PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

Tamaño: px
Comenzar la demostración a partir de la página:

Download "PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE"

Transcripción

1 PROBLEMS RESUELOS SOBRE MOVIMIENO RMÓNICO SIMPLE L ecución de un M..S. e ( = co,, en l que e l elongción en y en. Cuále on l mpliud, l frecuenci y el período de ee movimieno? En un M..S. l elongción en e ( =,4 co ( /, iendo el iempo en. Clculr l elongción, velocidd y celerción del móvil en lo inne = y = /. L celerción (en m/ de un M..S. en función de l elongción (en m = 5. Eprer e celerción en función del iempo biendo que l mpliud de l vibrción e de,5. Conidéree nul l conne de fe. 4 L velocidd en m/ de un M..S. e v( =, en (4 +, donde e el iempo en. Cuále on l frecuenci y l mpliud de ee movimieno? Ecribir l epreión de u elongción en función del iempo. 5 Clculr l velocidd y celerción máim del M..S. cuy ecución e ( = 5 co (4 + /, en l que e l elongción en y el iempo en. L elongción en de un M..S. e = 4 co, donde e el iempo en. Clculr l celerción en el inne en que l elongción e de. 7 Un prícul e deplz con M..S. de mpliud y frecuenci 8 Hz. Clculr u velocidd y u celerción en el inne en que iene un elongción de mm. 8 Qué mpliud y qué período debe ener un M..S. pr que l velocidd máim e de / y l celerción máim de m/? Eprer l elongción de ee movimieno en función del iempo. 9 En un M..S., cundo l elongción e nul, l velocidd e de m/ y, en el inne en que l elongción e de 5, l velocidd e nul. Cuál e el período del movimieno? Un M..S. iene un frecuenci de 5 Hz y un mpliud de 8 mm. En el inne =, el móvil e encuenr en el cenro de l vibrción y e deplz en enido poiivo. Eprer u elongción, u velocidd y u celerción como funcione del iempo. Cuál e l máim fuerz que cú obre un cuerpo de m 5 g cundo vibr con un frecuenci de 5 Hz y un mpliud de mm? Se hce ocilr vericlmene un cuerpo de m 8 g que eá colgdo de un muelle en hélice de conne eláic N/m. Si l mpliud de l ocilción e de, cuál erá l epreión de u elongción en función del iempo? l upender un cuerpo de m g del eremo de un muelle que eá colgdo vericlmene, ée e lrg. Si e ir del cuerpo 5 hci bjo y e uel, comienz ocilr. Clculr el período del movimieno. Cuál erá l máim velocidd que lcnzrá?

2 SOLUCIONES Sbemo que l elongción de un m... eá dd por un ecución del ipo ( co( unque pudier er igulmene un función eno. í que brí comprr con l ecución dd, pr obener inmedimene lo reuldo: ( co rd/ rd En cuno l periodo y l frecuenci, y que, erí n imple como 5 5 Hz Si l ecución de elongcione e (,4 co(, l de velocidd y celerción e obienen por imple derivción: v ( ( d( d dv( d 4 4 en( co( / / y ólo hbrí que url en lo inne propueo, = y = /. En el iempo =, l fe del movimieno vle y en el iempo = /, l fe e (. de form que, l iempo =, lo vlore pedido on rd rd (,4 co(, ( v ( 4 en(.88 / ( ( 4 co( 97,9 / ( Enre or co, hy que nor que l poición en ee momeno eá mid de ino enre el cenro de equilibrio y l mpliud (, e l elongción l mpliud e,4, mienr que l velocidd de,88 / no e de ningun mner l mid de l velocidd máim (de ±,57 /, como e fácil de ver. Qué comenrio pueden hcere obre eo? Vemo hor lo vlore de elongción, velocidd y celerción l iempo / : (,4 co,5 (4 v ( 4 en,8 / (5

3 ( 4 co 4,89 / ( de modo que, en ee momeno, l velocidd eá dirigid en enido negivo y vle l mid del vlor máimo (±,57 /, como y e hizo nor. Eo permie reponder l pregun hech neriormene: l velocidd del móvil lcnz u vlor máimo (,57 / cundo p por el cenro de l ocilcione ( =, y v diminuyendo cundo e deplz hci el eremo de l ocilción (e en =,4, e en =,4 pero no lo hce de form linel, y que l celerción e v hciendo má grnde medid que el móvil e cerc l eremo. En or plbr, e pierde l myor pre de l velocidd cundo e eá y cerc del eremo de l ryecori: eo puede comprobre mirndo con ención lo vlore obenido en lo reuldo ( (. enemo = 5, con medido en m y en m/. Como e be, en un m... l ecución fundmenl e de form que reul evidene que 5 ( co( 5 rd/ De oro ldo, l ecucione emporle de elongción, velocidd y celerción on del ipo ( v( ( en( co( donde =, l como e dice en el enuncido. Finlmene, conocemo mbién el vlor de l mpliud =,5 =,5 m í como l pulción = rd/, de form que ólo hy que ecribir ( donde e mide en y e mide en m/. 4 L velocidd del m... que no proponen e v (, en en(,5.5 en (4,4 en y de e ecución debemo obener, por imple comprción con l ecución eóric de l velocidd en un m..., l conne del movimieno, en priculr el período y l frecuenci. Podemo prir de l ecucione de un m... que plnemo coninución: ( v( ( co( en( en l que, como puede vere, hemo udo un función coeno en l elongción ( pr que, de ee modo, prezc l función eno en l velocidd, l como ucede en l función del enuncido. hor, comprndo l egund de e ecucione con l velocidd del enuncido, enemo l iguiene idenificcione inmedi:, 4 rd m / rd/ co(, 4,5 m de l cule, fácilmene, coneguimo hor el período y l frecuenci: 4 v,5 Hz m/

