Estado Gaseoso. Prf. María Peiró

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Estado Gaseoso. Prf. María Peiró"

Transcripción

1 Estado Gaseoso rf. María eiró

2 Gas, es u estado de la materia formado por éculas que tiede a expadirse porque se mueve a a velocidad debido a su altísima eergía ciética, mateiedo a espacio etre ellas. ropiedades de los gases: iee baja desidad, comparada co la de los líquidos y so fluidos altamete compresibles. dopta la forma y el volume del recipiete que las cotiee. Sus éculas se mueve, lleado todo el espacio del coteedor que ocupa. Se puede licuar, sometiédolos a ades presioes y bajas temperaturas. E ua mezcla de varios gases (como la del aire), se difude mezcládose espotáeamete, si que reaccioe etre ellos. reseta determiado comportamieto, segú las codicioes de presió volume y temperatura. resió: Es la fuerza aplicada por uidad de área. F Uidades de resió: atmósfera es igual a : lb.033,6 4,7 76 cmhg 760 mmhg 760 orr cm plg Leyes de los Gases Ley de oyle Mariotte temperatura costate, el volume ocupado por ua masa gaseosa es iversamete proporcioal a la presió que soporta.... Costate Ley decharles Gay Lussac presió costate, el volume de ua masa gaseosa, e estado seco, es directamete proporcioal a la temperatura absoluta. Costate preder etediedo

3 Ley combiada oyle Mariotte y Charles Gay Lussac Codicioes Normales de u Gas Ley de Dalto ó de las resioes arciales El volume ocupado por ua masa gaseosa es directamete proporcioal a la temperatura absoluta e iversamete proporcioal a la presió que soporta.... Costate U gas se ecuetra e codicioes ormales, cuado está sometido a la presió de ua atmósfera y a ua temperatura de 0ºC ó 73 K. E estas codicioes, de cualquier gas, ocupa u volume de,4 Lt. E ua mezcla de gases, cada uo de ellos se comporta como si estuviese solo e el espacio que ocupa, ejerciedo ua presió llamada presió parcial. La presió total de la mezcla, es la suma de la presió parcial de todos los gases presetes.... i 3 i Ejercicios ) U gas ocupa u volume de 48,6 Lt, a ua presió de 57 mm Hg. Qué volume ocupará a la presió de 0,45 atmósferas? mmhg 0, 45 atm 34 mmhg atm 48,6 Lt. 57 mmhg 88,3Lt 34 mmhg ) U gas tiee u volume de 450 ml, a 5 ºC. Qué volume ocupará si la temperatura desciede a -8 ºC? preder etediedo

4 5 º C. 73K 98K. 8 º C. 73K 55K 450ml. 55 K 98 K 385,ml 3) 75 ºC, u gas ocupa u volume de 95 Lt, y tiee ua presió de 850 mm Hg. Qué volume ocupará e codicioes ormales?.. 75 º C. 73K 448K... 0ºC ó 73K CN atm 0 º C 850 mmhg. 73K 73K atm 760 mmhg, atm. 95Lt. 73 K 448 K. atm, atm 64,84Lt 4) Ua masa de gas ocupa u volume de 750 Lt, a 3 ºC y 650 mm Hg. se comprime detro de u taque de 0 Lt, a 5,3 atmósferas Cuál será la temperatura fial del gas?.. 3 º C. 73K 305K mmhg atm 760 mmhg 0,86 atm 3 preder etediedo

5 5,3 atm. 0 Lt. 305K 0,86 atm. 750 Lt 56,3K 5) Se tiee 98 ml de ua masa gaseosa a 37 ºC y 94 mm de Hg. Cuál será la presió cuado su volume se expada a 4 Lt y la temperatura alcace 5 ºC?.. 37 º C. 73K 30K... 5 º C. 73K 35K 94mmHg. 98 ml 30 K ml. 35 K 4, 88mmHg 6) U recipiete cotiee la siguiete mezcla de gases: oxígeo, cloro, hidrógeo y itrógeo. Sus respectivas presioes so: 650, 70, 830 y 475, mm Hg. Cuál es la presió total que soporta el recipiete? i i mmhg.675 mmhg 7) E u recipiete se ecuetra los siguietes volúmees de gases: Hidrógeo, Lt; Cloro, 5 Lt y Oxígeo, 3 Lt. Si la presió total es 9 cm Hg, calcular la presió parcial de cada uo de estos gases. p... Lt 5Lt 3Lt 0 Lt Lt p H 9 cmhg 55, cmhg 0Lt 5Lt p Cl 9 cmhg 3 cmhg 0Lt 3Lt p O 9 cmhg 3,8 cmhg 0Lt 4 preder etediedo

