Geometría Computacional. Dr. Antonio Marín Hernández

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Geometría Computacional. Dr. Antonio Marín Hernández"

Transcripción

1 Geometría Computacional Dr. Antonio Marín Hernández Centro de Investigación en Inteligencia Artificial Universidad Veracruzana Contenido Introducción Intersección de segmentos de rectas Diagramas de Voronoi Triangulación de Delaunay Envolventes Convexos Visibilidad Medidas de forma

2 El problema de la galería de Arte Vigilancia Cámaras de video Centro de monitoreo Reducir el número de cámaras de video Costo Cada rincón debe ser visto por las cámaras El problema de la galería de Arte Cuántas cámaras se necesitan para una galería dada? Cómo decidir donde colocarlas?

3 Cámaras fijas con rotación horizontal. 3D No hay segmentos sobre las puertas. Un plano horizontal (piso) nos da suficiente información. Vamos a restringir las regiones posibles a polígonos simples. Regiones encerradas por una cadena poligonal simple que no se auto intersecta. No permitiremos regiones con agujeros. Consideramos que la posición de la cámara corresponde a un punto en el polígono. Una cámara ve aquellos puntos en el polígono los cuales pueden ser conectados mediante un segmento de recta en el interior del polígono.

4 Cuántas cámaras se necesitan para vigilar un polígono simple? Depende de la complejidad del polígono Expresaremos el límite de las cámaras necesarias en términos de n, el número de vértices del polígono. Sin embargo, dos polígonos con el mismo número de vértices pueden tener diferente grado de dificultad. Un polígono convexo puede ser vigilado por una sola cámara. En el peor de los casos, deseamos dar un límite que sea suficientemente bueno para cualquier polígono con n vértices. El problema de encontrar el mínimo número de cámaras es NP-Hard.

5 Sea P un polígono simple con n vértices. Ya que P puede tener una forma complicada, resulta difícil determinar el número de cámaras. Descompongamos el polígono P en partes más fáciles a resguardar (triángulos). Hacemos esto trazando diagonales entre pares de vértices.

6 Una descomposición de un polígono en triángulos por un conjunto máximo de diagonales que no se intersectan es llamado triangulación del polígono. Se requiere que el conjunto de diagonales que no se intersectan sea máximo, para asegurar que ningún triángulo tenga algún vértice del polígono en el interior. Las triangulaciones no son únicas. Se puede colocar una cámara en cada triángulo, de la triangulación T p. Existe dicha triangulación? De cuantos triángulos?

7 Teorema: Cada polígono simple admite una triangulación, y una triangulación de un polígono simple con n vértices consiste de exactamente n - 2 triángulos. Este teorema implica que cualquier polígono simple puede se vigilado por n - 2 cámaras. Una cámara colocada en una diagonal podría vigilar dos triángulos. Colocando las cámaras en diagonales bien escogidas puede reducir el número de estas a n/2. Colocar las cámaras en los vértices puede ser buena idea, ya que un vértice puede incidir en varios triángulos.

8 Sea T p una triangulación de P. Selecciónese un subconjunto de vértices de P, tales que cualquier triángulo en T p tenga al menos un vértice seleccionado, y coloque las cámaras en dichos vértices. Asignemos a cada vértice de P un color de manera que para cualquiera dos vértices conectados por una diagonal estos tendrán diferente color.

9 Este procedimiento se llama 3-coloring de un polígono triangulado. En un 3-coloring de un polígono triangulado cada triángulo tiene un vértice de cada color. Si colocamos una cámara en cada uno de los vértices azules podemos ver que vigilamos todo el polígono.

10 Escogiendo la clase de color más pequeña para colocar las cámaras, podemos vigilar P usando a lo mucho n/3 cámaras. Existe este 3-coloring siempre? Si. Utilicemos un grafo dual G(T p ) Este grafo dual tiene un nodo para cada triángulo en T p.

11 Denotamos un triángulo correspondiente al nodo v por t(v). Existe un arco entre dos nodos v y u sí t(v) y t(u) comparten una diagonal. Los arcos en G(T p ) corresponden a diagonales de T p. Ya que cada diagonal corta a P en dos, eliminar un arco de G(T p ) divide el grafo en dos. Por lo tanto G(T p ) es un árbol (esto no es cierto para polígonos con agujeros) Podemos encontrar un 3-coloring usando una búsqueda de primero en profundidad.

12 Aun se puede mejorar, puesto que una cámara puesta en un vértice puede vigilar más triángulos que los incidentes. Sin embargo en el peor de los casos se necesitan n/3 cámaras. En este sentido esto es óptimo para el peor de los casos. Teorema: Para un polígono simple con n vértices, n/3 cámaras son ocasionalmente necesarias y siempre suficientes para tener cada punto en el polígono visible por al menos una de las cámaras. Teorema: Sea P un polígono simple con n vértices. Un conjunto de n/3 posiciones de las cámaras en P tales que cualquier punto dentro de P sea visible por al menos una de las cámaras puede ser calculado en un tiempo O(nlog n).