4 Y qued úniene l función elongción iempo. Conocemo l mpliud, l pulción y l fe inicil, de modo que fl ólo ecribir: ( co(,5co(4,5co (4 m 5 Si l elongción como función del iempo eá dd por ( enonce e inmedio idenificr 5co(4 5 4 rd/ rd de mner que lo vlore máimo de l velocidd y l celerción on muy encillo: m v m (4 8,8 / 789,57 / y no prece precio decir mucho má, lvo recordr quizá que lo vlore máimo de l velocidd e ienen cd vez que el móvil p por el cenro de l ocilcione (por =, y u igno depende que el móvil pe por hí moviéndoe en un enido u oro. En bio, lo vlore máimo de l celerción e ienen en lo eremo de l ocilción, cundo l elongción e igul l mpliud (e decir, = = 5, y ienen igno conrrio l de, de cuerdo l ecución fundmenl =. l drno l elongción: 4 co no eán ofreciendo l mpliud (vle 4, como e fácil de ver y l pulción, cuyo vlor e = rd/. Por oro ldo, l ecución fundmenl de un m... e, como e be, l que relcion elongción y celerción del móvil: donde, en nuero co, = = rd /. En conecuenci, podemo ecribir y, pr =, erá. / m / / 7 Siendo l frecuenci = 8 Hz, e muy encillo obener l pulción (o frecuenci ngulr, como mbién e l conoce: rd/ y hor debemo recordr l relción eiene enre velocidd y elongción del móvil en un M..S.: v de mner que, conociendo = y = rd/, e inmedio verigur l velocidd pr culquier elongción. Pr =, endremo: v,.,8 4, / Y, en lo que repec l celerción, brá recordr l ecución fundmenl de un M..S.:

5 donde ólo hy que uiuir el vlor de l elongción, :., 55,95 / 5, m / 8 Qué mpliud y qué período debe ener un M..S. pr que l velocidd máim e de / y l celerción máim de m/? Eprer l elongción de ee movimieno en función del iempo. Si l velocidd máim e de /, enonce bemo que y i l celerción máim e de m/, enonce e que /, m/ ( m / ( í que brí dividir l iguldde ( y ( pr ener fácilmene y. Primero : y hor, meiendo en ( o en (: /, 4 rd/ / 4 rd/,75 Enonce podemo ecribir l ecución de elongcione, que erí del ipo ( = en ( +, implemene uiuyendo lo vlore obenido. Quedrá: (,75 en(4 Debe obervre que l fe inicil qued indeermind, pueo que no podemo clculrl con lo do diponible. Eo no ignific, in embrgo, que no omemo en cuen u eienci. 9 L elongción e nul en un M...S. cd vez que el móvil p por el cenro de equilibrio, e decir, =. Como bemo, en l momeno l velocidd debe ener u máimo vlor, ±. En conecuenci, bemo que el vlor m/ que indic el enuncido e el vlor máimo de l velocidd, omdo con igno poiivo, e decir, cundo el móvil e deplz en el enido poiivo del eje. Podemo ecribir, conecuenemene = m/ Por oro ldo, cundo l velocidd e nul el móvil endrá que er en un eremo de u ocilción, e decir, l elongción erá igul l mpliud en ee inne: = 5 =,5 m De l do iguldde e depej inmedimene, dividiéndol miembro miembro: y el período e hor inmedio, recordndo : m,5 m rd/,4

6 Ecribiendo l elongción de un M..S. en érmino de ( en( l como hemo hecho nooro, decir que l iempo = el móvil e hll en el origen y moviéndoe en enido poiivo ignific que l fe inicil e nul (o vle un número enero de vece, lo que viene er lo mimo. Por lo no, l ecución de elongcione quedrí ( en y, como bemo que = 8 mm y = 5 Hz (de modo que = = rd/, l ecucione de elongción, velocidd y celerción quedrán ( v( (,8 en d( d dv( d 8 8 co en / / con lo que el problem erí reuelo. provechremo, in embrgo, pr morr de nuevo que l ecucione de elongción pueden ecribire indiinmene emplendo eno o coeno en u formulción: en efeco, i ecribiéemo l elongción del M..S. como ( co( enonce l condicione inicile de elongción nul y velocidd poiiv l iempo = requieren que ome el vlor / rd (lo cul no e ino un modo de decir que l función eno eá rerd / rd repeco l función coeno. L repue lerniv l problem erí, enonce: ( v( (,8 co( d( d dv( d 8 8 en( co( / / donde, como e fácil de comprobr, lo vlore que e obienen pr culquier vlor de iempo, en priculr pr el inne inicil =, on eene lo mimo que en l ecucione ecri má rrib. Como e be, l fuerz que debe er plicd obre un cuerpo cundo ee derroll un M..S. e del ipo eláico F K ( donde e l dinci del cuerpo l cenro de l ocilcione y K l conne eláic correpondiene, relciond con l m m del cuerpo y l pulción del movimieno egún En nuero co, y que l frecuenci e conocid, e inmedio obener : K m 5 rd/ y, coniguienemene, K m,5.(5,7 N / m Y que bemo mbién el vlor de l máim elongción (mpliud = mm, podemo implemene uiuir en (, dndo el máimo vlor poible y obeniendo el máimo vlor de l fuerz obre el cuerpo. Precindimo, en odo co, del igno de l fuerz y repondemo con u máimo vlor boluo:

7 F má,7 N /m.. m,47 N En ee co conocemo direene l conne eláic de recuperción del reore K = N/m y l m del cuerpo, m =,8 kg, de form que reulrá encillo obener, recordndo que K = m : K m,8 5 rd/ con lo cul, y conociendo l elongción =, e inmedio ecribir l ecución pedid: ( = en (5 + donde l conne de fe inicil,, erí indeermind por fl de do cerc de l condicione inicile de l ocilción. Hy que empezr por eplicr cómo upendemo el cuerpo del reore: lo coloo en el eremo libre y, ujeándolo con l mno, lo dejmo bjr uvemene e impidiendo que gne velocidd, h que e lcnz l iución de equilibrio en l que el peo del cuerpo y l fuerz con que el reore ir de él hci rrib eán iguld. L figur muer cómo el reore eá lrgdo y cuál debe er el equilibrio de fuerz l ecribir e iguldd ommo el vlor boluo de mb fuerz pr eigir que midn lo mimo. Cundo el iem e bndon en e poición, qued en equilibrio y el cuerpo en repoo h que e deforme el reore 5 má, como pide el enuncido. Enonce e eblece el M..S. con mpliud de 5 y con el cenro de ocilcione en el lugr en que e lcnzó el equilibrio enre peo y fuerz de recuperción del reore (no en el que correponde l longiud nurl del muelle. El equilibrio de fuerz ne de inroducir l deformción