6 rueba: 55, 3 3,8 cmhg 9 cmhg 8) Se recoge 85 ml de itrógeo sobre mercurio a -0 ºC y 778 mm Hg de presió. Hallar el volume que se obtedrá al recogerlo sobre agua a 40 ºC y 700 mm Hg de presió. La presió de vapor del agua a 40 ºC, es 55,3 mm Hg º C 40 º C. 73K 63K. 73K 33K 700 mmhg 55,3 mmhg 644,7 mmhg 778 mmhg. 85ml. 33 K 63 K. 644,7 mmhg 409,3 ml Hipótesis de vogadro: E igualdad de codicioes de volume, presió y temperatura, todos los gases tiee la misma catidad de éculas. D a Desidad bsoluta: Masa ecular olume ar La desidad absoluta de u gas, es la masa de u litro de dicho gas, medido e codicioes ormales. Ejemplo: Da O 3, 49 Lt Lt, 4 Da H 0,0893 Lt Lt,4 5 preder etediedo

7 Da N 8,5 Lt Lt, Desidad Relativa: La desidad relativa de u gas, es la relació etre la masa de u volume dado de u gas y la masa de u volume igual de otro gas, elegido como patró. Ejemplo : Calcular la desidad relativa del itrógeo co respecto al aire. D N,5 ; D Lt ire,93 Lt,5 D Lt r 0, 967,93 Lt Sigifica que el itrógeo es ligeramete más liviao que el aire. Ecuació de Estado: Las leyes descritas ateriormete y el pricipio de vogadro, so casos especiales del comportamieto de u gas y, la forma geeral de resumirlo, es co la llamada ecuació de estado. Esta ecuació, relacioa matemáticamete, la presió, la temperatura, el volume y el úmero de es de u gas. ara u gas ideal: R r esió olume Dode Nº de es R Cte.uiversal de los gases emperatura absoluta 6 preder etediedo

8 Sabemos que, e codicioes ormales, u de cualquier gas ocupa u volume de,4 Lt. Etoces el valor de R es: atm.,4 Lt Lt atm R R 0,08. 73K K Ejercicios: 9) Calcular la presió que ejerce 3 de gas itrógeo, coteido e u recipiete de Lt, a -3 ºC de temperatura. R m M R Lt atm R 0,08 K N 3 0, º C. 73K 50K 0,07. 0,08 Lt Lt atm K. 50k,098 atm 0) U litro de cloro gaseoso, e codicioes ormales, tiee ua masa da 3,7 amos. Calcular el peso ecular del cloro. R m R M m R M M Cl Lt atm 3,7. 0,08 K atm. Lt. 73 K 7 ),5 litros de oxígeo a 43,5 ºC y 60 mm Hg pesa,5. Calcular su desidad e codicioes ormales... 43,5 º C. 73K 36,5K mmhg.,5 Lt. 73 K 36,5 K. 760 mmhg,056 Lt 7 preder etediedo

9 d m,5 d,43,056 Lt Lt ) Cuál es la desidad del SO a 40 ºC y 0,96 atm? R m R M m M R M d R M d R M SO º C. 73K 33K d 0,96 atm. 64 Lt atm 0, K K,39 Lt 3) Dos baloes separados cotiee los gases ideales y. La desidad del gas es el doble de la del gas y la masa ar de es la mitad de la de. Si ambos gases se ecuetra a la misma temperatura, calcular la relació de la presió del gas co respecto a la del gas. Usaremos esta forma de la ecuació de los gases ideales, porque es secilla para relacioar los dos gases: M d R d d M Codicioes : M M M. M. M d. R. d. R.. M. M d d. R R 4. 4) Ua mezcla gaseosa cotiee e peso, la mitad de rgó y la mitad de lio. Co ua presió total de, atmósferas. Cuál es la presió parcial de cada gas? ( r 39,948 /mo y 4,006 / ) 8 preder etediedo

10 X X r. X r r. X r r r r a 0,05 a 39,948 a 0,5 a 4,006 omemos que la mitad sea a para c/u. X r 0,05a 0,05 a 0,05a 0,5a 0,75 a 0,09 X 0,5 a 0,5 a 0,05 a 0,5 a 0,75 a 0,9 r,atm. 0,09 0,099 atm,atm. 0, 9,0 atm 5) El dióxido de carboo y el amoíaco reaccioa a 85 ºC y 00 atm de presió para producir úrea y agua. E estas codicioes Qué volume de amoíaco producirá 00 Kg de úrea? de NH 3 (amoíaco) produce de CO NH (úrea) E Codicioes Normales, de u gas ocupa,4 Lt. CO g NH g CO NH H O g x 3 Lt, 4 60,06 x 00 Kg, 4Lt 00 Kg 3 60,06.0 Kg Lt Como la reacció se lleva a cabo e otras codicioes diferetes a las ormales, calculamos el volume obteido e esas codicioes º C. 73K 458K atm Lt. 458 K 65,7 Lt 73 K. 00 atm 9 preder etediedo