13 Partición de un polígono en partes monótonas Sea P un polígono simple con n vértices. La triangulación de P existe. Algoritmo de triangulación recursivo. Se encuentra una diagonal y se triangula los resultantes subpolígonos recursivamente. Para encontrar la diagonal se toma el vértice más a la izquierda de P y se trata de conectar este con sus dos vecinos u y w. Sí se falla, entonces se conecta el vértice v al vértice más alejado de vw dentro del triángulo formado por u, v, w. Encontrar una diagonal toma un tiempo lineal.

14 w v u w v v u

15 En caso de poderse conectar los vértices u y w, este proceso puede generar la división del polígono P en un triángulo y un polígono con n -1 vértices. En el peor de los casos se requiere de un tiempo cuadrático. Se puede hacer mejor? Para algunas clases de polígonos sí. Para polígonos convexos, se toma un vértice y se trazan diagonales a todos sus vértices, excepto sus vecinos. Por lo tanto sería conveniente partir nuestro polígono no convexo en partes convexas y triangular las partes.

16 Desafortunadamente no es tan sencillo obtener esta partición. Por lo tanto dividiremos a P, en lo que llamamos piezas monótonas, las cuales son más sencillas. Un polígono simple es llamado monótono con respecto a una línea l sí para cualquier línea l perpendicular a l la intersección del polígono con l es conectada. Es decir, la intersección debe ser un segmento de línea, un punto, nada. Un polígono que es monótono con respecto a al eje y es llamado y-monótono.

17 Para los polígonos y-monótonos podemos mencionar la siguiente característica: Se caminamos desde el vértice más alto al más bajo a lo largo de su borde límite izquierdo, siempre nos moveremos hacia abajo u horizontalmente, nunca hacia arriba. La estrategia será particionar P en partes y-monótonas y triangular las partes. Al recorrrer el polígono desde el vértice más alto al más bajo por alguno de los bordes (izquierdo o derecho), llamaremos a los vértices que cambia el recorrido (de abajo hacia arriba o de arriba hacia abajo) un vértice de giro. Para particionar P en partes y-monótonas se usaran estos vértices.

18 Utilizaremos los vértices de giro para añadir diagonales. Sea v un vértice de giro con sus dos segmentos incidentes hacia abajo y con el interior del poligono arriba de v. Se puede elegir una diagonal con dirección hacia arriba que parta el poligono en dos. v

19 Esta diagonal partirá en dos polígonos al original. El vértice v estará en ambos polígonos y este ya no será mas un vértice de giro. Hay diferentes tipos de vértices como se muestra a continuación: e 5 v 5 e 4 v 4 e 3 v 3 v 9 e 9 v 6 e 6 v 7 e 8 e 7 v 8 e 2 e1 v 1 v 2 e 15 v 14 e 14 v 15 v 10 e 10 e 11 v 11 v 12 e 12 e 13 v 13

20 Revisar el algoritmo para hacer las piezas y-monótonas. Particionar un polígono en partes y- monótonas requiere de un tiempo O(nlogn). Demostraremos que un polígono y- monótono se puede triangular en tiempo lineal. Esto implica que un poligono simple puede ser triangulado en O(nlogn).

21 Triangulación de un poligono y- monótono. Consideremos inicialmente un polígono y- monótono que no tiene bordes horizontales Por lo tanto, al recorrerlo por alguno de sus cadenas de bordes (izquierda o derecha) siempre se irá de la parte más alta a la más baja. Esta propiedad hace que sea fácil su triangulación. Se puede recorrer ambas cadenas de bordes y generar diagonales cuando sea posible.

22 Algoritmo Voraz de Triangulación Se consideran los vértices en orden decreciente Si dos vértices tienen la misma coordenada y se toma el más a la izquierda Se requiere un pila S como estructura auxiliar Inicialmente la pila esta vacía Se llena con los vértices de P que han sido encontrados pero que requieren más diagonales Cuando se maneja un vértice se añaden tantas diagonales como sea posible hacia los vértices en la pila S Estas diagonales dividen los triángulos en P

23 Los vértices que han sido manejados pero no generan divisiones son los límites de la parte de P que aun requiere ser triangulada El vértice mas abajo, es decir el último que ha sido encontrado se coloca hasta arriba de la pila el segundo más abajo es el segundo, etc. La parte de P que requiere ser triangulada y esta por debajo el último vértice que ha sido encontrado, tiene la forma particular de un embudo Uno de los límites del embudo corresponde en un borde sencillo de P El otro es una cadena que consiste de vértices reflejados Esto es que el ángulo interior de estos vértices es al menos 180

24 Esta propiedad es verdadera aun después de tratar el siguiente vértice Es una invariante del algoritmo Hay dos casos para añadir diagonales v j el siguiente vértice a ser manejado esta en la misma cadena que los vértices reflejados O esta en la cadena opuesta