Guía de Movimiento Rectilíneo Uniformemente Variado

Guía de Movimiento Rectilíneo Uniformemente Variado Experienci demori DEPARTAMENTO DE FÍSICA Guí de Moimieno Recilíneo Uniformemene Vrido 1) Ver lo ideo que e encuenrn en lo iguiene link pr poder reponder l pregun que e encuenrn coninución hp://www.youube.com/wch?=lmfbwzjyml0

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT DE CAÍDA LIBRE. MVIMIENT BIDIMENSINAL CAIDA LIBRE GUIA DE TRABAJ CLASE PRÁCTICA 4.

Más detalles

1. CINEMÁTICA DE LA PARTÍCULA

1. CINEMÁTICA DE LA PARTÍCULA . CINEMÁTICA DE LA PARTÍCULA. Moimieno recilíneo.. Poición en función del iempo. L poición de un prícul que decribe un líne rec qued definid medine l epreión = / 9 +, donde i eá en, reul en m. Deermine:

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moviiento ociltorio Moviiento rónico iple (MAS) Cineátic IES L Mgdlen. Avilé. Aturi Se dice que un prtícul ocil cundo tiene un oviiento de vivén repecto de u poición de equilibrio, de for tl que el oviiento

Más detalles

3.5.1 Trasformada de Laplace de la función escalón unitario

3.5.1 Trasformada de Laplace de la función escalón unitario .5. Trformd de Lplce de l función eclón unirio 0.5. Trformd de Lplce de l función eclón unirio Función Eclón Unirio Tmbién llmd función lo unidd de Heviide, y con frecuenci e uiliz en pliccione que rn

Más detalles

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática

Movimiento oscilatorio Movimiento armónico simple (MAS) Cinemática Moiiento ociltorio Moiiento rónico iple (MAS) Cineátic IES L Mgdlen. Ailé. Aturi Se dice que un prtícul ocil cundo tiene un oiiento de ién repecto de u poición de equilibrio, de for tl que el oiiento e

Más detalles

CINEMÁTICA DE UNA PARTÍCULA

CINEMÁTICA DE UNA PARTÍCULA Cpíulo IX CINEMÁTICA DE UNA PARTÍCULA 9.1 INTRODUCCIÓN L Cinemáic e ocup del movimieno de lo cuepo in conide l cu que oiginn dicho movimieno. E deci, eudiemo el movimieno de lo cuepo o pícul in conide

Más detalles

1º) Si sobre un cuerpo no actúa ninguna fuerza, a qué aceleración está sometido?. Solución: 0 m/s 2

1º) Si sobre un cuerpo no actúa ninguna fuerza, a qué aceleración está sometido?. Solución: 0 m/s 2 DINAMICA º) Si obre un cuerpo no cú ningun uerz, qué celerción eá oeido?. Solución: / Por l º Ley de Newon: Si no cú ningun uerz, L únic ner de que un produco e cero e que lguno de lo do uliplicndo e cero.

Más detalles

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar:

TEMA 4: GEOMETRÍA: RECTAS Y PLANOS Para empezar: Ceno Concedo Pl Mde Mol nº 86- MADRID TEMA GEOMETRÍA RECTAS Y PLANOS P empe. Ddo lo puno A() B(8) hll ) L coodend de lo vecoe fijo AB BA b) Do puno C D le que CD e equipolene AB. c) El eemo F de un veco

Más detalles

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL

SOSTENIBILIDAD DE UNA POLÍTICA FISCAL 1 SOSTENIBILIDAD DE UNA POLÍTICA FISCAL Definición de un políic fiscl sosenible El concepo de políic fiscl sosenible no cep un definición precis. Sin embrgo, un definición generl (unque lgo rivil) es que

Más detalles

TEST. Cinemática Respecto al espacio recorrido en el M.R.U.V. podemos afirmar:

TEST. Cinemática Respecto al espacio recorrido en el M.R.U.V. podemos afirmar: Cineáic TEST.- Siepre que l celerción iene el io enido de l velocidd el oviieno e celerdo. Deplzieno o ryecori e lo io. Siepre que el deplzieno y l celerción ienen l i dirección, el oviieno e celerdo.

Más detalles

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión).

Examen de Física-1, 1 del Grado en Ingeniería Química Examen final. Septiembre de 2012 Cuestiones (Un punto por cuestión). Exmen de Físic-1, 1 del Grdo en Ingenierí Químic Exmen finl. Sepiembre de 1 Cuesiones (Un puno por cuesión). Cuesión 1 (Primer prcil): Un rineo se deliz por un superficie horizonl cubier de nieve con un

Más detalles

Ecuaciones Integradas de Velocidad

Ecuaciones Integradas de Velocidad Químic Fíic I Velocidd de Rección Ecucione Inegrd de Velocidd Reccione de Primer Orden e Pr un rección del io P, l ecución diferencil de velocidd d d k k (donde k k ). Inegrndo e oiene d d [ ] d k d k.