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA. Ingeniería Química UNIERSIDAD NACIONAL EXERIMENAL OLIECNICA ANONIO JOSÉ DE SUCRE ICERRECORADO BARQUISIMEO DEARAMENO DE INGENIERÍA QUÍMICA Igeiería Química Uidad III. Balace de materia Sistemas Moofásicos Clase Nº0 Autor:

Más detalles

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases

Ejercicios sobre la aplicación de las diferentes leyes que caracterizan a los gases Ejercicios sobre la aplicació de las diferetes leyes que caracteriza a los gases 1. g de oxígeo se ecuetra ecerrados e u recipiete de L, a ua presió de 1,5 atm. Cuál es la temperatura del gas si se supoe

Más detalles

09/05/2011. Fuerzas intermoleculares pequeñas. Movimientos rápidos e independientes

09/05/2011. Fuerzas intermoleculares pequeñas. Movimientos rápidos e independientes ESTADO GASEOSO Gases Fuerzas itermoleculares pequeñas Movimietos rápidos e idepedietes Volume El comportamieto de u gas se defie por medio de variable : Temperatura Presió N de moles 1 Medidas e gases

Más detalles

NOMBRE: CURSO: FECHA:

NOMBRE: CURSO: FECHA: AMLIACIÓN co solucioes. EJERCICIO RESUELTO E ua jeriguilla cogemos 3 cm 3 de aire. E ese mometo la presió que ejerce dicho gas es de a. a) Escribe el valor de la presió e atmósferas, e milímetros de mercurio,

Más detalles

CANTIDAD EN QUÍMICA QCA 07

CANTIDAD EN QUÍMICA QCA 07 .- Razoe: a) Qué volume es mayor el de u mol de itrógeo o el de u mol de oxígeo, ambos medidos e las mismas codicioes de presió y temperatura? b) Qué masa es mayor la de u mol de itrógeo o la de uo de

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

LOS GASES Y SUS LEYES DE

LOS GASES Y SUS LEYES DE EMA : LOS GASES Y SUS LEYES DE COMBINACIÓN -LAS LEYES DE LOS GASES En el siglo XII comenzó a investigarse el hecho de que los gases, independientemente de su naturaleza, presentan un comportamiento similar

Más detalles

VOLUMEN (V) (Capacidad)

VOLUMEN (V) (Capacidad) UNIDAD ESADO GASEOSO. Leyes de los gases ideales. Deducció de la ecuació geeral del gas ideal. Uidades de la costate geeral de los gases. Aplicacioes de la ecuació del gas ideal. Ley de Dalto. Ley de Graham.

Más detalles

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA

TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA 1 TEMA 16. ESTEQUIOMETRIA DE UNA FORMULA QUIMICA Mario Melo Araya Ex Profesor Uiversidad de Chile melomarioqca@gmail.com Estructuralmete las substacias químicas está costituidas por etidades elemetales

Más detalles

1 Valores individuales del conjunto

1 Valores individuales del conjunto 5/03/00 METROLOGÍA ESTADÍSTICA ANÁLISIS DE DATOS Cuado se obtiee uo o más grupos de datos, producto de repeticioes i e ua medida, la mejor forma de represetarlas, es mediate las Medidas de tedecia cetral

Más detalles

PROGRESIONES ARITMETICAS

PROGRESIONES ARITMETICAS PROGRESIONES ARITMETICAS DEF. Se dice que ua serie de úmeros está e progresió aritmética cuado cada uo de ellos (excepto el primero) es igual al aterior más ua catidad costate llamada diferecia de la progresió.

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor

Más detalles

ONDAS SOBRE UNA CUERDA

ONDAS SOBRE UNA CUERDA ONDAS SOBRE UNA CUERDA Objetivo: Aalizar el comportamieto de las odas estacioarias e ua cuerda relacioado la tesió, la frecuecia de oscilació, la logitud de la cuerda y el úmero de segmetos que se forma

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Introducción al Método de Fourier. Grupo

Introducción al Método de Fourier. Grupo Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica

Más detalles

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm. 1) Dada la siguiente reacción química: 2 AgNO3 + Cl2 N2O5 + 2 AgCl + ½ O2. a) Calcule los moles de N2O5 que se obtienen a partir de 20 g de AgNO3. b) Calcule el volumen de O2 obtenido, medido a 20 ºC y

Más detalles

3. Volumen de un sólido.

3. Volumen de un sólido. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos

Más detalles

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor.

