X i E C X N C J X J T O a F C X D b troducció E éste capítulo

Más detalles

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b)

De esta forma, el problema de encontrar la mejor recta se concentra en calcular los valores de la pendiente (m) y de la ordenada al origen (b) MÉTODO DE MÍNIMOS CUADRADOS E muchos de los experimetos que se realiza e Física, se obtiee u cojuto de parejas de úmeros (abscisa, ordeada) por los cuales ecesitamos, para obteer u modelo matemático que

Más detalles

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES.

FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL 1 FUNCIONES DE VARIAS VARIABLES. FUNCIONES DE VARIAS VARIABLES: DOMINIO, RANGO, CURVAS DE NIVEL FUNCIONES DE VARIAS VARIABLES. DEFINICIONES DE FUNCIONES EN VARIAS VARIABLES. Ua fució de variable es u cojuto de pares ordeados de la forma

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid

CURSO DE GEOMETRÍA ANALÍTICA. Oscar Cardona Villegas Héctor Escobar Cadavid CURSO DE GEOMETRÍA ANAÍTICA Oscar Cardoa Villegas Héctor Escobar Cadavid UNIVERSIDAD PONTIFICIA BOIVARIANA ESCUEA DE INGENIERÍAS 06 MÓDUO VARIEDADES INEAES Esta uidad abarca el estudio de la líea recta

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO Sea ua partícula de masa m costreñida a ua sola dimesió e el espacio y detro de u segmeto fiito e esa dimesió. Aplicamos tambié el

Más detalles

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2.

Ejercicio 1. Calcule y grafique la densidad espectral de potencia de la salida del filtro y el valor de potencia total. Ejercicio 2. Guía de Ejercicios Ejercicio El circuito RC de la figura es excitado por ua señal de ruido blaco co desidad espectral de potecia costate e igual a N /. R w(t) C v(t) Calcule y grafique la desidad espectral

Más detalles

GUIA DE MATEMÁTICAS 2 Bloque 2

GUIA DE MATEMÁTICAS 2 Bloque 2 GUIA DE MATEMÁTICAS 2 Bloque 2 Eje teático: SN y PA Coteido: 8.2. Resolució de probleas que iplique adició y sustracció de ooios. Itecioes didácticas: Que los aluos distiga las características de los térios

Más detalles

1. Serie de Potencias

1. Serie de Potencias . Serie de Potecias Recordemos que dada ua sucesió {b } N, podemos defiir ua serie: E el caso particular e que b = a (x c) b la serie tedría la forma b = a (x c) y es llamada serie de potecias cetrada

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 9. Límite y continuidad Evaluació NOMBRE APELLIDOS CURSO GRUPO FECHA CALIFICACIÓN Calcula el térmio geeral de ua progresió geométrica que tiee de térmio a y por razó /. a) b) c) El 6 es: a) b) 0 c) / 6 7 El es: a) b) c) 0 El

Más detalles

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE

TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE TEORÍA DE LOS CIRCUITOS II DIAGRAMAS DE BODE Supogamos teer ua plata de trasferecia G(s) (ver la figura), que es estable y a la cual le igresamos ua señal siusoidal r(t) = a. se(ω.t). Se demuestra que

Más detalles

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones:

CÁLCULO DIFERENCIAL. 1.- Estudia la continuidad de las siguientes funciones: ejerciciosyeamees.com CÁLCULO DIFERENCIAL.- Estudia la cotiuidad de las guietes fucioes: - + f() = ; g()= ; h()= + - ( - )(+) + - - - - - < < 0 i()= e j()= - k()= - > cos 0 = 0 + se l()= m()= = 0 = 0 Sol:

Más detalles

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES.

TEMA 26 DERIVADA DE UNA FUNCIÓN EN UN PUNTO. FUNCIÓN DERIVADA. DERIVADAS SUCESIVAS. APLICACIONES. Tema 6 Derivada de ua ució e u puto Fució derivada Derivadas sucesivas Aplicacioes TEMA 6 DERIVADA DE UNA FUNCIÓN EN UN PUNTO FUNCIÓN DERIVADA DERIVADAS SUCESIVAS APLICACIONES ÍNDICE INTRODUCCIÓN DERIVADA

Más detalles

Figura 10. No se satisface el supuesto de linealidad.