25 Si v j esta en la cadena opuesta, debe ser el punto mas bajo del borde sencillo e que limita al embudo Debido a la forma del embudo, podemos agregar diagonales de v j a todos los vértices en la pila, excepto el último El último vértice en la pila es el vértice más alto de e, así que ya esta conectado Todos estos vértices son sacados de la pila La parte no triangulada del polígono v j es limitada por la diagonal que conecta v j con el vértice previamente en lo más alto de la pila y el borde de P que se extiende hacia debajo de este vértice Tanto este vértice como v j permanecen en la parte no triangulada del polígono

26 El otro caso es cuando v j esta en la misma cadena que los vértices reflejados en la pila En este momento no se puede dibujar diagonales de v j a todos los vértices en la pila Los vértices con los cuales se puede conectar a v j son consecutivos y están en la parta alta de la pila, de manera que se procede de la siguiente manera: Primero sacar un vértice de la pila Este vértice ya esta conectado con v j por un borde de P Después, sacar los vértices de la pila y conectarlos con v j hasta encontrar uno en el cual no sea posible Verificar si una diagonal puede ser dibujada de v j a v k en la pila puede hacerse viendo a v j, v j y el vértice previamente sacado

27 Cuando encontremos un vértice que no se pueda conectar a v j agregamos a la pila el último vértice que ha sido sacado Este será, el último vértice para el cual una diagonal fue añadida o si no han sido agregadas diagonales es el vecino de v j en el límite de P Después de que esto ha sido realizado se agrega v j a la pila. En ambos casos la invariante es restaurada Uno de los límites es un borde y el otro esta limitado por una cadena de vértices reflejados

28 TriangulateMonotonePolygon(P) Entrada.- Un polígono P estrictamente y- monótono almacenada como una lista D doblemente conectada Salida.- Una triangulación de P almacenada en una lista doblemente conectada D Agregar los vértices de las cadenas izquierda y derecha de P en una secuencia ordenada decreciente con respecto a la coordenada y Si dos vértices tienen la misma coordenada y, el más a la izquierda se toma primero Sea u 1,,u n la secuencia ordenada

29 Inicializar la pila S y agregar u 1 y u 2 a esta Para j desde 3 hasta n-1 Hacer, sí u j y el vértice en lo más alto de S estan en cadenas diferentes Entonces sacar todos los vértices de S Insertar en D una diagonal de u j a cada uno de los vértices sacados, excepto el último Agregar u j -1 y u j a S De otra forma, sacar un vértice de S Sacar los otros vértices de S mientras las diagonales de u j a este estén dentro de P Insertar estas diagonales en D, Agregar el último vértice que ha sido sacado de regreso a S Agregar u j a S Agregar diagonales de uno a todos los vértices en la pila excepto al primero y al último

30 Geometría Computacional Dr. Antonio Marín Hernández Centro de Investigación en Inteligencia Artificial Universidad Veracruzana

Triangulación de polígonos

Triangulación de polígonos Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 26 de febrero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Triangulación de polígonos 26 de febrero del 2013 1 / 105 1 Triangulación de polígonos Problema

Más detalles

Triangulación de Polígonos: Problema de la Galería de Arte. Geometría Computacional, MAT-125

Triangulación de Polígonos: Problema de la Galería de Arte. Geometría Computacional, MAT-125 http://ilevel.biz/wp-content/uploads/2013/07/riccomaresca-outsider-art-gallery-1024x576.png Triangulación de Polígonos: Problema de la Galería de Arte. Geometría Computacional, MAT-125 Cuántas cámaras

Más detalles

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación

Más detalles

Diagrama de Voronoi. Ejemplo de problemas geométricos:

Diagrama de Voronoi. Ejemplo de problemas geométricos: Diagrama de Voronoi Definición: Sea P={p1,p2,..,pn} un conjunto de puntos en el plano. Estos puntos son llamados sitios. Asignar a cada punto del plano el sitio más cercano. Todos los puntos asignados

Más detalles

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad:

3.1. Distancia entre dos puntos. Definición 3.1. Sean a, b e, se llama distancia entre los números a y b que se denota por d (a, b), a la cantidad: III. UNIDAD: GEOMETRIA ANALITICA LANA. La Geometría Analítica permite usar los métodos algebraicos en la solución de problemas geométricos, recíprocamente, los métodos de la geometría analítica pueden

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III

Metaheurísticas y heurísticas. Algoritmos y Estructuras de Datos III Metaheurísticas y heurísticas Algoritmos y Estructuras de Datos III Metaheurísticas Heurísticas clásicas. Metaheurísticas o heurísticas modernas. Cuándo usarlas? Problemas para los cuales no se conocen

Más detalles

Localización de puntos en el plano

Localización de puntos en el plano Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 12 de marzo del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Localización de puntos en el plano 12 de marzo del 2013 1 / 67 1 Localización de puntos en

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de

Más detalles

Introducción a la Geometría Computacional. Análisis de Algoritmos

Introducción a la Geometría Computacional. Análisis de Algoritmos Introducción a la Geometría Computacional Análisis de Algoritmos Geometría Computacional La Geometría Computacional surgió a finales de los 70s del área de diseño y análisis de algoritmos. Estudio sistemático