Más detalles

1.1. Respuestas a los ejercicios sobre MAS

1.1. Respuestas a los ejercicios sobre MAS .. Respuests los ejercicios sobre MAS Sbeos que l elongción de un..s. está dd por un ecución del tipo A cos ( t unque pudier ser igulente un función seno. Así que bstrí coprr con l ecución dd, pr obtener

Más detalles

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano)

PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEMBRE (RESUELTOS por Antonio Menguiano) I.E.S. CASTELAR BADAJOZ PRUEBA DE ACCESO (LOGSE) UNIVERSIDAD DE VALENCIA SEPTIEBRE (RESUELTOS por Anonio enguino) ATEÁTICAS II Tiempo máimo: hors Se elegirá el Ejercicio A o el B, del que sólo se hrán

Más detalles

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4.

6.6 Aplicaciones 403 } { 10 si t < 2 0 si t Œ; 2/ ; con x.0/ D x 0.0/ D 0: 10e. 5e 2s s.s 2 C 2s C 5/ 5e s s.s 2 C 2s C 5/ : D 12.s C 1/ 2 C 4. 6.6 Aplicacione 403 6.6 Aplicacione Ejemplo 6.6. Conideremo un iema maa-reore con m kg, c 4 Nm/ y k 0 N/m. Supongamo que el iema eá inicialmene en repoo y en equilibrio por lo cual x.0/ x 0.0/ 0 y que

Más detalles

EJERCICIOS DE DINÁMICA

EJERCICIOS DE DINÁMICA EJERCICIOS DE DIÁMICA 1. Dd un cuerd cpz de oporr un fuerz áx de 00, cuál erá l celercón áx que e podrá councr con ell un de 10 kg cundo e encuenr obre un plno horzonl n rozeno? Sol: ) 0. En un plno horzonl

Más detalles

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y

ˆ ˆ. FÍSICA 100 CERTAMEN # 2 Forma R 12 de junio de La pirámide de la figura está definida por los vectores a, b y FÍSICA 1 CERAMEN # Form R 1 de junio de 1 A. AERNO A. MAERNO NOMBRE ROL USM - Si su rol comienz con 9 coloque 9 ESE CERAMEN CONSA DE REGUNAS EN 8 ÁGINAS. IEMO: 15 MINUOS SIN CALCULADORA. SIN ELÉFONO CELULAR

Más detalles

EJERCICIOS DE CINEMÁTICA PARA REPASAR

EJERCICIOS DE CINEMÁTICA PARA REPASAR EJERCICIOS DE CINEMÁTICA PARA REPASAR 1. L poición de un óvil, que igue un tryectori rectilíne, qued deterind por l ecución x = 5 + t, en l que tod l gnitude etán expred en el S.I. ) Arrnc el óvil dede

Más detalles

Sistemas de Comunicación. Clase 11: Modulación Analógica de Pulsos

Sistemas de Comunicación. Clase 11: Modulación Analógica de Pulsos Siem de Comunicción Cle 11: Modulción Anlógic de Pulo Objeivo Muereo no idel Modulción PAM mpliud nlógic y digil PDM durción y PPM poición Muereo Idel Señl de ncho de bnd inio W Muer equiepcid X X X0 S

Más detalles

Determinantes y matrices

Determinantes y matrices emáics SS Deerminnes José rí rínez edino Deerminnes mrices. Dds ls mrices:, Hll l invers de, l mriz l que. ; ; djun de De. lcul l mriz invers de l mriz L mriz invers viene dd por, siendo l mriz de los

Más detalles

CINEMÁTICA - EJERCICIOS

CINEMÁTICA - EJERCICIOS Dpo. Fíic y Quíic CINEMÁTICA - EJERCICIOS Un cicli d 5 uel cople un elódroo. L dinci recorrid en cd uel e 75. Hllr el epcio recorrido y el deplzieno ol del cicli. 3 5 Si l expreo en k/h erá: / El epcio

Más detalles

t el espacio recorrido por los dos coches es el mismo t t 300; t 20s (20 10) 600m

t el espacio recorrido por los dos coches es el mismo t t 300; t 20s (20 10) 600m 0. Un cuerpo pre del reposo y se muee con celerción consne. En un momeno ddo iene un elocidd de 9,4 m/s, y 48,8 meros más lejos lle un elocidd de 5, m/s. Clcul: ) L celerción. b) El iempo empledo en recorrer

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012

ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 ESCUELA SUPERIOR POLITECNICA DEL LITORAL INSTITUTO DE CIENCIAS FISICAS VERSION 1 PRIMERA EVALUACION CURSO NIVEL CERO B VERANO 2012 Nombre Prlelo. 16 de Julio de 2012 CADA UNO DE LOS TEMAS VALE 3.182 PUNTOS.

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada Jun nonio González o Proesor de emáics del Colegio Jun XIII Zidín de Grnd ITEGRCIÓ ITEGRES IDEFIIDS ÉTODOS DE ITEGRCIÓ PRIITIV DE U FUCIÓ ITEGR IDEFIID Sen y F dos unciones reles deinids en un mismo dominio

Más detalles

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio

a) en vertical el movimiento es uniforme 400 t 40s b) en ese tiempo, en horizontal e v t 320m c) el ángulo, respecto a la vertical es v v rio 0. Ls gus de un río de 400 m de nchur se desplzn con un elocidd de 8 m/s. Un brc cruz el río de orill orill, mneniéndose perpendiculr l corriene. L brc se muee con un elocidd consne de 0 m/s. Clculr: )

Más detalles

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las

CAPÍTULO 9. INTEGRALES IMPROPIAS 9.1. Límites de integración infinitos 9.2. Integrales con integrando que tiende a infinito 9.3. Observaciones a las CAPÍTULO 9. INTEGRALES IMPROPIAS 9.. Límies de inegrción infinios 9.. Inegrles con inegrndo que iende infinio 9.. Oservciones ls inegrles impropis Cpíulo 9 Inegrles impropis f ( ) f ( ) f f ( ) () f()

Más detalles

EXAMEN DE MATEMÁTICAS II (Recuperación)

EXAMEN DE MATEMÁTICAS II (Recuperación) º Bchillero Ciencis XN D TÁTICS II Recuperción) ÁLGBR. ), punos) Clsific en función del práero R, el sise de ecuciones: b) puno) Resuélvelo pr, si es posible.. Se un ri cudrd de orden. Si el deerinne de

Más detalles

PRÁCTICA 3 LEYES DE NEWTON

PRÁCTICA 3 LEYES DE NEWTON Fundmenos Físicos de l Inenierí Inenierí Indusril Prácics de Lbororio PRÁCTIC 3 LEYES DE NEWTON 3 OJETIVO- Deerminr ls leyes que rien l relciones espcio-iempo y velocidd-iempo en movimienos uniformemene

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 L trnformd de Lplce 6.4.3 Segund propiedd de trlción Et propiedd permitirá reolver ecucione diferencile donde prezcn funcione dicontinu. Pr entenderl e conveniente introducir un función con

Más detalles

MATRICES Y DETERMINANTES.

