Ejercicios para resolver usando Mathematica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios para resolver usando Mathematica"

Transcripción

1 Ejercicios para resolver usando Mathematica 1. Calcúlese la derivada de la función y(x) = sen(e x2 ) 2. Determínese la segunda derivada de la función y(x) = e x sen(x) 3. Determínese dy y 2 = 4px x 2 + y 2 = a 2 y 3 3y + 2ax = 0 x 3 + y 3 = a 3 x 1/2 + y 1/2 = a 1/2 x 2 + y2 = 1 a 2 b 2 y 3 == x y x+y y = cos(x + y) cos(xy) = x ln x + e y/x = c x = y 4. Determínese dy (a cos t, b sen t) para las siguientes funciones implícitas: para las siguientes funciones en paramétricas: (a(t sin t), a(t cos t)) ( 3at 1+t 2, 3at2 1+t 2 ) (2t 1, t 3 ) ( t 2 + 1, t 1 t 2 +1 ) (e t, e 2t ) (a[ln tan t + cos t sen t], a[sen t + cos t]) 2 1

2 5. Calculese dy/ para la funcion dada de forma parametrica como (a[t sen t], a[1 cos t]), en el punto en el que y = a 6. Hallese dy/ en el origen de coordenadas para la funcion (t ln t, ln t t ) 7. Compruebese que la funcion dada parametricamente como x = 2t + 3t 2, y = t 2 + 2t 3 satisface la ecuacion y = ( ) 2 ( ) 3 dy dy Evalúese la integral 1 0 x 3 e x 1 9. Determínese la parte real e imaginaria de: 4 + i 2 + 3i 10. Expresad los números complejos siguientes en la forma p + iq, donde p y q son números reales con 17 cifras al menos: (3π + 7i)cos(37 o ) + (2 + 8i)e 3i Determinad el valor de H 4 (x) 2 e x2 donde H n (x) son poliniomios de Hermite. 12. Resolved la siguiente ecuación diferencial d 2 y 2 + 5xdy (1 x3 )y = 0 con y(0) = 0 y y (0) = 1. Determinad y(1,8) y representad y(x) con x comprendido entre 0 y 4. 2

3 13. Factorícense las expresiones: 14. Simplificad 15. Súmese: x 4 + 2x 3 3x 6 6t 3 + 9t 2 15t ax 2 + ay + bx 2 + by 2x 4 y 6 + 6x 2 y x 2 16 x + 4 x 2 3x 4 3 x 3 x + 4 x 2 + 2x Supongamos que las funciones f(t) y r(t) están relacionadas por la ecuación f(t) = dr(t) Salvo una constante aditiva, r(t) se expresa en términos de f(t) por r(t) = f(t) Determinad r(t) para el caso en que f(t) = 5 ln t e 3t 17. Supongamos que las funciones f(t) y r(t) están relacionadas por la ecuación f(t) = dr(t) Determínese r(t) para t f(t) = d2 + t 2 donde d es una constante. 18. Evalúese x 2 3

4 19. Evalúense las siguientes integrales y compruebese que derivando el resultado se recobra el integrando x a 3 + x 3 (x 2 + 1) 2 e 2x ln 2 (x x 2 ) sin x sinh x I n = I n = x x x 3 (1 + 2x2 ) 3 cos n x calculese I 0, I 1,, I 4 x n e x calculesei 0, I 1,, I 10 (x 2 + 2) 2 x 2 ln 1 x x arctan x 1 + x 2 ex + 1 x sinh 2 x sin 3 x 5 cos3 x sin(ωt) sin(ωt + ϕ) 4

5 cos x 2 cos x 3 sin x sin 2x sin 3x sin(x + π 4 ) sin x cos x 20. Encontrar el desarrollo en serie de potencias, hasta el término de orden x 8, para (1 + x 4 ) 1/3 21. Encontad la aproximación por serie de potencias en el entrono de x = π/3 para sec(x) hasta el término (x π/3) Determinad el límite cuando x de las expresiones siguientes: log(x a) log(2(x b) log(x c) + + (a b)(a c) (b c)(b a) (c a)(c b) 1 e x e (x x 2 ) 23. En una reacción bimolecular A + B M, α moléculas por litro de A y β moléculas por litro de B se combinan. Si x representa el número de moles por litro que han reaccionado después de un tiempo t, la velocidad de la reacción está dada por: = k(α x)(β x) donde k es una constante que mide la velocidad de la reacción. Para el caso α = β a)demostrad que x = α2 kt 1 + αkt b) Encontrad lím x(t) t 5