Más detalles

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Saberes procedimentales 1. Emplea de manera sistemática conceptos algebraicos, geométricos, trigonométricos y de geometría analítica. 2. Relaciona una ecuación algebraica con

Más detalles

1. El plano cartesiano

1. El plano cartesiano 1. El plano cartesiano Para representar puntos en un plano, definidos por un par ordenado de números reales, se utiliza generalmente el sistema de coordenadas rectangulares, que se caracteriza por: Estar

Más detalles

Árboles balanceados (AVL) Tablas de dispersión (Hash) Colas de prioridad (Heap)

Árboles balanceados (AVL) Tablas de dispersión (Hash) Colas de prioridad (Heap) Práctico 4 Árboles balanceados (AVL) Tablas de dispersión (Hash) Colas de prioridad (Heap) Clasificación de ejercicios: (I) Imprescindibles (R) Recomendados (C) Complementarios Árboles balanceados (AVL)

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Ángulos. Proporcionalidad. Igualdad y Semejanza

Ángulos. Proporcionalidad. Igualdad y Semejanza 3. ÁNGULOS 3.1 DEFINICIÓN Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR

UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA INGENIERÍA DE SISTEMAS BÚSQUEDA PRIMERO EL MEJOR INTEGRANTES: Caricari Cala Aquilardo Villarroel Fernandez Fructuoso DOCENTE: Lic. Garcia

Más detalles

Cubiertas convexas II

Cubiertas convexas II Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 22 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Cubiertas convexas II 22 de enero del 2013 1 / 41 1 Cubiertas convexas II Algoritmo QuickHull

Más detalles

Cubiertas convexas. Dr. Eduardo A. RODRÍGUEZ TELLO. 18 de enero del CINVESTAV-Tamaulipas

Cubiertas convexas. Dr. Eduardo A. RODRÍGUEZ TELLO. 18 de enero del CINVESTAV-Tamaulipas Dr. Eduardo A. RODRÍGUEZ TELLO CINVESTAV-Tamaulipas 18 de enero del 2013 Dr. Eduardo RODRÍGUEZ T. (CINVESTAV) Cubiertas convexas 18 de enero del 2013 1 / 30 1 Cubiertas convexas Introducción El problema

Más detalles

TEMA 4. TRANSFORMACIONES EN EL PLANO

TEMA 4. TRANSFORMACIONES EN EL PLANO TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica

Más detalles

Slide 1 / 174. Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia

Slide 1 / 174. Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia Slide 1 / 174 Geometría 2D Parte 1: Relaciones Geométricas, Perímetro y Circunferencia Slide 2 / 174 Nueva Jersey, Centro de Enseñanza y Aprendizaj Matemáticas Iniciativa Progresista Este material está

Más detalles

La estrategia divide-y-vencerás

La estrategia divide-y-vencerás capítulo 4 La estrategia divide-y-vencerás Esta estrategia constituye un poderoso paradigma para definir algoritmos eficientes. Este método primero divide un problema en dos subproblemas más pequeños de

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

Problema nº 1: Dominó/Dominó triangular

Problema nº 1: Dominó/Dominó triangular Problema nº 1: Dominó/Dominó triangular Las fichas del juego del dominó son rectángulos formados a partir de la unión de dos cuadrados. En esos cuadrados hay puntos que pueden variar de 0 a 6. Así tenemos

Más detalles

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo

Ángulos. Definición Nomenclatura de los ángulos agudo obtuso recto llano extendido nulo suplementarios complementarios cóncavo convexo 1.3.6.-Ángulos. Definición Un ángulo es la parte del plano limitada por dos semirrectas que parten del mismo punto, que es el vértice del ángulo. Las semirrectas que lo limitan son los lados del ángulo.

Más detalles

1.3.-Trazados geométricos básicos.

1.3.-Trazados geométricos básicos. 1.3.-Trazados geométricos básicos. 1.3.1.-Notaciones Los elementos básicos del dibujo técnico son el punto, la recta y el plano. El punto no tiene dimensión, podemos considerarlo como una posición del

Más detalles

Triángulo agudo - Es un triángulo que tiene todos los ángulos agudos. Ángulo agudo es aquél cuyo grado de medida es menor de 90.

Triángulo agudo - Es un triángulo que tiene todos los ángulos agudos. Ángulo agudo es aquél cuyo grado de medida es menor de 90. Triángulo agudo - Es un triángulo que tiene todos los ángulos agudos. Ángulo agudo es aquél cuyo grado de medida es menor de 90. Ángulos adyacentes - Son dos ángulos en el mismo plano con un lado y un

Más detalles

Complejidad computacional (Análisis de Algoritmos)

Complejidad computacional (Análisis de Algoritmos) Definición. Complejidad computacional (Análisis de Algoritmos) Es la rama de las ciencias de la computación que estudia, de manera teórica, la optimización de los recursos requeridos durante la ejecución

Más detalles

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras.