MATRICES Y DETERMINANTES. punes de. Cbñó MTRICES Y DETERMINNTES. CONTENIDOS: Definición y erminologí básic. Operciones con mrices: sum y produco. Produco de un mriz por un esclr. Mriz opues. Mriz invers. Epresión mricil de un sisem

Más detalles

( ) = T. Onda senoidal que avanza en dirección +x. v f T = f k. Se puede reescribir la función de onda de varias formas distintas:

( ) = T. Onda senoidal que avanza en dirección +x. v f T = f k. Se puede reescribir la función de onda de varias formas distintas: Se puede reecribir la unción de onda de aria orma diina: T 1 T coπ Si deinimo el número de onda: π π π co Onda enoidal que aanza en dirección + Onda enoidal que aanza en dirección - co co co T π π + +

Más detalles

Incremento de v. Incremento de t

Incremento de v. Incremento de t MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno variado

Más detalles

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO

MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO FQ 4 Eo MOVIMIENTO RECTILÍNEO Y UNIFORMEMENTE ACELERADO Vao a coniderar ahora oviieno en lo que u velocidad varíe. Lo priero que neceiao conocer e cóo varía la velocidad con el iepo. De odo lo oviieno

Más detalles

Ecuaciones de 1 er y 2º grado

Ecuaciones de 1 er y 2º grado Ecuciones de 1 er y º grdo Antes de empezr resolver estos tipos de ecuciones hemos de hcer un serie de definiciones previs, que irán compñds por lgunos ejemplos. Un iguldd lgebric está formd por dos epresiones

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA

UNIVERSIDAD NACIONAL DE INGENIERIA CENTRO NACIONAL DE ESTUDIOS GENERALES MODALIDAD SABATINA UNIVERSIDAD NACINAL DE INGENIERIA CENTR NACINAL DE ESTUDIS GENERALES MDALIDAD SABATINA UNIDAD II CINEMATICA: MVIMIENT RECTILINE GUIA DE TRABAJ CLASE PRÁCTICA MVIMIENT RECTILINE UNIFRME. Pr.Nr. El movimieno

Más detalles

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS

5.1 LÍMITES INFINITOS 5.2 INTEGRANDOS INFINITOS MOISES VILLEA MUÑOZ 5 5. LÍMITES IFIITOS 5. ITEGRADOS IFIITOS Objeivo: Se reende que el esudine clcule inegrles sobre regiones no cods y resuelv roblems de licción relciondos con ls inegrles imrois 97

Más detalles

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS

PROBLEMAS DE RODADURA EJEMPLOS SELECCIONADOS POBLEMAS DE ODADUA EJEMPLOS SELECCONADOS UNDAMENTOS ÍSCOS DE LA NGENEÍA Antonio J. Brbero / Alfonso Cler Belmonte / Mrino Hernández Puche Dpt. ísic Aplicd. ETS ng. Agrónomos (Albcete) EJEMPLO Considere

Más detalles

CAPITULO II FUNCIONES VECTORIALES

CAPITULO II FUNCIONES VECTORIALES CAPITULO II FUNCIONES VECTORIALES En el cpíulo nerior, cundo describimos l rec en el espcio, uilizmos un prámero en ls ecuciones pr enconrr ls coordends de los punos que conformn es rec. ecuciones prmérics

Más detalles

4. Modelos AR(1) y ARI(1,1).

4. Modelos AR(1) y ARI(1,1). 4. Modelos AR( ARI(,. Los modelos uorregresivos son quellos modelos ARMA(p,q en los que q0. En generl, vmos denorlos por AR(p. En un modelo AR(p en vlor en el momeno de l serie se expres como un combinción

Más detalles

Hacia la universidad Aritmética y álgebra

Hacia la universidad Aritmética y álgebra Solucionrio Solucionrio Hci l universidd riméic álger OPIÓN. Dds ls mrices ) lcul ls mrices. ) lcul l mri invers de. c) Resuelve l ecución mricil. ) 8 7 8 9 ) ( ), dj( ) c), [ ] 9 9 8 9. Resuelve el sisem

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FISICA I/11. PRACTICA Nro. 8 MASA INERCIAL Y GRAVITATORIA. Págin 1 de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FISICA I/11 PRACTICA Nro. 8 MASA INERCIAL

Más detalles

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible.

es incompatible: a) Si m = 1 b) Si m = 2 c) Ninguna de las anteriores. Solución:, siendo r(a) = 2 y r(m) = 3 Sistema incompatible. nálisis eáico José rí ríne edino PROBLES DE SITES rouesos en eáenes) Preguns de io es. El sise es incoible: ) Si = b) Si = c) Ningun de ls neriores. 8 si r) =, SCD. Si =,, siendo r) = r) = Sise incoible.