6 24. Resuélvase la siguiente ecuación diferencial: 25. Demostrar que: d 2 y 2 6dy + 13y = ex cosx b) secx cscx tanx cotx a) = tanx + cotx secx + cscx 2sen2x sen3x = (8sen 2 (x/2) + secx)senx cos(x) 26. Algunas curvas famosas (en paramétricas): Cicloide: cicloide[a, b](t) = (at b sen t, a b cos t) Lemniscata de Bernoulli: Cardioide: lemniscata[a, b](t) = ( ) a cos t a sen t cos t, 1 + sen 2 t 1 + sen 2 t cardioide[a](t) = (2a cos t(1 + cos t), 2asent(1 + cos t)) Cisoide de Diocles: La tractriz: cisoide[a](t) = tractriz[a](t) = a 0 ( ) 2at t, 2at t 2 ( ( ( ))) t sen t, cos t + log tan 2 Clotoide o espiral de Carnu: ( t ( ) u n+1 clotoide[n, a](t) = a sen du, n t 0 ( ) ) u n+1 cos du n + 1

7 Deltoide: deltoide[a](t) = (2a cos t(1 + cos t) a, 2a sen t(1 cos t)) Curvas de Lissajous: Caracol de Pascal: lissajous[n, d, a, b](t) = (a sen(nt + d), b sen t) limaco[a, b](t) = (2a cos t + b)(cos t, sen t) Representad esas curvas y comprobad la dependencia con los parámetros. 27. Una definición de la curvatura de una curva en paramétricas es: K = y (t)x (t) y (t)x (t) (x (t) 2 + y (t) 2 ) 3/2 Calculad y representad la curvatura de las curvas anteriores. 28. Otra definición de curvatura: K = (x (t), y (t)).j(x (t), y (t)) (x (t), y (t)) 3 Donde. representa el producto escalar de vectores y J es la llamada estructura compleja de R 2 definida como J(p1, p2) = ( p2, p1). Con esta nueva definición recalcúlese la curvatura de las curvas anteriores. 29. Representad la curva del ocho (lemniscata de Gerono). y determinad su curvatura. ocho(t) = (sen t, cos t sen t) 30. Determínese el valor medio de los cuadrados de los ocho primeros números enteros positivos. 31. Determinad la suma de la serie infinita , + 7

8 32. Determinese n k=1 k Obténgase la serie de potencias de sen x cos x en el entorno de x = 0 hasta el orden n. Dibujése la función sen x cos x conjuntamente con la aproximación por series para distintos valores de n y véase como cambia la región en la que la serie es una buena aproximación a la función. 34. El problema de crecimiento poblacional. Denotemos por p(t) la población de una especie en un determinado habitat y sea r(t,p)la diferencia entre la natalidad y la mortalidad, si esta población está aislada entonces dp = r(t, p)p(t) en el modelo más simple (ley de Malthus) se supone que r(t, p) es constante r(t, p) = a. Determinar la evolución de la población supuesto que en t = t 0 el número de individuos es de p(t 0 ). Cuando la población es muy grande aparece en el sistema una nueva fuerza competitiva entre individuos de la misma especie que luchan por el espacio vital, recurso naturales, etc, en este caso se tiene que añadir un nuevo termino que reduce el crecimiento ( 1837 Verhulst) dp = ap(t) bp(t)2 Determinar la evolución de la población como funcion de los parámetros a y b. Consideremos el caso de la población humana para la que se conoce que a = 0,029 y b = 2, , determinar la población de la tierra como función del tiempo (años) sabiendo que en 1965 la población de la tierra era de 3, En caso de que existan dos especies que compiten por los mismos recursos las ecuaciones que describen la evolucion de la poblacion de cada 8