Figura 10. No se satisface el supuesto de linealidad. Regresió Lieal Simple Dra. Diaa Kelmasky 04 Figura 8 Figura 9. No se satisface el supuesto de homoscedasticidad Si graficáramos los residuos cotra los valores de X los putos debería estar distribuidos

Más detalles

EJERCICIOS RESUELTOS. t +

EJERCICIOS RESUELTOS. t + BXX5744_07 /6/09 4: Págia 49 EJERCICIOS RESUELTOS Calcula la tasa de variació media de la fució f() = + e los itervalos [, 0] y [0, ], aalizado el resultado obteido y la relació co la fució. La fució f()

Más detalles

Capítulo II Modelo matemático de la columna de destilación

Capítulo II Modelo matemático de la columna de destilación Capítulo II Modelo matemático de la columa de destilació 2.. Descripció del proceso El proceso e el que vamos a cetrar uestro estudio es ua columa despropaizadora de gra escala que forma parte de la secció

Más detalles

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO

TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO Diplomatura e Óptica y Optometría Adelia Felipe Marcet TEMA I OPTICA GEOMÉTRICA APLICADA AL OJO I Adaptació de las relacioes paraiales II.- Proimidades y potecias III.- Ecuació de Gauss IV.- Ecuació de

Más detalles

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente:

una sucesión de funciones de A. Formemos una nueva sucesión de funciones {S n } n=1 de A de la forma siguiente: Tema 8 Series de fucioes Defiició 81 Sea {f } ua sucesió de fucioes de A Formemos ua ueva sucesió de fucioes {S } de A de la forma siguiete: S (x) = f 1 (x) + f 2 (x) + + f (x) = f k (x) Al par de sucesioes

Más detalles

Capítulo VARIABLES ALEATORIAS

Capítulo VARIABLES ALEATORIAS Capítulo VI VARIALES ALEATORIAS. Itroducció Detro de la estadística se puede cosiderar dos ramas perfectamete difereciadas por sus objetivos y por los métodos que utiliza: Estadística Descriptiva o Deductiva

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton

Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

PRÁCTICAS Nº 10 Y 11

PRÁCTICAS Nº 10 Y 11 PRÁCTICA Nº 10 Y 11 CONTRATE DE HIPOTEI E INTERVALO DE CONFIANZA ETADÍTICA E INTRODUCCIÓN A LA ECONOMETRÍA º LADE CURO 008-09 Profesorado: Prof. Dra. Mª Dolores Gozález Galá Prof. M ª Mar Roero Mirada

Más detalles

INTRODUCCIÓN A LAS PROGRESIONES

INTRODUCCIÓN A LAS PROGRESIONES Apédice A INTRODUCCIÓN A LAS PROGRESIONES A.. A..3 E el Apédice A, los alumos ivestigaro progresioes buscado patroes y reglas. E la primera parte del apédice, se cocetraro e las progresioes aritméticas

Más detalles

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010)

PROBLEMAS DE OPOSICIONES MADRID (25/06/2010) Academia DEIMOS OPOSIIONES A PROFESORES DE SEUNDARIA Y DIPLOMADOS EN ESTADÍSTIA DEL ESTADO.I.F. B409770 / Ferádez de los Ríos 75, º Izda. (Metro : Mocloa) 669 64 06 805 MADRID www.academiadeimos.es academia@academiadeimos.es

Más detalles

MODELOS DE PROBABILIDAD

MODELOS DE PROBABILIDAD 3 MODELOS DE PROBABILIDAD.- VARIABLES ALEATORIAS DISCRETAS E ocasioes, alguas variables aleatorias sigue distribucioes de probabilidad uy cocretas, coo por ejeplo el estudio a u colectivo ueroso de idividuos

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS

TRABAJO PRÁCTICO N O 1. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS TRABAJO PRÁCTICO N O. SÍNTESIS DE SEÑALES Y ANÁLISIS DE SISTEMAS PARTE : SEÑALES Recomedacioes geerales: Utilice el comado stem para el graficado de las señales discretas. El uso de plot o se ajusta al

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

Utilización de MATLAB en la solución de ecuaciones diferenciales con una introducción a la modelizacón matematica

Utilización de MATLAB en la solución de ecuaciones diferenciales con una introducción a la modelizacón matematica Utilizació de MATLAB e la solució de ecuacioes difereciales co ua itroducció a la modelizacó matematica Muchas de las ecuacioes difereciales co las cuales os ecotramos o so maejables e forma exacta como

Más detalles

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior

UNIDAD 2 Ecuaciones Diferenciales Lineales de Orden Superior UNIDAD Ecuacioes Difereciales Lieales de Orde Superior. Defiició Ua ecuació diferecial lieal de orde tiee la forma: d y a a a a y= g d d d Si las fucioes a a so todas costates (o cero) etoces se dice que

Más detalles

Aplicaciones de la Serie Fourier

Aplicaciones de la Serie Fourier Uiversidad de Satiago de Chile Autores: Miguel Martíez Cocha Facultad de Ciecia Carlos Silva Corejo Departameto de Matemática y CC Emilio Villalobos Marí Part I Aplicacioes de la Serie Fourier. Problema.

Más detalles

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2

CONVEXIDAD R 2. Conjuntos convexos. Combinación lineal convexa de m puntos. λ x. Ejemplos de conjuntos convexos en R 2 Cojutos coveos Ejeplos de cojutos coveos e R CONVEXIDAD Cojutos coveos Coveidad de fucioes DEFINICION: U cojuto A es coveo cuado, y A y λ [0,] se cuple λ + ( λ) y A R λ + ( λ) y λ = / y λ = 0 Cojuto coveo:

Más detalles