Trata de describir y analizar algunos caracteres de los individuos de un grupo dado, sin extraer conclusiones para un grupo mayor. 1 Estadística Descriptiva Tema 8.- Estadística. Tablas y Gráficos. Combiatoria Trata de describir y aalizar alguos caracteres de los idividuos de u grupo dado, si extraer coclusioes para u grupo mayor.

Más detalles

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES

PROBLEMAS RESUELTOS. Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES PROBLEMAS RESUELOS Grupo A: APLICACIÓN DE LAS ECUACIONES GENERALES DE LOS GASES IDEALES A-01 -.- El "hielo seco" es dióxido de carbono sólido a temperatura inferior a -55 ºC y presión de 1 atmósfera. Una

Más detalles

M A R I A N O B A Q U E R O DPTO. DE FÍSICA Y QUÍMICA EJERCICIOS RESUELTOS

M A R I A N O B A Q U E R O DPTO. DE FÍSICA Y QUÍMICA EJERCICIOS RESUELTOS I E S M A R I A N O B A Q U E R O DPTO. DE FÍSICA Y QUÍMICA EJERCICIOS RESUELTOS Índice general 1. El átomo y el enlace 6 2. Leyes básicas de la Química 9 b1fq-res-atomo.tex 1. El átomo y el enlace Unidad

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación

Matemáticas 1 1 EJERCICIOS RESUELTOS: Funciones de una variable. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación Matemáticas EJERCICIOS RESUELTOS: Fucioes de ua variable Elea Álvarez Sáiz Dpto. Matemática Aplicada y C. Computació Uiversidad de Catabria Igeiería de Telecomuicació Fudametos Matemáticos I Ejercicios:

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

Conceptos Básicos (Relaciones de flujos)

Conceptos Básicos (Relaciones de flujos) Conceptos Básicos (Relaciones de flujos) 1. Una solución ideal contiene 0,1 x 10-3 m 3 de metanol y 0,9 x 10-3 m 3 de benceno se mueve a una velocidad media molar de 0,12 m/s. Si el flujo molar del benceno

Más detalles

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 26 PROBABILIDADES Y ESTADÍSTICA (C) Práctica 6 Aula + Laboratorio 1. Los siguietes valores so medicioes del peso (e miles de toeladas) de grades taques de petróleo. 229, 232, 239, 232, 259, 361, 220, 260,

Más detalles

CONCEPTOS BÁSICOS EN QUÍMICA

CONCEPTOS BÁSICOS EN QUÍMICA CONCEPTOS BÁSICOS EN QUÍMICA MOLES, ÁTOMOS Y MOLÉCULAS 1.-/ Calcule la masa molar de las siguientes sustancias: a) Disulfuro de carbono. b) Óxido de nitrógeno (III). c) Hidróxido de berilio. d) Carbonato

Más detalles

ESTEQUIOMETRÍA. 3.- LEYES VOLUMÉTRICAS: 3.1. Ley de los volúmenes de combinación de gases o de Gay-Lussac. 3.2. Ley de Avogadro.

ESTEQUIOMETRÍA. 3.- LEYES VOLUMÉTRICAS: 3.1. Ley de los volúmenes de combinación de gases o de Gay-Lussac. 3.2. Ley de Avogadro. ESTEQUIOMETRÍA 1.- ECUACIONES. SÍMBOLOS Y FÓRMULAS QUÍMICAS. 2.- LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS: 2.1. Ley de la conservación de la masa o de Lavoisier. 2.2. Ley de las proporciones constantes

Más detalles

DISOLUCIONES Y ESTEQUIOMETRÍA

DISOLUCIONES Y ESTEQUIOMETRÍA DISOLUCIONES Y ESTEQUIOMETRÍA DISOLUCIONES 1.-/ Se disuelven 7 gramos de NaCl en 50 gramos de agua. Cuál es la concentración centesimal de la disolución? Sol: 12,28 % de NaCl 2.-/ En 20 ml de una disolución

Más detalles

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

ALGEBRA ELEMENTAL AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. ALGEBRA ELEMENTAL INDICE AUTOR: CARLOS DOMÍNGUEZ V... 16 INDICE... 1 UNIDAD III.- EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa... Ley distriutiva... 1.- EXPONENTES Y RADICALES...

Más detalles

Límite y Continuidad de Funciones.

Límite y Continuidad de Funciones. Límite Cotiuidad de Fucioes. Eleazar José García. eleagarcia9@hotmail.com. Límite de ua fució.. Defiició de límite de ua fució.. Ifiitésimo.. Ifiitésimos equivalete.. Límite por la izquierda.. Límite por

Más detalles

Problemas propuestos

Problemas propuestos Problemas propuestos 1. Un carbón vegetal tiene el siguiente análisis químico: C = 76%, H=1.2%, N=0.8%, O=0.3%, S=0.14%, humedad = 4%, cenizas = 17.56%. Calcule el poder calorífico superior e inferior.