9 una de las especies deben modificarse para tener en cuenta esta competencia. Si denominamos x(t) e y(t) a las poblaciones de cada especie, el termino de competencia se suele tomar de la forma cx(t)y(t) es decir, proporcional al numero de encuentros entre las dos especies. De acuerdo con este modelo las poblaciones vendran descritas por las ecuaciones diferenciales: = r 1 (K 1 x αy)x K 1 dy = r 2 K 2 (K 2 y βx)y Será posible encontrar soluciones estacionarias (es decir independientes del tiempo para x e y, y en caso afirmativo, cúales serían estas? Supongamos inicialmente que sólo tenemos la especie 1 cuya población es x(t), siendo los parámetros adecuados para su evolucion r 1 = 0,4, K 1 = 500. Siendo x(0) = 5, y(0) = 0 encuentrese x(t) y su valor límite para tiempos largos. Supongamos por el contrario que solamente tengamos especie 2, siendo sus parametros evolutivos r 2 = 0,6, K 2 = 500. Siendo x(0) = 0, y(0) = 500 encuentrese y(t) y su valor limite para tiempos largos. Supongamos ahora que tenemos ambas especies y que la influencia competitiva viene descrita por los valores α = 0,3, β = 0,3. Siendo x(0) = 5, y(0) = 5 encuentrense x(t) e y(t) y sus valores limite para tiempos largos. Supongamos que la influencia competitiva viene descrita por los valores α = 1,3, β = 1,3. Repitase el calculo anterior. Que ocurriría en el caso α = 0,3, β = 1,3? Y si α = 1,3, β = 0,3? 36. Dinamicas predador-presa Supongamos una población de presas, que en ausencia de predadores siguen la ley de Malthus, es decir tienen recursos ilimitados y por tanto su población puede aumentar exponencialmente. Sea r 1 su tasa de crecimiento. Por otro lado consideremos una poblacion de predadores, que en ausencia de presas carecen de recursos y por tanto se mueren de hambre. Sea r 2 su tasa de mortalidad. Cuando ambas poblaciones 9

10 coexisten la tasa de predacion es proporcinal al numero de encuentros y contribuye a disminuir la poblacion de presas y a aumentar la poblacion de predadores, con constantes de proporcionalidad c 1 y c 2 respectivamente. En estos supuestos, la evolucion del sistema predador-presa viene regida por las ecuaciones de Lotka-Volterra = r 1x c 1 xy dy = r 2y + c 2 xy Existirán soluciones estacionarias (independientes del tiempo) para x e y y en caso afirmativo, cuales serán éstas? Supongamos inicialmente ausencia de predadores. La evolucion de la poblacion de presas viene determinada por el parametro r 1 = 1. Suponiendo que tenemos x(0) = 2000 encuentrese x(t). Supongamos ausencia de presas, siendo r 2 = 1. Si y(0) = 200 calculese y(t). Veamos el caso de que existan ambas especies, con poblaciones iniciales x(0) = 2000, y(0) = 200 y unos parametros de predacion c 1 = 0,01, c 2 = 0,001 Calculense en este caso x(t) e y(t). Que tipo de comportamiento se observa? Que ocurre si se representa parametricamente la curva (x(t), y(t))? Como compara el resultado con la solucion estacionaria? Repetir el apartado anterior para otros valores iniciales de x(0), y(0). Estudiese qué ocurre si tenemos en cuenta que las presas tienen recursos limitados añadiendo un término de la forma 0,0001x(t) 2 a la ecuacion diferencial de evolucion de x(t), incluyendo la representación parametrica comentada en apartados anteriores. 37. Economistas y sociólogos han estudiado como un cambio tecnológico o una innovación se disemina en la industria, supongamos que en t = 0 en una comunidad de N industrias surge una innovación, llamemos p(t) al número de industrias que en el tiempo t han adoptado la innovación, la ecuación que se obtiene es una ecuación diferencial: dp = cp(t)(n p(t)) 10