Diagonal: es un segmento que une dos vértices no consecutivos del poliedro. Puede trazarse en una misma cara o entre distintas caras. CLASIFICASION DE CUERPOS GEOMETRICOS 1 2 Cuerpos Geométrico s Ángulo diedro: es el ángulo formado por dos caras del poliedro. El ángulo formado por tres o más caras que concurren en un vértice, se denomina

Más detalles

Manejo de las herramientas de Dibujo

Manejo de las herramientas de Dibujo Manejo de las herramientas de Dibujo Una vez aprendidos los instrumentos de dibujo más básicos, en la siguiente ficha, vas a descubrir para que sirven en la práctica, y vas a poder adquirir soltura en

Más detalles

La representación gráfica de una función cuadrática es una parábola.

La representación gráfica de una función cuadrática es una parábola. Función Cuadrática A la función polinómica de segundo grado +bx+c, siendo a, b, c números reales y, se la denomina función cuadrática. Los términos de la función reciben los siguientes nombres: La representación

Más detalles

Definición y Clasificación de Polígonos. Definición

Definición y Clasificación de Polígonos. Definición Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono

Más detalles

Polígono. Superficie plana limitada por una línea poligonal cerrada.

Polígono. Superficie plana limitada por una línea poligonal cerrada. POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la

Más detalles

TEMA 1: Los Proces0s industriales y su representación

TEMA 1: Los Proces0s industriales y su representación TEMA 1: Los Proces0s industriales y su representación 1. LA REPRESENTACIÓN DE OBJETOS 1.1.EL DIBUJO TÉCNICO Es una de las técnicas que se utilizan para describir un objeto, con la intención de proporcionar

Más detalles

+ T. Define y construye un óvalo de ejes AB=75 mm. CD=55 mm. concretando los puntos de contacto.

+ T. Define y construye un óvalo de ejes AB=75 mm. CD=55 mm. concretando los puntos de contacto. Tangencias Enlazar los puntos DE mediante arcos de circunferencias tangentes, sabiendo que los tres primeros puntos están en la misma circunferencia. D E Dadas dos circunferencias de igual radio R=3 cm.

Más detalles

Geometría Computacional

Geometría Computacional Geometría Computacional La geometría computacional es una rama de ciencia de la computación que estudia algoritmos para resolver problemas geométricos. Nos concetraremos en la representación y programación

Más detalles

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?

ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas? ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que

Más detalles

Fútbol, geometría y otros problemas.

Fútbol, geometría y otros problemas. Fútbol, geometría y otros problemas. Leandro Tortosa. Universidad de Alicante, Alicante (España). Departamento de Ciencia de la Computación e Inteligencia Artificial. Ap. Correos 99, E-03080. Alicante,

Más detalles

Matemáticas 1º ESO Fichas de trabajo Proyecto Emprendimiento: Nuevas ideas, nuevos espacios Área: Matemáticas. Colegio Divino Maestro

Matemáticas 1º ESO Fichas de trabajo Proyecto Emprendimiento: Nuevas ideas, nuevos espacios Área: Matemáticas. Colegio Divino Maestro Matemáticas 1º ESO Fichas de trabajo Proyecto Emprendimiento: Nuevas ideas, nuevos espacios Área: Matemáticas Colegio Divino Maestro TAREA 1: TRANSFORMACIÓN DE MEDIDAS Teoría: Una magnitud es cualquier

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Ingeniería en Sistemas Computacionales. Inteligencia Artificial. Ing. Bruno López Takeyas. Algoritmo Hill Climbing

Ingeniería en Sistemas Computacionales. Inteligencia Artificial. Ing. Bruno López Takeyas. Algoritmo Hill Climbing Ingeniería en Sistemas Computacionales Inteligencia Artificial Ing. Bruno López Takeyas Algoritmo Hill Climbing Alumnos Ylliana Samantha Anderson Benavides 01100161 Pablo Saúl Hernández Ribota 01100230

Más detalles

(b) Cuál es la desventaja principal de una heurística con aprendizaje? es más informada que otra función heurística optimista h 2 *?

(b) Cuál es la desventaja principal de una heurística con aprendizaje? es más informada que otra función heurística optimista h 2 *? UNIVERIDD REY JUN CRLO CURO 0-0 INTELIGENCI RTIFICIL Hoja de Problemas Tema Ejercicio : Conteste a las siguientes preguntas: (a) Cómo funciona una heurística con aprendizaje? olución: Una heurística con

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA

UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando

Más detalles

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana

Minicurso de Teoría de Gráficas Escuela de Verano 2014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Minicurso de Teoría de Gráficas Escuela de Verano 014 por María Luisa Pérez Seguí Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana Índice 1. Conceptos básicos 1 1.1. Nomenclatura...................................