Más detalles

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión

Ley de Boyle. A temperatura constante, el volumen de una muestra dada de gas es inversamente proporcional a su presión LOS GASES Un gas es una porción de materia cuya forma y volumen son variables ya que se adaptan a la del recipiente que lo contiene, el cual ocupan totalmente. LEYES DE LOS GASES Ley de Boyle Robert Boyle,

Más detalles

Intervalos de confianza para la media

Intervalos de confianza para la media Itervalos de cofiaza para la media Ejercicio º 1.- Las vetas diarias, e euros, e u determiado comercio sigue ua distribució N(950, 200). Calcula la probabilidad de que las vetas diarias e ese comercio:

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir:

Series Numéricas. Una forma de definir e es a través de la suma: 1. 1 0! + 1 1! + 1 2! + 1 3! + 1 4! + + 1 n. cuyo límite es e, es decir: Capítulo Series Numéricas Las series uméricas so sucesioes muy particulares ya que se defie (o se geera) a partir de otra sucesió. Dos ejemplos secillos aparece e la defiició de e y el la Paradoja de Zeó.

Más detalles

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P).

LEY DE BOYLE: A temperatura constante, el volumen (V) que ocupa una masa definida de gas es inversamente proporcional a la presión aplicada (P). CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS N 3 TEMA: GASES IDEALES OBJETIVO: Interpretación de las propiedades de los gases; efectos de la presión y la temperatura sobre los volúmenes de los gases. PRERREQUISITOS:

Más detalles

RELACIÓN DE PROBLEMAS. DISOLUCIONES Y PROPIEDADES COLIGATIVAS.

RELACIÓN DE PROBLEMAS. DISOLUCIONES Y PROPIEDADES COLIGATIVAS. RELACIÓN DE PROBLEMAS. Y PROPIEDADES COLIGATIVAS. 1.- Se disuelven 150 gramos de etanol (CH 3 CH 2 OH), de densidad 0,8 g /cm 3, en agua hasta completar 0,5 litros de disolución. Calcular el porcentaje

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio, Opción B Reserva 1, Ejercicio 5, Opción A Reserva 1, Ejercicio 5, Opción B Reserva, Ejercicio

Más detalles

Diagramas de Bode. Respuesta En Frecuencia

Diagramas de Bode. Respuesta En Frecuencia Diagramas de Bode Respuesta E Frecuecia Ig. William Marí Moreo Geeralidades Es u diagrama asitótico: se puede aproximar fácilmete trazado líeas rectas (asítotas). Preseta la respuesta de Magitud y Fase

Más detalles

PROGRESIONES ARITMÉTICAS.-

PROGRESIONES ARITMÉTICAS.- PROGRESIONES ARITMÉTICAS.- Ua progresió aritmética es ua sucesió de úmeros tales que cada uo de ellos, excepto el primero, se obtiee sumado al aterior ua costate d, que se deomia diferecia de la progresió.

Más detalles

1. Ajustar las siguientes reacciones redox por el método ión-electrón

1. Ajustar las siguientes reacciones redox por el método ión-electrón . Ajustar las siguietes reaccioes redox por el método ió-electró a. HNO Z Z(NO ) NH NO H O NO 0H 8e NH H O Semireacció de Reducció. [ Z e Z ] Semireacció de Oxidació. NO 0H Z NH Z H O Reacció ióica global.

Más detalles

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA

DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA DETERMINACION DEL COSTO POR ALUMNO EGRESADO DE EDUCACION PRIMARIA U Modelo de Costeo por Procesos JOSE ANTONIO CARRANZA PALACIOS *, JUAN MANUEL RIVERA ** INTRODUCCION U aspecto fudametal e la formulació

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

Departamento Administrativo Nacional de Estadística

Departamento Administrativo Nacional de Estadística Departameto Admiistrativo acioal de Estadística Direcció de Regulació, Plaeació, Estadarizació y ormalizació -DIRPE- Especificacioes de Coeficiete y Variaza Ecuesta de Cosumo Cultural Julio 008 ESPECIFICACIOES

Más detalles

GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa

GASES IDEALES. 1 atm = 760 mmhg = 760 Torr = 1013 hpa GASES IDEALES Para comprender los problemas de este capítulo es necesario leer previamente la Teoría Cinética de los Gases, el concepto de Variables de Estado y las Leyes de los Gases. Ecuación general

Más detalles

III. ESTADOS DE LA MATERIA

III. ESTADOS DE LA MATERIA III. ESTADOS DE LA MATERIA Fuerzas Intermoleculares Las fuerzas intermoleculares Son fuerzas de atracción entre las moléculas y son mas débiles que las fuerzas intramoleculares (enlaces químicos). Ejercen

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc

Respuesta: a) La fracción molar de NaCl es 0,072 b) La concentración másica volumétrica de NaCl es 0,231 g/cc Ejercicio 1: La densidad a 4 ºC de una solución acuosa de NaCl al 20% en peso es 1,155 g/cc a) Calcule la fracción molar de NaCl b) Calcule la concentración másica volumétrica de NaCl La masa molecular

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Calculo de la deuda a plazo (PAGO) 1) Método de cuota nivelada.