Más detalles

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS SISTEMAS DE ECUACIONES LINEALES: MÉTODO DE GAUSS Ejercicio nº.- Pon un ejemplo, cundo se posible, de un sisem de dos ecuciones con res incógnis que se: ) Compible deermindo Compible indeermindo c) Incompible

Más detalles

Integración y Derivación Fraccionaria

Integración y Derivación Fraccionaria Cpíulo 2 Inegrción y Derivción Frccionri Anes de denrrnos en los operdores de inegrción y derivción generlizdos recordremos lgunos resuldos y nociones del cálculo elemenl que servirán como puno de prid

Más detalles

Tema 11: Integrales denidas

Tema 11: Integrales denidas Tem : Integrles denids My 9, 7 Denición y propieddes Denición. Si f ) es un función continu en un intervlo [, b] y denid positiv, f ), l integrl denid en ese intervlo l denimos como: f ). Si f ) > l integrl

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

4. CINEMÁTICA DEL CUERPO RÍGIDO

4. CINEMÁTICA DEL CUERPO RÍGIDO 7 4. INEÁTI DEL UERP RÍGID 4. oimiento reltio de prtícul. Un ferrocrril e muee con elocidd contnte de 5 km/h hci el ete. Uno de u pjero, que originlmente etá entdo en un entnill que mir l norte, e lent

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

5. INDUCCIÓN MAGNÉTICA

5. INDUCCIÓN MAGNÉTICA 5. NDUCCÓN MAGNÉTCA 5.1 Flujo mgnéico. 5. ey de Frdy. 5.3 Generdores y Moores 5.4 nducnci. 5.5 Circuios. Energí mgnéic. 5.1 Flujo mgnéico. Φ E da Φ Φ m _ un _ espir m _ N _ espirs Φ BdA N BdA m BdA A A

Más detalles

Transformadas de Laplace

Transformadas de Laplace Semn 7 - Cle 2. Definicione pr Comenzr Trnformd de Lplce En generl vmo definir un trnformción integrl, F (), de un función, f(t) como F () = b K (, t) f(t)dt = T {f(t)} () donde K (, t) e un función conocid

Más detalles

Flujo en Redes de Transporte

Flujo en Redes de Transporte Flujo en Rede de Tranpore Eduardo Urei Flujo en Rede de Tranpore p./55 Red de Tranpore Una Red de Tranpore e un grafo dirigido con peo (V, E, c) donde hay do vérice diinguido: uno llamado fuene y oro llamado

Más detalles

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar

Flujo máximo: Redes de flujo y método de Ford-Fulkerson. Jose Aguilar Flujo máximo: Rede de flujo y méodo de Ford-Fulkeron Joe Aguilar b a d c 0 0 0 0 0 Flujo en Rede. Flujo máximo Algorimo de Flujo Lo algorimo de flujo reuelven el problema de enconrar el flujo máximo de

Más detalles

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R

MOVIMIENTO CIRCULAR. r en cualquier punto de su trayectoria. v 2 / R MOVIMIENTO CIRCULAR Es un ipo de movimieno en el plno, en el cul l pícul gi un disnci fij lededo de un puno llmdo ceno. El movimieno cicul puede se de dos ipos: Movimieno cicul unifome Movimieno cicul

Más detalles

12_02_18_Soluciones unidad 2: Las fuerzas 4º ESO 1

12_02_18_Soluciones unidad 2: Las fuerzas 4º ESO 1 1_0_18_Soluciones unidd : Ls fuerzs 4º ESO 1 SOLUCIOES UIDAD. LAS UERZAS QUÉ SABES DE ESTO? 1. Se lnz un blón vericlmene y hci rrib. )Cuál de los dos esquems djunos describe mejor ls fuerzs que cún sobre

Más detalles

λ = A 2 en función de λ. X obtener las relaciones que deben

λ = A 2 en función de λ. X obtener las relaciones que deben Modelo. Ejercicio. Clificción áxi: puntos. Dds ls trices, ) (,5 puntos) Hllr los vlores de pr los que existe l triz invers. ) ( punto) Hllr l triz pr 6. c) (,5 puntos) Resolver l ecución tricil X pr 6.

Más detalles

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes.

PROBLEMAS DE GENERADORES SINCRÓNICOS. Asignatura : Conversión Electromecánica de la Energía. Fecha : Agosto Autor : Ricardo Leal Reyes. ROBLMA D GNRADOR NCRÓNCO. Aigntur : Converión lectromecánic de l nergí. ech : Agoto200. Autor : Ricrdo Lel Reye. 1. Un generdor incrónico de 6 polo conectdo en etrell, de 480 (), 60 (Hz), 1 (Ω/fe), 60

Más detalles

X obtener las relaciones que deben

X obtener las relaciones que deben odelo. Ejercicio. Clificción áxi puntos ) ( punto) Dd l triz y l triz t z y x X otener ls relciones que deen cuplir x, y, z, t pr que l triz X verifique X X. ) (, puntos) Dr un ejeplo de l triz X distint

Más detalles

Grado en Biología Tema 3 Integración. La regla del trapecio.

Grado en Biología Tema 3 Integración. La regla del trapecio. Grdo en Biologí Tem Integrción Sección.: Aproximción numéric de integrles definids. Hy funciones de ls que no se puede hllr un primitiv en términos de funciones elementles. Esto sucede, por ejemplo, con

Más detalles

T R lbf pie I I 3, Solution is: I slug pie 2

T R lbf pie I I 3, Solution is: I slug pie 2 Univeridad de Valparaío 1 Ejercicio de Dinámica de Roación: 1.- Un peo de 12 lbf cuelga de una cuerda enrollada en un ambor de 2 pie de io, giraorio alrededor de un eje fijo O. La aceleración angular del

Más detalles

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como:

Definición Un sistema de m ecuaciones con n incógnitas es un conjunto de ecuaciones como: Definición Un sistem de m ecuciones con n incógnits es un conjunto de ecuciones como: m ecuciones b b n n n n b m m m mn n m n incógnits términos independientes incógnits Coeficientes del sistem Epresión

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN PROBLEMAS DE OPTIMIZACIÓN Plntemiento y resolución de los problems de optimizción Se quiere construir un cj, sin tp, prtiendo de un lámin rectngulr de cm de lrg por de nch. Pr ello se recortrá un cudrdito