Más detalles

FUNCIÓN. La Respuesta correcta es D

FUNCIÓN. La Respuesta correcta es D FUNCIONES FUNCIÓN La Respuesta correcta es D FUNCIÓN Función Continua: Es aquella en la que su gráfica se puede recorrer en forma ininterrumpida en toda su extensión. FUNCIÓN Función Discontinua: Es aquella

Más detalles

Tema 2 2 Geometría métrica en el pla no

Tema 2 2 Geometría métrica en el pla no Tema Geometría métrica en el pla no CONCEPTOS BÁSICOS Figuras básicas en el plano: puntos, rectas, semirrectas, segmentos y ángulos Los polígonos y su clasificación según los ángulos internos y según el

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás

Más detalles

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices.

Árboles. Un grafo no dirigido es un árbol si y sólo si existe una ruta unica simple entre cualquiera dos de sus vértices. ÁRBOLES Árboles Un grafo conectado que no contiene circuitos simples. Utilizados desde 1857, por el matemático Ingles Arthur Cayley para contar ciertos tipos de componentes químicos. Un árbol es un grafo

Más detalles

CIRCUNFERENCIA INTRODUCCION

CIRCUNFERENCIA INTRODUCCION CIRCUNFERENCIA INTRODUCCION Definición Sea O punto del plano ( P ) y r un real positivo, entonces se denomina circunferencia de centro O y radio r ( C ( O, r ) ), al conjunto formado por y sólo por los

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

Uruguay Educa. Materiales: 1. Tablero sobre el que se desplazarán las fichas. Juego Página 1 TRAPECIO RECTÁNGULO ROMBO PARALELOGRAMO TIPO

Uruguay Educa. Materiales: 1. Tablero sobre el que se desplazarán las fichas. Juego Página 1 TRAPECIO RECTÁNGULO ROMBO PARALELOGRAMO TIPO Materiales: 1. Tablero sobre el que se desplazarán las fichas. TRAPECIO RECTÁNGULO ROMBO PARALELOGRAMO TIPO TRAPECIO ISÓSCELES CUADRADO RECTÁNGULO CUADRILÁTERO NO CONVEXO ROMBOIDE Juego Página 1 2. Tarjetas.

Más detalles

NOCIÓN DE PUNTO, RECTA Y PLANO

NOCIÓN DE PUNTO, RECTA Y PLANO NOCIÓN DE PUNTO, RECT Y PLNO Si les das una imagen de una figura o un objeto, como un mapa con las ciudades y los caminos marcados en él, Cómo podrías explicar la imagen geométricamente? Después de completar

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

MATEMÁTICA 5 BÁSICO GUÍAS DEL ESTUDIANTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS

MATEMÁTICA 5 BÁSICO GUÍAS DEL ESTUDIANTE LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS MATEMÁTICA 5 BÁSICO LOCALIZACIONES, CARACTERIZACIONES Y TRANSFORMACIONES GEOMÉTRICAS Material elaborado por: Héctor Muñoz Adaptación: Equipo de Matemática Fundación Chile GUÍA : ADIVINA EL PUNTO REGLAS

Más detalles

Guía Práctica Segundos medios

Guía Práctica Segundos medios Fuente: Pre Universitario Pedro de Valdivia Guía Práctica Segundos medios ISMETRÍS Y TESELINES TRSLINES Las traslaciones, son aquellas isometrías que permiten desplazar en línea recta todos los puntos

Más detalles

(El producto de una rotación y una reflexión no es conmutativo!!!)

(El producto de una rotación y una reflexión no es conmutativo!!!) HOMOTECIS (H) l numero (µ) se llama razón de la homotecia: d (O,P) / d (O, P ) = µ Si (m)>0 (es positivo), los puntos P y P están del mismo lado respecto al punto O. Si (m)

Más detalles

Fundamentos de Investigación de Operaciones Modelos de Grafos

Fundamentos de Investigación de Operaciones Modelos de Grafos Fundamentos de Investigación de Operaciones de junio de 00 Muchos problemas de optimización puedes ser analizados y resueltos a través de representaciones gráficas. Tal es el caso de los problemas de planificación

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Lógica y Estructuras Discretas Tutor: Antonio Rivero Cuesta Tema 5 Teoría de Grafos Conceptos Básicos Un grafo consta de: Grafo Un conjunto de nodos, Un conjunto de aristas

Más detalles

Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.

Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es. Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar

Más detalles

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA

RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo

Más detalles

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica.

Las funciones son relaciones entre dos o más variables expresadas en una ecuación algebraica. FUNCIONES Y GRÁFICAS Las funciones son relaciones entre dos o más variables epresadas en una ecuación algebraica. or ejemplo, la epresión relaciona la variable con la variable mediante una regla de correspondencia

Más detalles

Grafos. Amalia Duch Brown Octubre de 2007

Grafos. Amalia Duch Brown Octubre de 2007 Grafos Amalia Duch Brown Octubre de 2007 Índice 1. Definiciones Básicas Intuitivamente un grafo es un conjunto de vértices unidos por un conjunto de líneas o flechas dependiendo de si el grafo es dirigido

Más detalles

Computación Geométrica Intersección de segmentos

Computación Geométrica Intersección de segmentos Computación Geométrica Intersección de segmentos 1 Índice Modelos geométricos básicos Un primer algoritmo Algoritmo avanzado 2 Aplicaciones GIS: Sistema de Información Geográfica Uso de capas para representar

Más detalles

PUNTO DE DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA. El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela.