Calculo de la deuda a plazo (PAGO) 1) Método de cuota nivelada. Amortizació: Viee del latí Morti; Muerte, e el mercado fiaciero la expresió amortizació se utiliza para deomiar el proceso mediate el cual se extigue gradualmete ua deuda por medio de pagos o aboos periódicos

Más detalles

Regla de Tres. Prof. Maria Peiró

Regla de Tres. Prof. Maria Peiró Regla de Tres Prof. Maria Peiró .- Regla de Tres: Es ua fora de resolver probleas que utiliza ua proporció etre tres o ás valores coocidos y u valor descoocido. La Regla de Tres puede ser siple ó copuesta.

Más detalles

Operaciones Básicas de Transferencia de Materia Problemas Tema 6

Operaciones Básicas de Transferencia de Materia Problemas Tema 6 1º.- En una torre de relleno, se va a absorber acetona de una corriente de aire. La sección de la torre es de 0.186 m 2, la temperatura de trabajo es 293 K y la presión total es de 101.32 kpa. La corriente

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

La sucesión de Lucas

La sucesión de Lucas a sucesió de ucas María Isabel Viggiai Rocha Cosideramos la sucesió umérica { } defiida por: - - si 3 y y 3. Esta sucesió es coocida como la sucesió de ucas y a sus térmios se los llama úmeros de ucas.

Más detalles

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN

FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 1 Física y Química 3º Curso Educación Secundaria Obligatoria Curso académico 2015/2016 FÍSICA Y QUÍMICA TEMA 2: LA MATERIA Y SUS ESTADOS DE AGREGACIÓN 2 Física y Química 3º Curso Educación Secundaria Obligatoria

Más detalles

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006

Estalmat. Real Academia de Ciencias. Curso 2005/2006. Dinámica compleja. Conjuntos de Julia y Mandelbrot. Método de Newton. Miguel Reyes Mayo 2006 Estalmat. Real Academia de Ciecias. Curso 5/6 Diámica compleja Cojutos de Julia y Madelbrot. Método de Newto. Miguel Reyes Mayo 6 Los úmeros complejos Los úmeros complejos so los úmeros de la forma dode

Más detalles

Sistemas Energéticos (Master I.I.)

Sistemas Energéticos (Master I.I.) Sistemas Eergéticos (Master I.I.) S.E. T.- Vetiladores Las trasparecias so el material de apoyo del profesor para impartir la clase. No so aputes de la asigatura. Al alumo le puede servir como guía para

Más detalles

LAS REACCIONES QUÍMICAS.

LAS REACCIONES QUÍMICAS. 1 Ajustes de reacciones químicas. LAS REACCIONES QUÍMICAS. Ejercicios de la unidad 8 1.- Ajusta por tanteo las siguientes reacciones químicas: a) C 3 H 8 + O CO + H O; b) Na + H O NaOH + H ; c) KOH + H

Más detalles

3Soluciones a los ejercicios y problemas PÁGINA 79

3Soluciones a los ejercicios y problemas PÁGINA 79 Solucioes a los ejercicios y problemas PÁGINA 79 Pág. P RACTICA Sucesioes formació térmio geeral Escribe los cico primeros térmios de las siguietes sucesioes: a) Cada térmio se obtiee sumado 7 al aterior.

Más detalles

Números complejos Susana Puddu

Números complejos Susana Puddu Números complejos Susaa Puddu 1. El plao complejo. E el cojuto C = IR IR defiimos la suma y el producto de dos elemetos de C de la siguiete maera a, b + c, d = a + c, b + d a, b.c, d = ac bd, ad + bc Dejamos

Más detalles

TEMA 7: (productos de la reacción) por la reorganización de los átomos formando moléculas nuevas. Para ello es

TEMA 7: (productos de la reacción) por la reorganización de los átomos formando moléculas nuevas. Para ello es TEMA 7: REACCIONES QUÍMICAS Una Reacción Química es un proceso mediante el cual unas sustancias (reactivos) se transforman en otras (productos de la reacción) por la reorganización de los átomos formando

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

La uma, por ser una unidad de masa, tiene su equivalencia en gramos:

La uma, por ser una unidad de masa, tiene su equivalencia en gramos: UNIDAD 2 Magnitudes atómico-moleculares Introducción Teórica La masa de un átomo depende del átomo en cuestión, es decir del número de protones y neutrones que contenga su núcleo. Dicha magnitud es muy

Más detalles

FUERZAS EN LOS ENGRANAJES

FUERZAS EN LOS ENGRANAJES FUERZAS EN LOS ENGRANAJES Además de la omeclatura, tipo y aplicacioes de los egraajes, el igeiero agrícola debe coocer la relació que existe etre los egraajes y las fuerzas que actúa sobre ellos. Esta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

Intervalos de Confianza para la diferencia de medias

Intervalos de Confianza para la diferencia de medias Itervalo de Cofiaza para la diferecia de media INTERVALO DE CONFIANZA PARA LA DIFERENCIA DE MEDIAS Sea,,..., ua muetra aleatoria de obervacioe tomada de ua primera població co valor eperado μ, y variaza

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Defiició y propiedades Sucesioes de úmeros reales 4 4 Defiició y propiedades 47 4 Sucesioes parciales 49 43 Mootoía 50 44 Sucesioes divergetes 53 45 Criterios de covergecia 54

Más detalles

Leyes de los gases. Ley de Gay-Lussac o del volumen constante. Ecuación de estado de los gases ideales p? V = n? R? T. volumen molar densidad del gas

Leyes de los gases. Ley de Gay-Lussac o del volumen constante. Ecuación de estado de los gases ideales p? V = n? R? T. volumen molar densidad del gas PRESENACIÓN OS GASES PRESENACIÓN Esta unidad se centra en el estudio de los gases y sus leyes. Dentro de cada ley se ha establecido la misma metodología. Primero se introduce una breve explicación sobre

Más detalles

LEYES FUNDAMENTALES DE LA QUÍMICA

LEYES FUNDAMENTALES DE LA QUÍMICA CONTENIDOS LEYES FUNDAMENTALES DE LA QUÍMICA 1.- La Química en la antigüedad. La Alquimia. 2.- Sustancias homogéneas y heterogéneas. Elementos y compuestos. (Repaso)..- Leyes fundamentales de la Química..1.

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio, Opción B Junio, Ejercicio 6, Opción A Reserva 1, Ejercicio, Opción B Reserva 1, Ejercicio 4, Opción

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 14 QUÍMICA TEMA 4: ENERGÍA DE LAS REACCIONES QUÍMICAS Junio, Ejercicio 5, Opción A Reserva 1, Ejercicio 5, Opción B Reserva, Ejercicio 4, Opción A Reserva, Ejercicio

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL UNIERSIDAD NACIONAL EXERIMENAL OLIECNICA ANONIO JOSÉ DE SUCRE ICERRECORADO BARQUISIMEO DEARAMENO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL UNIDAD I CLASE Nº EL ESADO GASEOSO GAS REAL Gas erfecto: es aquel

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolució de ecuacioes o lieales Solucioa ecuacioes o lieales tipo f()= Normalmete cada método tiee sus requisitos Métodos so iterativos Métodos iterativos para resolver f()= E geeral métodos iterativos

Más detalles

UNIDAD 3 ESTADO GASEOSO

UNIDAD 3 ESTADO GASEOSO UNIDAD DIDÁCTICA 3 UNIDAD 3 ESTADO GASEOSO En la naturaleza, las sustancias se puede presentar en tres diferentes estados de agregación: sólido, líquido y gaseoso, cada uno de los cuales se distingue por

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

TEMA IV. 1. Series Numéricas

TEMA IV. 1. Series Numéricas TEMA IV Series uméricas. Ídice. Series uméricas. 2. Propiedades geerales de las series. 3. Series de térmios positivos. Covergecia. 4. Series alteradas. 5. Series de térmios arbitrarios. 6. Ejercicios

Más detalles

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi

Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo

Más detalles

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I)

Soluciones. DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) Soluciones DESCRIPCION MACROSCOPICA DE UN GAS IDEAL (Serway, Cap 19, vol I) 1. Demuestre que 1 mol de cualquier gas a presión atmosférica de 101 kpa y temperatura de 0ºC ocupa un volumen de 22,4 L. n =

Más detalles

8. INTERVALOS DE CONFIANZA

8. INTERVALOS DE CONFIANZA 8. INTERVALOS DE CONFIANZA Al estimar el valor de u parámetro de la distribució teórica, o se provee iformació sobre la icertidumbre e el resultado. Esa icertidumbre es producida por la dispersió de la

Más detalles

Cálculo de límites Criterio de Stolz. Tema 8

Cálculo de límites Criterio de Stolz. Tema 8 Tema 8 Cálculo de límites El presete tema tiee u iterés emietemete práctico, pues vamos a estudiar alguos métodos cocretos para resolver idetermiacioes. Etre ellos destaca el criterio de Stolz, del que