11 Determinar la evolución temporal del número de industrias que adoptan la innovación como función de la constante c > Los tumores producidos por crecimientos desordenados de celulas enfermas tienen una evolución del volumen como función del tiempo que está regido por la ecuación donde λ y α son constantes. dv (t) = λe αt V (t) Determinar la evolución temporal como función de las constantes (positivas) λ y α 39. Los sistemas formados por masa-resote-medio amortiguador tienen aplicaciones muy diversas en la industria y la vida diaria. El movimiento de la masa (sobre la que no actúa fuerza externa al sistema) está regida por la ecuación m d2 y = ky cdy 2 donde k es la contante de restitución del muelle y c es una constante que da cuenta de la fuerza de rozamiento (proporcional a la velocidad) por efecto del medio en el que se mueve la masa (aire, aceite, agua, etc) Determinese el movimiento de una masa m = 1 para distintos valores de las constantes k y c 40. Cuando se lanza un proyectil en la atmósfera con un ángulo de disparo θ 0 sobre la horizontal, y en asuencia de rozamiento con el aire, la ecuación del movimiento es de sobra conocida, una parábola (tiro parbólico): y = tanθ gx2 /(v 2 0cos 2 (θ 0 ) Cuando se tiene en cuenta la resistencia del aire las ecuaciones no son resolubles analíticamente, en este caso, superpuesta a la fuerza de la gravedad aparece una fuerza de rozamiento que depende del cuadrado de la velocidad de la patícula: F = mkv v 11

12 donde k es una constante que es del orden de 5,210 3 m 1 Eligiendo como origen el punto de disparo, tenemos: v 0x = v 0 cos(θ 0 ) y,v 0y = v 0 sen(θ 0 ), donde v 0 es el módulo de la velocidad de partida. Las fuerzas: ( ) 2 F x = mkvv x = mk ( + ( ) 2 F y = mkv y = mk ( + por tanto las ecuaciones a resolver son d 2 x = k ( ) 2 ( + 2 d 2 y = k ( ) 2 ( + 2 ( dy ( dy ( dy ( ) ) 2 dy i ( ) ) ) 2 (dy ) mg ) ) 2 ( ) ) ) 2 (dy ) g Cálculese la trayectoria para distintos valores de la constante k y hagáse una animación en donde se vea como varía como función de k. Calculese para un valor fijo de v 0 y k, el alcance del disparo (valor de x para el cual y = 0) como función del ángulo de disparo θ 0 y representese graficamente. Comparar los resultados cuando k = 0 y k Calculese el area entre la funcion de Airy Ai(x) y el polinomio de Hermite H 3 (x). 42. Calculense los 3 primeros ceros (diferentes de cero) de la funcion de Bessel J 1 (x) y denominense z[1], z[2], z[3]. Calculese 1 0 x J 1 (z[i]x)j 1 (z[j]x) para i, j = 1, 2, 3 Compruebese que si i j la integral es cero (dentro de la precision de los calculos) y si i = j la integral es J 2 2 (z[i])/2 12

13 43. Definanse las funciones f n (x) = cos(n arc cos x). Dibujense f 3 (x), f 4 (x) y f 5 (x) para 1 x 1. Calculese el desarrollo en serie de potencias de f 3 (x) en torno a x = 0 hasta diversos ordenes. Comparese el resultado con el polinomio de Chebyshev de primera especie T 3 (x). Cómo compararias f 129 (x) con T 129 (x)? 44. Resuelvase la ecuacion diferencial (1 x 2 )y (x) 2xy (x) + n(n + 1)y(x) = 0 con las condiciones y(1) = 1, y( 1) = ( 1) n, para diversos valores enteros de n y comparese el resultado con los polinomios de Legendre P n (x) Como compararias la solucion de la ecuacion diferencial con el polinomio de Legendre para n = 129? 13

Problemas de Complementos de Matemáticas. Curso 01/02

Problemas de Complementos de Matemáticas. Curso 01/02 Problemas de Complementos de Matemáticas. Curso /2.- Resolver las E.D.O. lineales de primer orden siguientes y los problemas de condiciones x + 3x/t = 6t 2 x + 3x = 3t 2 e 3t t 4 x + 2t 3 x = tx + (tx