PUNTO DE DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA. El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela. PUNTO DE DIVISIÓN DE UN SEGMENTO EN UN RZÓN DD El Problema de la escuela Supongamos que la figura siguiente representa el patio de una escuela. Cómo se haría para dividir el lado en partes iguales, sin

Más detalles

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP.

Vectores. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo equivalente a QP. Wilson Herrera 1 Vectores 1. Dados los puntos P (1, 2), Q( 2, 2) y R(1, 6): a) Representarlos en el plano XOY. b) Hallar la magnitud de cada uno de los vectores P Q, QRy P R. c) Encontrar el vector fijo

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

De grados tres y cuatro

De grados tres y cuatro De grados tres y cuatro Comportamiento general de las funciones polinomiales de grados tres y cuatro Funciones de grado tres. La forma general de las funciones de grado tres (cúbicas) esf x = ax 3 + bx

Más detalles

XXIX TORNEO INTERNACIONAL DE LAS CIUDADES PRIMAVERA DEL HEMISFERIO NORTE NIVEL JUVENIL

XXIX TORNEO INTERNACIONAL DE LAS CIUDADES PRIMAVERA DEL HEMISFERIO NORTE NIVEL JUVENIL XXIX TORNEO INTERNACIONAL DE LAS CIUDADES PRIMAVERA DEL HEMISFERIO NORTE NIVEL JUVENIL 1. Juan multiplicó dos números enteros positivos consecutivos. a) Demostrar que Pedro puede agregar dos dígitos a

Más detalles

POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA

POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA POLÍGONOS REGULARES DADA LA CIRCUNFERENCIA CIRCUNSCRITA Introducción La construcción de polígonos regulares inscritos en una circunferencia dada, se basan en la división de dicha circunferencia en un número

Más detalles

Recuerda lo fundamental

Recuerda lo fundamental Recuerda lo fundamental Curso:... Fecha:... RECTS Y ÁNGULOS RECTS INTERESNTES La mediatriz de un segmento es una recta perpendicular al... en su... Cada punto P de la mediatriz de un segmento equidista

Más detalles

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en.

CÁLCULO. Función Lineal. Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Función Lineal Se llama función lineal a toda función que tiene la forma:. con Su representación gráfica es una línea recta que intercepta al eje de las X en el punto ( ) y al eje de las Y en. Muchas son

Más detalles

Colegio Saint Benedict / Departamento de Matemática

Colegio Saint Benedict / Departamento de Matemática Prueba Escrita de matemática / Nivel: Sétimo año 1. Geometría Punto Puntos colineales y no colineales Recta Segmento Semirrecta Rayo Rectas concurrentes Rectas paralelas en el plano Rectas perpendiculares

Más detalles

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 4. Máquinas de Turing. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 4 Máquinas de Turing Ciencias de la Computación e Inteligencia Artificial Índice 4.1 Límites de los autómatas 4.2 Definición de Máquina de Turing 4.3

Más detalles

Ampliación de Robótica PLANIFICACIÓN, 1 4 ROBOTS MÓVILES

Ampliación de Robótica PLANIFICACIÓN, 1 4 ROBOTS MÓVILES Ampliación de Robótica PLANIFICACIÓN, 1 4 ROBOTS MÓVILES TEMA IV: ROBOTS MÓVILES 4.1 Introducción: Preliminares y Conceptos. 4.2 Características de los Robots Móviles. 4.3 Algoritmos de Planificación.

Más detalles

Guía de Funciones Cuadráticas

Guía de Funciones Cuadráticas Colegio Raimapu Departamento de Matemática Guía de Funciones Cuadráticas Nombre del Estudiante: ) Cuál de los siguientes gráficos representa a la función f() =? A) B) C) D) E) º Medio ) El punto que no

Más detalles

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: -

PSU Matemática NM-4 Guía 23: Isometrías. Nombre: Curso: Fecha: - Centro Educacional San Carlos de Aragón. Dpto. Matemática. Prof. Ximena Gallegos H. PSU Matemática NM- Guía : Isometrías Nombre: Curso: Fecha: - Contenido: Isometrías. Aprendizaje Esperado: Analiza traslaciones

Más detalles

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1)

m=0 La ecuación de una recta se puede obtener a partir de dos puntos por los que pase la recta: y y1 = m(x x1) Recta Una propiedad importante de la recta es su pendiente. Para determinar este coeficiente m en una recta que no sea vertical, basta tener dos puntos (, y) & (, y) que estén sobre la recta, la pendiente

Más detalles

Paint Otro de los accesorios que incorpora Windows 95 es Microsoft Paint, un sencillo programa de Dibujo.