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 1 Primer Trimestre Escuela Pública Eperimetal Descocetrada Nº Dr. Carlos Jua Rodríguez Matemática º Año Ciclo Básico de Secudaria Teoría Nº Primer Trimestre Cojuto de los úmeros racioales Los úmeros racioales so aquellos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS NATURALES Y EDUCACION AMBIENTAL ASIGNATURA: QUIMICA DOCENTE: OSCAR GIRALDO HERNANDEZ TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO

Más detalles

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos Unidad 0 CÁLCULOS QUÍMICOS Unidad 0. Cálculos químicos 1 0. Leyes ponderales Leyes que rigen las combinaciones químicas. Se basan en la experimentación y miden cuantitativamente la cantidad de materia

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

Ejercicios de QUÍMICA (2ºBachillerato) Tema 0. REVISIÓN DE CONCEPTOS BÁSICOS [1]

Ejercicios de QUÍMICA (2ºBachillerato) Tema 0. REVISIÓN DE CONCEPTOS BÁSICOS [1] Ejercicios de QUÍMICA (2ºBachillerato) Tema 0. REVISIÓN DE CONCEPTOS BÁSICOS [1] [1]. Calcula: (a) La masa de un átomo de potasio. (b) El número de átomos de fósforo que hay en 2 g de este elemento. (c)

Más detalles

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda

UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS. 1. Medidas de resumen descriptivas. 2. Medidas de tendencia central Moda UNIDAD III DESCRIPCIÓN DE UN CONJUNTO DE DATOS 1. Medidas de resume descriptivas Para describir u cojuto de datos utilizamos ua serie de medidas, de igual forma que para describir a u persoa podemos utilizar

Más detalles

UNIVERSIDAD SIMON BOLIVAR

UNIVERSIDAD SIMON BOLIVAR NVESDD SMON BOLV COMPOMENO DE L MQN CON Hoja Nº -63 EXCCÓN EN DEVCON 1. La máquia e derivació coectada a ua red de tesió costate. La ecuació para la tesió es (cosiderado circuito pasivo): + ). + E ( (

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

Intervalo de confianza para µ

Intervalo de confianza para µ Itervalo de cofiaza para p y ˆp1 ˆp ˆp1 ˆp ˆp z 1 α/ ; ˆp + z 1 α/, 7.6 ˆp + z 1 α/ ± z 1 α/ 1 + z 1 α/ ˆp1 ˆp + z 1 α/ 4 7.7 siedo ˆp = x/ y z 1 α/ el cuatil 1 α/ de la distribució ormal estádar. El itervalo

Más detalles

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA. Problemas resueltos de cambios de fase de la materia.

UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA. Problemas resueltos de cambios de fase de la materia. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE QUÍMICA Problemas resueltos de cambios de fase de la materia. 1. Qué se entiende por sistema y alrededores? Un sistema se define como cualquier

Más detalles

Teorema del límite central

Teorema del límite central Teorema del límite cetral Carles Rovira Escofet P03/75057/01008 FUOC P03/75057/01008 Teorema del límite cetral Ídice Sesió 1 La distribució de la media muestral... 5 1. Distribució de la media muestral

Más detalles

Problemas resueltos de termoquímica.

Problemas resueltos de termoquímica. Problemas resueltos de termoquímica. 12 de noviembre de 2014 1. Variables termodinámicas. 1. Calcula el volumen molar en ml/mol del H 2 O a 1 atm y 100 C si su densidad es ρ = 0,958 gr/cm 3. V m = V/P

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 7: REACCIONES REDOX

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 7: REACCIONES REDOX PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 QUÍMICA TEMA 7: REACCIONES REDOX Junio, Ejercicio 5, Opción A Reserva 1, Ejercicio 6, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio 6, Opción B

Más detalles

MATE1214 -Calculo Integral Parcial -3

MATE1214 -Calculo Integral Parcial -3 MATE114 -Calculo Itegral Parcial -3 Duració: 60 miutos 1. Cosidere la curva paramétrica descrita por = te t, y = 1 + t. Halle la pediete de la recta tagete a esta curva cuado t = 0.. Calcular la logitud

Más detalles

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n)

1 Sucesiones. Ejemplos. a n = n a n = n! a n = n n. a n = p n. a n = 2n3 + n 2 + 5 n 2 + 8. a n = ln(n) 1 Sucesioes De ició. Ua sucesió, a, es ua fució que tiee como domiio el cojuto de los úmeros aturales y como cotradomiio el cojuto de los úmeros reales: a : N! R. Se usa la siguiete otació: a () = a :

Más detalles