Más detalles

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO

MATEMÁTICAS II PRUEBAS DE ACCESO A LA UNIVERSIDAD DE OVIEDO MTEMÁTCS RUEBS DE CCESO L UNVERSDD DE OVEDO.- MTRCES Y DETERMNNTES.- MODELO DE RUEB roduco de mrices: concepo. Condiciones pr su relición. Es posible que pr dos mrices B no cudrds puedn eisir B B?. b Si

Más detalles

Cifras poblacionales de referencia METODOLOGÍA

Cifras poblacionales de referencia METODOLOGÍA Cifra poblacionale de referencia MTOOLOGÍA. Inroducción La elaboración de cifra de población de cada ámbio geográfico e uno de lo comeido de la oficina de eadíica pública por er un elemeno relevane para

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL Dinámica I: fuerza y leyes de Newton SOLUCIORIO GUÍ ESTÁDR UL Dináic I: fuerz y leyes de ewton SGUICES016C3-16V1 Solucionrio guí Dináic I: fuerz y leyes de ewton Íte lterntiv Hbilidd 1 D Coprensión Coprensión 3 E plicción 4 D plicción 5 plicción

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (4-M;Jun-B-) (5 punos) Consider ls mrices A = y B = Deermin, si exise, l mriz X que verific AX + B = A + m (4-M-B-)

Más detalles

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES

EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES IES Pdre Poved (Gudix) Memáics II EJERCICIOS UNIDADES 5 y 6: MATRICES Y DETERMINANTES (5-M-B-) Consider ls mrices 4 A = y B = 4 ) ( puno) Hll el deerminne de un mriz X que verifique l iguldd X AX = B b)

Más detalles

Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS

Madrid OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANZA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS OPOSICIONES AL CUERPO DE PROFESORES DE ENSEÑANA SECUNDARIA EN LA ESPECIALIDAD DE MATEMÁTICAS Mdrid. Se M el uno medio de un cuerd P Q de un circunferenci. Por M se rzn ors dos cuerds AB y CD: L cuerd AD

Más detalles

TEMA 2: LÍMITES Y CONTINUIDAD

TEMA 2: LÍMITES Y CONTINUIDAD MATEMATICAS TEMA CURSO 4/5 CONCEPTO DE LÍMITE: Límite de un función en un punto: TEMA : LÍMITES Y CONTINUIDAD El símbolo ( y se lee tiende hci ) y signific que elegimos vlores muy próimos l vlor, (tn próimos

Más detalles

ECUACIÓN DE BERNOULLI

ECUACIÓN DE BERNOULLI ECUACIÓN DE BERNOULLI 1. RESUMEN Ete lbortorio trt obre l comprobción de l ecución de Bernoulli. Aquí e intent comprobr l relción que exite entre l velocidd (cbez dinámic), l cbez (cbez etátic) y l cbez

Más detalles

TEMA 2. DETERMINANTES

TEMA 2. DETERMINANTES TEMA. DETERMINANTES A cd mtriz cudrd de orden n se le puede signr un número rel que se obtiene operndo de ciert mner con los elementos de l mtriz. A dicho número se le llm determinnte de l mtriz A, y se

Más detalles

PROBLEMAS DE TEOREMA DE GREEN

PROBLEMAS DE TEOREMA DE GREEN PROBLEMAS E TEOREMA E GREEN ENUNIAO EL TEOREMA Se un curv simple cerrd suve rozos oriend posiivmene se F(; (P;Q un cmpo vecoril cus funciones coordends ienen derivds prciles coninus sore un región ier

Más detalles

Lección 8: Demodulación y Detección Paso-Banda. Parte II

Lección 8: Demodulación y Detección Paso-Banda. Parte II Lección 8: Demodulación y Deección ao-banda. are II Gianluca Cornea, h.d. Dep. de Ingeniería de Siema de Información y Telecomunicación Univeridad San ablo-cu Conenido nvolvene Compleja Tolerancia al rror

Más detalles

Geometría de equilibrio de estructuras en arco

Geometría de equilibrio de estructuras en arco Geomerí de equilibrio de esrucurs en rco Emilio Corés Deprmeno de Físic, Universidd Auónom Meropolin, Izplp Apdo. Posl 55-534, Méico D.F., 934 Méico E-mil: emil@num.um.m (Recibido el 9 de Febrero de 8;

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009

E.T.S. DE INGENIERÍA (ICAI). TEORÍA DE ESTRUCTURAS Y CONSTRUCCIONES INDUSTRIALES Examen Septiembre 2009 E.T.S. DE INGENIERÍ (ICI). TEORÍ DE ESTRUCTURS Y CONSTRUCCIONES INDUSTRIES Exmen Septiembre 009 EE TENTENTE El exmen const de vrios ejercicios, que se reprtirán sucesivmente, con un tiempo máximo pr l

Más detalles

según los valores del parámetro a.

según los valores del parámetro a. Selectividd hst el ño 9- incluido EJERCICIOS DE SELECTIVIDD, ÁLGER. Ejercicio. Clificción ái: puntos. (Junio 99 ) Se considern ls trices donde es culquier núero rel. ) ( punto) Encontrr los vlores de pr

Más detalles

Solucionario. Cuaderno de Física y Química 3

Solucionario. Cuaderno de Física y Química 3 Solucionario Cuaderno de Fíica y Quíica 3 UNIDAD 7.. El iea de referencia e fundaenal para conocer la poición exaca de un cuerpo y por ano u rayecoria y u velocidad.. Por ejeplo i eao enado en un ren en

Más detalles

Banco de autotransformadores

Banco de autotransformadores Bo de uorformdore E ee doumeo e lizrá o l rereeió e.u. e be rifái de u bo de uorformdore, omdo omo do lo reuldo de lo eyo de l uidde moofái Pre 1: Trformdore o u imedi referid l ldo de l eió El iguiee

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES Solucionrio Deerminnes CTIVIDDES INICILES.I. usc ls relciones de dependenci linel enre ls fils columns de ls siguienes mrices e indic el vlor de su rngo. rg() F F Como C C C rg().ii. Comprue que ls siguienes

Más detalles

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución.