Paint Otro de los accesorios que incorpora Windows 95 es Microsoft Paint, un sencillo programa de Dibujo. 5 ACCESORIOS II Paint Otro de los accesorios que incorpora Windows 95 es Microsoft Paint, un sencillo programa de Dibujo. Se trata un programa tipo Bitmap (Mapa de bits); esto quiere decir que, cuando

Más detalles

Guía de Matemática Segundo Medio

Guía de Matemática Segundo Medio Guía de Matemática Segundo Medio Aprendizaje Esperado:. Analizan la ecuación de la recta; establecen la dependencia entre las variables y la expresan gráfica y algebraicamente.. Identifican e interpretan

Más detalles

LA RECTA Y SUS ECUACIONES

LA RECTA Y SUS ECUACIONES UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos

Más detalles

INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES

INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES INTRODUCCIÓN DEL TEMA 2 ESPACIOS VECTORIALES Vamos a construir una serie de objetos sobre el plano z = 0. Al principio solamente tenemos dicho plano (en verde) Antes de empezar a construir algo, empezamos

Más detalles

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO

TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones

Más detalles

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares

Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea

Más detalles

TEMA IV TEORÍA DE GRAFOS

TEMA IV TEORÍA DE GRAFOS TEMA IV TEORÍA DE GRAFOS Poli Abascal Fuentes TEMA IV Teoría de grafos p. 1/? TEMA IV 4. TEORÍA DE GRAFOS 4.1 GRAFOS 4.1.1 Introducción 4.1.2 Definiciones básicas 4.1.3 Caminos y recorridos 4.1.4 Subgrafos,

Más detalles

4º Unir la última división (5) con el extremo B del segmento, y por las demás divisiones trazar paralelas a la recta anterior.

4º Unir la última división (5) con el extremo B del segmento, y por las demás divisiones trazar paralelas a la recta anterior. TEM 2: POLÍGONOS TEOREM DE THLES El Teorema de Thales sirve para dividir un segmento en partes iguales. Para ellos seguimos los siguientes pasos. Repite los pasos a la derecha. 1º Dibujar el segmento que

Más detalles

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27,

Cónicas. Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá. November 27, Cónicas Marcos Marvá Departamento de Física y Matemáticas, Universidad de Alcalá November 27, 2013 marcos.marva@uah.es Cómo definir una cónica Como intersección de un plano y un cono recto de doble hoja

Más detalles

Título de la lámina 1-

Título de la lámina 1- pellido pellido, Nombre 1- Empleando la escuadra y el cartabón rellena los tres espacios a continuación con paralelas a las direcciones dadas. Procura que la distancia entre las paralelas sea la misma

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (05-M4;Jun-B-4) Sea el plano π x + y z + 8 a) (5 puntos) Calcula el punto, P simétrico del punto (,,5 ) b) ( punto) Calcula la recta r, simétrica de la recta plano π P

Más detalles

Curso de AutoCAD 2010 Apunte Parte II

Curso de AutoCAD 2010 Apunte Parte II Comandos de dibujo 1. Línea (Line) Este comando construye un segmento entre dos posiciones que se indican con el mouse o por coordenadas. Puede ejecutarse desde: Menú Dibujo (Draw) Desde el botón adecuado

Más detalles

Apuntes de Dibujo Técnico

Apuntes de Dibujo Técnico APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva

New Jersey Center for Teaching and Learning. Iniciativa de Matemática Progresiva Slide 1 / 98 New Jersey Center for Teaching and Learning Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

TEMA 7 SISTEMA AXONOMETRICO

TEMA 7 SISTEMA AXONOMETRICO TEMA 7 SISTEMA AXONOMETRICO 1. AXONOMETRICO....2 2. FUNDAMENTOS Y DEFINICIONES....2 2.1 EJES Y PLANOS DE COORDENADAS....2 2.2 FUNDAMENTO DEL SISTEMA AXONOMETRICO....3 3. ESCALAS GRAFICAS DE REDUCCION....7

Más detalles

LAS CIENCIAS DE LA PLANIFICACIÓN

LAS CIENCIAS DE LA PLANIFICACIÓN LAS CIENCIAS DE LA PLANIFICACIÓN 5. EL PROBLEMA DEL VIAJANTE (PV) (The Traveling Salesman Problem TSP) Un problema como el de las vacaciones, pero vital para las empresas, es el problema del viajante (PV):

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

ELEMENTOS DE GEOMETRÍA

ELEMENTOS DE GEOMETRÍA ELEMENTOS DE GEOMETRÍA 1. Elementos geométricos básicos: punto, recta y plano. 2. Semirrectas y segmentos. 3. Ángulos. 3.1. Cómo se miden los ángulos? 3.2. Ángulos importantes. 3.3. Clasificación respecto

Más detalles

Tema 2: Figuras geométricas

Tema 2: Figuras geométricas Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy

Más detalles

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt

NIVELACIÓN MATEMÁTICA 2 AÑO Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt 1 Contenidos: Transformaciones Isométricas Prof. Juan Schuchhardt Introducción: Una transformación de una figura geométrica indica que, de alguna manera, ella es alterada o sometida a algún cambio. En

Más detalles