Más detalles

2.1.5 Teoremas sobre derivadas

2.1.5 Teoremas sobre derivadas si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la

Más detalles

ANALISIS MATEMATICO II Grupo Ciencias 2015

ANALISIS MATEMATICO II Grupo Ciencias 2015 ANALISIS MATEMATICO II Grupo Ciencias 05 Práctica : Geometría Analítica: Vectores, Rectas y Planos A. Vectores Hasta el 9 de marzo. Sean v = (0,, ) y w = (,, 4) dos vectores de IR 3. (a) Obtener el coseno

Más detalles

Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1

Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1 Profesor: Juan Carlos Fernández Morelos Ayudante: Luisa Márquez Rentería Tarea 1 Ecuaciones Diferenciales I Semestre 2014-1 1. Indicar el orden de las siguientes ecuaciones e indicar si son lineales o

Más detalles

Tarea 1 - Vectorial 201420

Tarea 1 - Vectorial 201420 Tarea - Vectorial 040. Part :. - 3... Hacer parametrización de la curva de intersección del cilindro x + y = 6 y el plano x + z = 5. Encontrar las coordenadas de los puntos de la curva donde la curvatura

Más detalles

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x).

Si f es derivable, definimos al diferencial de una función (df), como el producto de la derivada de f por un incremento de la variable ( x). 2 Integrales Indefinidas y Métodos de Integración La integral Indefinida o antiderivada es el nombre que recibe la operación inversa a la derivada. Es decir, dada una función F aquella consiste en encontrar

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución:

Problemas resueltos. La integral de línea. 1. Halle la longitud de la curva dada por la parametrización. Solución: Problemas resueltos 1. Halle la longitud de la curva dada por la parametrización α(t) t ı + 4 3 t3/ j + 1 t k, t [, ]. α (t) (1, t 1/, 1 ), t [, ]. La curva α es de clase C 1 y, por tanto, es rectificable.

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

1. Derivadas parciales

1. Derivadas parciales Análisis Matemático II. Curso 2009/2010. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 3. ABLES DIFERENCIACIÓN DE FUNCIONES DE VARIAS VARI- 1. Derivadas parciales Para

Más detalles

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1).

(a) El triángulo dado se descompone en tres segmentos de recta que parametrizamos de la siguiente forma: (0 t 1); y = 0. { x = 1 t y = t. (0 t 1). INTEGRALES DE LÍNEA. 15. alcular las siguientes integrales: (a) (x + y) ds donde es el borde del triángulo con vértices (, ), (1, ), (, 1). (b) x + y ds donde es la circunferencia x + y ax (a > ). (a)

Más detalles

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π]

Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo. (2Cos(2w) 1)(2Sen(3w) 2) = 0. hallar β en el intervalo [0, 2π] Departamento de Matematicas UNIVERSIDAD DE LOS ANDES. Precálculo Parcial III 15 % Estudiante: Tiempo: 1 h. Fecha: 1 Resolver la ecuación para w en 0 w 2π. (2Cos(2w) 1)(2Sen(3w) 2) = 0 2 Hallar los ceros

Más detalles

CAPÍTULO III. FUNCIONES

CAPÍTULO III. FUNCIONES CAPÍTULO III LÍMITES DE FUNCIONES SECCIONES A Definición de límite y propiedades básicas B Infinitésimos Infinitésimos equivalentes C Límites infinitos Asíntotas D Ejercicios propuestos 85 A DEFINICIÓN

Más detalles

Funciones hiperbólicas inversas (19.09.2012)

Funciones hiperbólicas inversas (19.09.2012) Funciones hiperbólicas inversas 9.09.0 a Argumento seno hiperbólico. y = arg shx = x = senh y = ey e y = x = e y e y. Multiplicando por e y, xe y = e y = e y xe y = 0, de donde e y = x ± x +. Para el signo

Más detalles

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.

a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'. .- Dada la función: f(x) = x 9 x a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'..a.- Lo primero que hacemos es buscar el dominio,

Más detalles

Polinomios de Taylor.