Cálculo de áreas de figuras planas. Cálculo de volúmenes de sólidos de revolución. Cálculo de áreas de superficies de revolución. APLICACIONES DE LA INTEGRAL DEFINIDA Cálculo de áres de figurs plns. Cálculo de volúmenes de sólidos de revolución. Cálculo de longitud de rco de curv. Cálculo de áres de superficies de revolución. Cálculo

Más detalles

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales

a) De la Tabla 1 del catálogo de FOXBORO 81A Turbine Flowmeters, para un diámtero de 1 pulg. (que es el diámetro de nuestra cañería), los caudales PROBLEMA En un instlción se mide cudles de un líquido de densidd 1 g/cc y 1 cp de viscosidd con un turbin Serie 81A de Foxboro de 1 pulg de diámetro. () Cuánto vle el cudl mínimo que es cpz de medir el

Más detalles

FUNCIONES VECTORIALES

FUNCIONES VECTORIALES FUNCIONES VECTORIALES v - v e lo c i d d i n i c i l v v v lur inicil v r() P Vecor velocidd r() r Q r(+) INDICE FUNCIONES VECTORIALES FUNCIÓN VECTORIAL 4 Dominio de un función vecoril 5 Operciones con

Más detalles

Transformada de Laplace

Transformada de Laplace Capíulo 7 Tranformada de Laplace En ea ección inroduciremo y eudiaremo la ranformada de Laplace, dearrollaremo alguna de u propiedade ma báica y úile. Depué veremo alguna aplicacione. 7. Definicione y

Más detalles

Integrales impropias.

Integrales impropias. Tem Inegrles impropis.. Inroducción. En el em nerior se h definido l inegrl de Riemnn con ls siguienes hipóesis Dom(f) = [, ] es un conjuno codo. f: [, ] IR esá cod en [, ]. Si lgun de ess condiciones

Más detalles

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue:

a) La percusión que recibe la varilla viene dada por De las leyes de la dinámica impulsiva se sigue: . Un vrill uniforme de longitud l y ms m cuelg verticlmente y está sujet por un rticulción en su extremo superior. L vrill se golpe en su extremo inferior con un fuerz orizontl F que dur un tiempo muy

Más detalles

2. CINÉTICA DE LA PARTÍCULA

2. CINÉTICA DE LA PARTÍCULA 39. CINÉTICA DE LA PARTÍCULA. Moimieno recilíneo.. Aceleración conane. Un racor u remolque aumenan uniformemene u rapidez de 36 a 7 km/h en 4. Sabiendo que u peo on, repeciamene, on, calcule la fuerza

Más detalles

PROBLEMA RESUELTO DE ESTABILIDAD

PROBLEMA RESUELTO DE ESTABILIDAD Univeridd Ncionl de Rorio Fcultd de Cienci Exct Ingenierí y Agrimenur Ecuel de Ingenierí Electrónic Deprtmento de Electrónic ELECTRÓNICA III PROBLEMA RESUELTO DE ESTABILIDAD AUTOR: Federico Miyr REVISIÓN:

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3. Trigonometría I Evlución NMBRE PELLIDS CURS GRUP FECH CLIFICCIÓN 4 L solución de l ecución sen 0,5 es: ) 0 y 50 b) 50 y 0 c) 0 y 0 Si sen 0 0,4, entonces cos 0 será: ) 0,4 b) 0,94 c) 0,4 Un estc de longitud, clvd verticlmente

Más detalles

6.7 Teorema de Convolución y la delta de Dirac 409

6.7 Teorema de Convolución y la delta de Dirac 409 6.7 Teorem de Convolución y l del de Dirc 49 6.7 Teorem de Convolución y l del de Dirc En el nálisis de sisems lineles, como en los sisems vibrorios (mecánicos y elécricos), uno de los objeivos es conocer

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales eáics II Sises lineles Sises de ecuciones lineles Observción: L orí de esos sises se hn propueso en ls pruebs de Selecividd, en los disinos disrios universirios espñoles.. L ri plid de un sise de ecuciones

Más detalles

CAÍDA LIBRE Y TIRO VERTICAL

CAÍDA LIBRE Y TIRO VERTICAL ASIMOV - 113 - CAÍDA LIBRE Y TIRO VERTICAL ECUACIONES HORARIAS PARA Y TIRO VERTICAL Poición en función del iepo Velocidad en función del iepo ASIMOV - 114 - CAÍDA LIBRE y TIRO VERTICAL Suponé que un ipo

Más detalles

Fuerza y Movimiento. I. Movimiento de un carro con ventilador ignorando la fricción

Fuerza y Movimiento. I. Movimiento de un carro con ventilador ignorando la fricción Fuerz y Moimieno I. Moimieno de un crro con enildor ignorndo l fricción En los siguienes experimenos, uilizrá el sensor de moimieno y un crro de bj fricción. L dirección posii es lejándose del sensor.

Más detalles

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen

Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen PRUEBA DE ACCESO A LA UNIVERSIDAD Físic BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Exmen Crierios e Corrección y Clificción UNIBERSIAERA SARZEKO PROBAK ko UZAILA FISIKA PRUEBAS

Más detalles

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa

SOLUCIONARIO GUÍA. Ítem Alternativa Defensa SOLUCIONARIO GUÍA Íem Alernaa Deena 1 C En un gráco elocdad / empo, al realzar el cálculo de la pendene y área bajo la cura, obenemo la aceleracón y danca recorrda, repecamene. A Según la expreón para

Más detalles

CAÍDA LIBRE Y TIRO VERTICAL

CAÍDA LIBRE Y TIRO VERTICAL CAÍDA LIBRE Y TIRO VERTICAL ECUACIONES HORA- RIAS PARA CAIDA LI- BRE Y TIRO VERTICAL Poición en función del iepo Velocidad en función del iepo - 4 - CAÍDA LIBRE y TIRO VERTICAL Suponé que un ipo va a la

Más detalles