Polinomios de Taylor. Tema 7 Polinomios de Taylor. 7.1 Polinomios de Taylor. Definición 7.1 Recibe el nombre de polinomio de Taylor de grado n para la función f en el punto a, denotado por P n,a, el polinomio: P n,a (x) = f(a)

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Integrales y ejemplos de aplicación

Integrales y ejemplos de aplicación Integrales y ejemplos de aplicación I. PROPÓSITO DE ESTOS APUNTES Estas notas tienen como finalidad darle al lector una breve introducción a la noción de integral. De ninguna manera se pretende seguir

Más detalles

2. Vector tangente y gráficas en coordenadas polares.

2. Vector tangente y gráficas en coordenadas polares. GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones

Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA. Funciones Universidad de Costa Rica Escuela de Matemática CONARE-PROYECTO RAMA Funciones José R. Jiménez F. Temas de pre-cálculo I ciclo 007 Funciones 1 Índice 1. Funciones 3 1.1. Introducción...................................

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

Funciones de varias variables reales

Funciones de varias variables reales Capítulo 6 Funciones de varias variables reales 6.1. Introducción En muchas situaciones habituales aparecen funciones de dos o más variables, por ejemplo: w = F D (Trabajo realizado por una fuerza) V =

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Análisis Dinámico: Integración

Análisis Dinámico: Integración Análisis Dinámico: Integración Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: Integración 1 / 57 Integración indefinida

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010

Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010 Parcial 1 DE CÁLCULO DIFERENCIAL Universidad de los Andes 31 de Agosto de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa o al fraude en las pruebas académicas

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente.

S n = 3n + 2 n + 4. ln(1 + a n ) (3) Decidir, para cada una de las siguientes series, si es convergente o divergente. CÁLCULO HOJA 1 INGENIERO TÉCNICO EN INFORMÁTICA DE SISTEMAS GRUPO DE MAÑANA, MÓSTOLES, 2008-09 (1) De la serie a n se sabe que la sucesión de sumas parciales viene dada por: S n = 3n + 2 n + 4. Encontrar

Más detalles

Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas

Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Modelos estadísticos aplicados en administración de negocios que generan ventajas competitivas Videoconferencias semana de estadística Universidad Latina, Campus Heredia Costa Rica Universidad del Valle

Más detalles

Ecuaciones Diferenciales Ordinarias de Primer Orden

Ecuaciones Diferenciales Ordinarias de Primer Orden Tema 2 Ecuaciones Diferenciales Ordinarias de Primer Orden Introducción Estudiaremos en este tema varios tipos de E.D.O. de primer orden que es posible resolver de forma exacta. 2.1 Ecuaciones en variables

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de

5 Demostrar cada una de las siguientes afirmaciones empleando la definición de Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N

Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. n N, ( a 0 ) m a. m Z, n N EXPONENCIALES Y LOGARITMOS FUNCIÓN EXPONENCIAL Hasta ahora hemos estudiado potencias pertenecientes a distintos campos numéricos. Potencias de eponente natural: a n = a. a. a... a n N n veces Potencias

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS SOLUCIONES HOJA 5: Optimización 5-1. Hallar los puntos críticos de las siguiente funciones y clasificarlos: a fx, y = x y + xy.

Más detalles

El concepto de integral con aplicaciones sencillas

El concepto de integral con aplicaciones sencillas El concepto de integral con aplicaciones sencillas Eliseo Martínez Marzo del 24 Abstract Este artículo trata de ejemplos sencillos del concepto de integral con aplicaciones a la Física, la Teoría de la

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

1. Funciones de varias variables

1. Funciones de varias variables Análisis Matemático II. Curso 2008/2009. Diplomatura en Estadística/Ing. Téc. en Inf. de Gestión. Universidad de Jaén TEMA 2: CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES 1. Funciones de varias variables

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

Cinemática en una dimensión

Cinemática en una dimensión Capítulo 2. Cinemática en una dimensión La meánica, la más antiüa de las ciencias físicas es el estudio del movimiento de los cuerpos. 1. Distinción entre cinemática y dinámica Cuando describimos el mvimiento

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 1: CAMPO GRAVITATORIO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0.

Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. NÚMEROS COMPLEJOS. INTRO. ( I ) Como ya se sabe, existen algunas ecuaciones de segundo grado que no tienen ninguna solución real. Tal es el caso de la ecuación x2 + 1 = 0. Si bien esto no era un problema

Más detalles

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim

Las Funciones Analíticas. f (z 0 + h) f (z 0 ) lim. h=z z 0. = lim Las Funciones Analíticas 1 Las Funciones Analíticas Definición 12.1 (Derivada de una función compleja). Sea D C un conjunto abierto. Sea z 0 un punto fijo en D y sea f una función compleja, f : D C C.

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

Complementos de matemáticas. Curso 2004-2005

Complementos de matemáticas. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería Técnica Industrial Complementos de matemáticas. Curso 004-005 Colección de ejercicios del tema 1 Las soluciones aparecen en color azul, y si disponéis de la posibilidad

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

PRUEBA DE ADMISIÓN 2012 FACULTAD DE CIENCIAS Y TECNOLOGÍA

PRUEBA DE ADMISIÓN 2012 FACULTAD DE CIENCIAS Y TECNOLOGÍA PRUEBA DE ADMISIÓN 01 Nº Prueba I. Datos generales del postulante: Nombre completo: Edad: Colegio de procedencia: Nº Solicitud: Dirección: Nº Tel/ Cel.: Correo Electrónico E-mail: Carrera de interés: (Puede

Más detalles

Ejercicios de Modelos de Probabilidad

Ejercicios de Modelos de Probabilidad Ejercicios de Modelos de Probabilidad Elisa M. Molanes-López, Depto. Estadística, UC3M Binomial, Poisson, Exponencial y Uniforme Ejercicio. Se dispone de un sistema formado por dos componentes similares

Más detalles

Estudio de ceros de ecuaciones funcionales

Estudio de ceros de ecuaciones funcionales Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)

Más detalles

Familiarizarse con las propiedades y las principales técnicas de integración.

Familiarizarse con las propiedades y las principales técnicas de integración. Capítulo 7 Integración Objetivos Familiarizarse con las propiedades y las principales técnicas de integración. 7.1. Definición y propiedades Sea f(x) una función real. Una primitiva o integral indefinida

Más detalles

(Ec.1) 2α + β = b (Ec.4) (Ec.3)

(Ec.1) 2α + β = b (Ec.4) (Ec.3) Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

CALCULO 11-M-1 Primera Parte

CALCULO 11-M-1 Primera Parte CALCULO 11-M-1 Primera Parte Duración 1h 4m Ejercicio 1 (1. puntos) Una isla A se encuentra a 3 kilómetros del punto más próximo B de una costa rectilínea. En la misma costa, a 1 kilómetros de B se encuentra

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Función exponencial y Logaritmos

Función exponencial y Logaritmos Eje temático: Álgebra y funciones Contenidos: Función exponencial y Logaritmos Nivel: 4 Medio Función exponencial y Logaritmos 1. Funciones exponenciales Existen numerosos fenómenos que se rigen por leyes

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Igualdad Ecuaciones de primer y segundo grado Una igualdad se compone de dos expresiones unidas por el signo igual. 2x + 3 = 5x 2 Una igualdad puede ser: Falsa: 2x + 1 = 2 (x + 1) 2x + 1 = 2x + 2 1 2.

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Clase 15 Espacios vectoriales Álgebra Lineal

Clase 15 Espacios vectoriales Álgebra Lineal Espacios vectoriales Clase 5 Espacios vectoriales Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia En esta sección estudiaremos uno de los conceptos

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Hoja de Prácticas tema 3: Máximos y Mínimos

Hoja de Prácticas tema 3: Máximos y Mínimos Cálculo II EPS (Grado TICS) Curso 2012-2013 Hoja de Prácticas tema 3: Máximos y Mínimos 1. Hallar los puntos críticos de las funciones dadas y determinar cuáles son máximos locales, mínimos locales o puntos

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles