Fuerzas eléctricas y campo eléctrico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Fuerzas eléctricas y campo eléctrico"

Transcripción

1 Fuerzas eléctricas y campo eléctrico Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso Departamento de Física Aplicada III Universidad de Sevilla Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss /58

2 Introducción Elektron es un vocablo griego que significa ámbar Al frotar el ámbar éste atrae pequeños objetos (pajitas, plumas, ) La electricidad es un fenómeno muy presente en la vida diaria: Fenómenos de electricidad estática Ingeniería: máquinas y motores eléctricos 3/58 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 4/58

3 Carga eléctrica Evidencia eperimental: Dos barras de plástico frotadas con piel se repelen Dos barras de vidrio frotadas con seda se repelen La barra de vidrio y la de plástico se atraen Se dice que las barras están cargadas Hay dos tipos de carga: Carga positiva Carga negativa 5/58 Propiedades de la carga Cuantización La carga esta cuantizada: Donde e es la unidad fundamental de carga, que coincide con el valor absoluto de la carga del electrón Usualmente N es muy grande Conservación de la carga 19 Unidades: culombio (C) e C Ejemplo: la carga trasvasada al frotar dos objetos es del orden de 50 nc: Q Ne 9 50nC 5010 C N e C 11 6/58

4 Aislantes y conductores Clasificación de la materia atendiendo a sus propiedades de conducción eléctrica Conductores: la carga puede desplazarse por su interior con facilidad Ejemplo: metales Aislantes: La carga no puede moverse libremente Cuando se cargan por frotación la carga queda confinada en la región frotada. Ejemplos: vidrio, caucho, madera. 7/58 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 8/58

5 Ley de Coulomb (I) Fuerza ejercida por una carga puntual sobre otra Está dirigida a lo largo de la línea que las une Disminuye con el cuadrado de la distancia que separa las cargas Es proporcional al producto de las cargas Es repulsiva para cargas del mismo signo y atractiva para cargas de signo contrario Balanza de torsión 9/58 Ley de Coulomb (II) Representación matemática: Nm C F1 rˆ qq F k rˆ r1 r r r r r r k Constante de Coulomb Medida eperimentalmente 10/58

6 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 11/58 Principio de superposición Cuando tenemos un sistema de cargas la fuerza sobre cada carga es la suma vectorial de las fuerzas individuales ejercidas por cada una de las demás cargas Principio eperimental 1/58

7 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 13/58 Campo eléctrico: introducción La fuerza entre cargas puede verse como una acción a distancia. Una visión alternativa es la del campo eléctrico: Una carga crea un campo eléctrico en todo el espacio: magnitud vectorial El campo eléctrico ejerce una fuerza sobre otras cargas 14/58

8 Campo eléctrico: definición En un punto colocamos una carga de prueba: q 0 No perturba la distribución de cargas original (q 0 0) Campo eléctrico: cociente entre la fuerza eléctrica que actúa sobre la partícula y la carga de la partícula q q 1 F1 0 q 0 F F 0 E F q 0 Magnitud vectorial Dirección de F Independiente de q 0 Unidades: N/C 15/58 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 16/58

9 Campo de una carga puntual Tenemos una carga puntual q i Situamos una carga de prueba q 0 Ley de Coulomb: E i qq F k r i 0 ˆ i0 ip rip F q i0 0 q Ei k r r i ˆ ip ip i p z E i r q0 p O y r ip r i qi Punto fuente Punto campo CAMPO ELÉCTRICO DE UNA CARGA PUNTUAL 17/58 Campo eléctrico de una distribución de cargas puntuales z q r 3 3 O y r p r q r q1 1 Principio de superposición para el campo eléctrico Es una consecuencia del principio de superposición para la fuerza El campo eléctrico de la distribución de cargas es la suma vectorial de los campos de cada carga puntual q E E k r i ˆ p i ip i i rip 18/58

10 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 19/58 Campo eléctrico de distribuciones continuas de carga Las distribuciones de carga son siempre discretas (cuantización de la carga) Cuando un punto de la distribución de cargas contiene un número muy alto de cargas discretas la distribución puede tratarse como una distribución continua de carga Ejemplo: sustancias líquidas y sólidas que se tratan como distribuciones continuas de masa z y V m i i dm m lim V 0 V dv dm dv m dv m V m 0/58

11 Distribución volumétrica de carga z V y dq Campo debido a un dq: dv dq de k r ˆ r P r Distribución volumétrica de carga: Densidad de carga: dq dv Campo total debido a la distribución en V : dq E k r ˆ V r dv E k rˆ V r 1/58 Distribuciones superficial y lineal de carga Distribución superficial de carga: z dq ds ds y r E k rˆ S r P Distribución lineal de carga: P z r dl dq y dl dl E k rˆ L r /58

12 Ejemplo: Campo sobre el eje de una carga lineal finita L E E y k d L L P L d ( ) P P de de u P du d kdq kd ( ) ( ) P k 1 1 kl kq k L L L L Distribución uniforme: P P P L L P P P P du u Q L P L 3/58 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 4/58

13 Líneas de campo eléctrico Representación gráfica para visualizar el campo eléctrico El campo eléctrico es tangente a la línea de campo. El módulo del campo eléctrico es mayor cuanto más próimas están las líneas de campo entre sí. 5/58 Ejemplo: carga puntual Sólo dibujamos un número finito de líneas, pero eiste el campo en todo el espacio Representación bidimensional de un campo tridimensional Línea de campo no equivale a trayectoria de una carga en ese campo 6/58

14 Ejemplo: carga puntual Sólo dibujamos un número finito de líneas, pero eiste el campo en todo el espacio Representación bidimensional de un campo tridimensional Línea de campo no equivale a trayectoria de una carga en ese campo 7/58 Dos cargas positivas iguales 8/58

15 Cargas iguales con distinto signo: dipolo eléctrico 9/58 Reglas para representar líneas de campo Salen de las cargas positivas y terminan en las negativas Si hay eceso de carga positiva debe haber líneas que acaban en el infinito Si hay eceso de carga negativa debe haber líneas que salen del infinito Para cada carga puntual las líneas se dibujan entrando o saliendo de la carga y: Uniformemente espaciadas En número proporcional al valor de la carga Dos líneas de campo no pueden cruzarse 30/58

16 Ejemplo: Eceso de carga positiva: líneas que terminan en el infinito Salen 16 líneas equiespaciadas Entran 8 líneas equiespaciadas Líneas salen de la carga positiva y entran en la carga negativa 31/58 Líneas a distancias grandes A distancias grandes comparadas con la mayor distancia entre cargas del sistema: Líneas igualmente espaciadas Líneas radiales Equivalen a las líneas de una sola carga puntual con carga igual a la carga neta del sistema 3/58

17 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 33/58 Movimiento de cargas en un campo eléctrico Sea una partícula de masa m y carga q en el seno de un campo eléctrico: q E F qe F ma qe q a E m Segunda Ley de Newton: Si el campo es uniforme: movimiento uniformemente acelerado 34/58

18 y Ejemplo 1: electrón en campo uniforme E F eei ma F ee q e ee d a m dt 0 t ee d v( ) v(0) adt at v t 0 m dt t t ee 0 atdta 0 t m 0 Movimiento uniformemente acelerado 35/58 Ejemplo : electrón con velocidad perpendicular al campo y F ee v 0 q E e Eje y : movimiento rectilíneo uniforme y y v t 0 0 Eje : movimiento rectilíneo uniformemente acelerado ee 0 t m La trayectoria del electrón es una parábola, análogamente a la trayectoria de una masa con cierta velocidad inicial en un campo gravitatorio (tiro parabólico) 36/58

19 Dipolo eléctrico Dipolo eléctrico: dos cargas iguales y de signo contrario separadas por una pequeña distancia L q L - + q Momento dipolar eléctrico: p ql Las moléculas de algunos materiales aislantes son dipolos (moléculas polares) Ejemplo: molécula de agua Las moléculas no polares sometidas a un campo eléctrico se polarizan 37/58 Efecto de un campo eléctrico sobre un dipolo eléctrico Campo eléctrico uniforme: No hay fuerza neta sobre el dipolo Aparece un par de fuerzas: p E Un dipolo eléctrico tiende a alinearse con un campo eléctrico eterno 38/58

20 Efecto de un campo eléctrico sobre un dipolo eléctrico Campo eléctrico no uniforme: De nuevo hay un par de fuerzas que tiende a alinear al dipolo con el campo Además aparece una fuerza neta sobre el dipolo Un dipolo eléctrico tiende a desplazarse hacia las zonas de campo eléctrico más intenso Ejemplo: atracción de trocitos de papel por un bolígrafo de plástico cargado 39/58 Índice Introducción Carga eléctrica Ley de Coulomb Principio de superposición Campo eléctrico Campo de cargas puntuales Campo de distribuciones continuas de carga Líneas de campo eléctrico Acción del campo eléctrico sobre las cargas Ley de Gauss 40/58

21 Ley de Gauss Ley general del electromagnetismo Útil para calcular campos eléctricos Sólo puede aplicarse para tal fin en situaciones en que la distribución de cargas tenga una alta simetría 41/58 Flujo eléctrico Magnitud proporcional al número de líneas de campo que atraviesan una superficie Supongamos E uniforme y superficie perpendicular A E EA ' ' E E ' ' A na n Definimos: Si Si FLUJO El flujo aumenta o disminuye proporcionalmente al número de líneas de campo que atraviesan la superficie 4/58

22 Flujo eléctrico Supongamos una superficie no perpendicular: E A 1 ˆn A A 1 es perpendicular a las líneas de campo A 1 es atravesada por el mismo número de líneas de campo que A : EA EA cos 1 E A En general: EAEnA ˆ EAcos 43/58 Flujo eléctrico Supongamos superficie arbitraria y campo no uniforme E A i nˆi A i Tomamos tan pequeña que pueda considerarse: Superficie plana E n ˆ A i i i i E nda ˆ E da Campo eléctrico uniforme E nˆ A i i i i Flujo total: ; en el límite : S S A i 0 44/58

23 Flujo en una superficie cerrada ˆn E nda ˆ S 45/58 Ley de Gauss S R Suponemos una carga puntual en el centro de una esfera de radio R R Q El flujo es independiente de R Q E nˆ En k Radial R EdA E da E 4R S R 4kQ El flujo es proporcional a la carga dentro de la esfera S R n n 46/58

24 Ley de Gauss Supongamos otras superficies no necesariamente esféricas: S 1 S R Q A todas las superficies las atraviesa el mismo número de líneas Mismo flujo neto para todas las superficies: 4kQ S 47/58 Ley de Gauss Supongamos un sistema de cargas: Principio de superposición: ( E E ) da S kq ( q) 1 Para la carga eterior: E da S q 3 q q 1 Todas las líneas de campo que entran por un punto de la superficie salen por otro S 48/58

25 Enunciado de la Ley de Gauss El flujo neto a través de cualquier superficie cerrada es 4k veces la carga neta dentro de la superficie E da E da 4kQ S S n int A veces se escribe la constante de Coulomb en función de la permitividad del espacio libre: 1 1 C 4k con 0 8,8510 Nm 0 Q int 0 49/58 Aplicaciones de la Ley de Gauss Es una Ley válida para cualquier superficie y cualquier distribución de carga A veces es útil para determinar el campo eléctrico debido a una distribución de carga que tiene un alto grado de simetría La técnica consiste en emplear la ecuación de la Ley de Gauss buscando una superficie de integración (superficie gaussiana) tal que el campo eléctrico pueda salir fuera de la integral Porque E n sobre la superficie gaussiana sea constante o nulo 50/58

26 Simetría esférica Carga puntual Simetría: campo radial Superficie gaussiana: esfera de radio r E da E da E r kq S r 4 4 n n S n r r E E nˆ n E n q k r S r 51/58 Simetría esférica r Esfera de radio R con carga Q uniformemente distribuida en su volumen Superficie gaussiana: esfera de radio r R r R E 4 n r 4 kq EdA n 4 kq 3 S 3 r r 4 q int 4r 3Q 3 En r R Q Q 3 En k 4 R 3 r kq En r 3 R int 5/58

27 Esfera con carga uniforme en volumen 53/58 Simetría cilíndrica S 1 r Campo debido a una carga lineal uniforme e infinita ( ) Simetría: campo radial que depende de la distancia a la línea Superficie gaussiana: cilindro longitud L y radio r coaial con la línea de carga E nda ˆ E nda ˆ E nda ˆ E nda ˆ S L S S1 S S L E rl q L int n 0 0 E n 1 0 r 55/58

28 Simetría plana z Plano infinito uniformemente cargado Simetría: E( z) perpendicular al plano e impar en z Superficie gaussiana: caja de pastillas ; S 1 =S =A E nda ˆ EzdA ( ) E ( zda ) EzA ( ) S S y S 1 S L S ˆn ˆn E( z) 1 ˆn E( z) E( z) E( z) qint A EzA ( ) 0 0 E k 0 56/58 Simetría plana E z z 57/58

29 Conductor en equilibrio electrostático En el equilibrio el campo eléctrico en el seno de un conductor debe ser nulo En caso contrario las cargas libres se desplazarían y no habría equilibrio Esta situación se alcanza siempre que no eista una fuente de energía eterna que mantenga una corriente (como en circuitos con fuentes) Para buenos conductores (como el cobre) el tiempo que se tarda en alcanzar el equilibrio es del orden de nanosegundos Consecuencia: la carga neta de un conductor en equilibrio electrostático se encuentra en su superficie Se puede demostrar usando la Ley de Gauss 58/58 Resumen La magnitud responsable de la interacción eléctrica de la materia es la carga eléctrica Es una magnitud dual (carga positiva y carga negativa). Está cuantizada. La carga se conserva. La fuerza de interacción entre cargas puntuales viene dada por la Ley de Coulomb. La Ley de Coulomb y el principio de superposición permiten calcular la fuerza que cualquier distribución de carga, sea discreta o continua, ejerce sobre una carga. Se define el campo eléctrico como la fuerza eléctrica ejercida por una distribución de cargas sobre la unidad de carga en cualquier punto del espacio. El campo eléctrico se calcula, en general, a partir de una epresión integral y se representa gráficamente mediante líneas de campo. La Ley de Gauss es una ley fundamental de la física que puede utilizarse para calcular de una forma sencilla (sin integrar) el campo eléctrico creado por distribuciones de carga que posean un alto grado de simetría. El campo eléctrico en el interior de un conductor en equilibrio electrostático es nulo 59/58

Tema 3.-Fuerzas eléctricas

Tema 3.-Fuerzas eléctricas Tema 3: Fuerzas eléctricas y campo eléctrico Fundamentos Físicos de la Ingeniería Ingeniería Industrial Primer curso Curso 009/010 Dpto. Física Aplicada III Universidad de Sevilla 1 Índice Introducción

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Módulo 1: Electrostática Campo eléctrico

Módulo 1: Electrostática Campo eléctrico Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en

Más detalles

II. ELECTROSTÁTICA. Carga eléctrica:

II. ELECTROSTÁTICA. Carga eléctrica: FÍSICA II TELECOM Profesor BRUNO MAGALHAES II. ELECTROSTÁTICA La electrostática es la rama de la física que estudia los efectos mutuos que se producen entre los cuerpos como consecuencia de su carga eléctrica.

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO CAMPO ELÉCTRICO REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 6 EL CAMPO ELECTROSTÁTICO El concepto físico de campo El concepto campo surge ante la

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Campo eléctrico, definición Se dice que

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

Capítulo 1: Interacción Eléctrica

Capítulo 1: Interacción Eléctrica Capítulo 1: Interacción Eléctrica Un poco de historia Tales de Mileto (624-543 A. C.) Observó que unas briznas de hierba seca eran atraídas por un trozo de ámbar que antes había frotado con su túnica.

Más detalles

Interacción Eléctrica

Interacción Eléctrica Capítulo 1: Interacción Eléctrica Tales de Mileto (624-543 A. C.) Observó que unas briznas de hierba seca eran atraídas por un trozo de ámbar que antes había frotado con su túnica. Electricidad por frotación

Más detalles

Essential University Physics

Essential University Physics Essential University Physics Richard Wolfson 20 Carga Eléctrica, Fuerza, y Campo PowerPoint Lecture prepared by Richard Wolfson Slide 20-1 En esta exposición usted aprenderá Como la materia y muchas de

Más detalles

TEMA 3:ELECTROSTATICA

TEMA 3:ELECTROSTATICA TEMA 3:ELECTROSTATICA Escribir y aplicar la ley de Coulomb y aplicarla a problemas que involucran fuerzas eléctricas. Definir el electrón, el coulomb y el microcoulomb como unidades de carga eléctrica.

Más detalles

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial)

Concepto de Campo. Homogéneo No homogéneo. 4Un campo de temperaturas (Escalar) 4Un campo de velocidades (Vectorial) 4Campo gravitacional (Vectorial) CAMPO ELECTRICO Concepto de Campo l El concepto de Campo es de una gran importancia en Ciencias y, particularmente en Física. l l La idea consiste en atribuirle propiedades al espacio en vez de considerar

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles

Tema 3: Campos estáticos

Tema 3: Campos estáticos Tema 3: Campos estáticos 1 Índice (I) Ecuaciones en el caso estacionario Electrostática Solución del problema electrostático Cálculo de campos mediante Ley de Gauss Energía electrostática Desarrollo multipolar

Más detalles

1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la )

1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) 1. Defina la ley de Coulom (escriba su ecuación, unidades y a cuanto equivale K y la ) Ley de Coulomb La fuerza entre cargas eléctricas es directamente proporcional al producto de dichas cargas e inversamente

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

CONCEPTO La electrostática es parte de la física que es estudia el comportamiento de las cargas eléctricas en reposo.

CONCEPTO La electrostática es parte de la física que es estudia el comportamiento de las cargas eléctricas en reposo. Electrostática CONCEPTO La electrostática es parte de la física que es estudia el comportamiento de las cargas eléctricas en reposo. MODELOS ATÓMICOS LA MATERIA SEGÚN SU COMPORTAMIENTO ELÉCTRICO SE CLASIFICA

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

Principios de Termodinámica y Electromagnetismo

Principios de Termodinámica y Electromagnetismo Facultad de Ingeniería Principios de Termodinámica y Electromagnetismo Proyecto de Investigación Alumnos: CAMPO ELÉCTRICO. Arias Vázquez Margarita Isabel Arroyo Ramírez Rogelio Beltrán Gómez Selvin Eduardo

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

TEMA 3: CAMPO ELÉCTRICO

TEMA 3: CAMPO ELÉCTRICO TEMA 3: CAMPO ELÉCTRICO o Naturaleza electrica de la materia. o Ley de Coulomb. o Principio de superposicion. o Intensidad del campo eléctrico. o Lineas del campo electrico. o Potencial eléctrico. o Energia

Más detalles

INTERACCIÓN ELÉCTRICA

INTERACCIÓN ELÉCTRICA INTERACCIÓN ELÉCTRICA 1. La carga eléctrica. 2. La ley de Coulomb. 3. El campo eléctrico. 4. La energía potencial. 5. El potencial electroestático. 6. El campo eléctrico uniforme. 7. El flujo de campo

Más detalles

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática

Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Agosto, 2015 Marco Antonio (ITT II) México D.F.,

Más detalles

CAMPO ELÉCTRICO 1.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA.

CAMPO ELÉCTRICO 1.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA. CAMPO ELÉCTRICO CAMPO ELÉCTRICO 1.- 2.- 3.- 4.- 5.- 6.- 7.- 8.- FENÓMENOS ELECTROSTÁTICOS. CARGA ELÉCTRICA. LEY DE COULOMB. CAMPO ELECTROSTÁTICO. ENERGÍA POTENCIAL ELECTROSTÁTICA. POTENCIAL ELECTROSTÁTICO.

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Recordamos que: La carga eléctrica siempre

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada?

2- El flujo de un campo vectorial se define para una superficie abierta o cerrada? ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 2 LEY DE GAUSS Bibliografía Obligatoria (mínima) Capítulo 24 Física de Serway Tomo II Apunte de la cátedra: Capìtulo III PREGUNTAS SOBRE LA TEORIA Las preguntas

Más detalles

En realidad el electromagnetismo es la palabra que se usa para nombrar a los fenómenos eléctricos y magnéticos como consecuencia de la fuerza

En realidad el electromagnetismo es la palabra que se usa para nombrar a los fenómenos eléctricos y magnéticos como consecuencia de la fuerza Fuerza Eléctrica La Fuerza electromagnética es una de las cuatro fuerzas fundamentales, siendo las otras 3 la gravitacional, la fuerza de interacción débil y la fuerza nuclear intensa. En realidad el electromagnetismo

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

INTENSIDAD DE CAMPO ELECTRICO (E)

INTENSIDAD DE CAMPO ELECTRICO (E) CAMPO ELECTRICO Región donde se produce un campo de fuerzas. Se representa con líneas que indican la dirección de la fuerza eléctrica en cada punto. Una carga de prueba observa la aparición de fuerzas

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

UNIDAD 1 CARGAS Y FUERZA ELÉCTRICA

UNIDAD 1 CARGAS Y FUERZA ELÉCTRICA UNIDAD 1 CARGAS Y FUERZA ELÉCTRICA GRM. Física II. Semestre 2015-1 Referencias: Fisica para ingeniería y ciencias. Volumen II Ohanian/Markert 2008; Serway-Hewett, 2005; Bauer /Westfall 2013 1 F U E R Z

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

Módulo 1: Electrostática Potencial eléctrico

Módulo 1: Electrostática Potencial eléctrico Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico FÍSICA II PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico 1. Dos esferas conductoras sin carga con sus superficies en contacto están apoyadas sobre una tabla de madera bien aislada. Una barra cargada

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

FLUJO ELECTRICO Y LA LEY DE GAUSS

FLUJO ELECTRICO Y LA LEY DE GAUSS 21 UNIVRSIDAD NACIONAL SANTIAGO ANTÚNZ D MAYOLO FACULTAD D INGNIRÍA CIVIL CURSO: FISICA III FLUJO LCTRICO Y LA LY D GAUSS AUTOR: Mag. Optaciano L. Vásquez García HUARAZ - PRÚ I. INTRODUCCIÓN Para realizar

Más detalles

Con frecuencia, existe un modo fácil y un modo difícil de resolver un problema.

Con frecuencia, existe un modo fácil y un modo difícil de resolver un problema. Teorema de Gauss. Notación: Los vectores se indicarán en negrita. Con frecuencia, existe un modo fácil y un modo difícil de resolver un problema. El modo fácil tal vez sólo requiera el empleo de las herramientas

Más detalles

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual

Electrostática. Ley de Coulomb. Campo eléctrico. Líneas de campo. Potencial eléctrico creado por una carga puntual Electricidad Ley de Coulomb Electrostática Sistemas de unidades d Campo eléctrico. Líneas de campo Potencial eléctrico creado por una carga puntual Estructura atómica Electrones Núcleo: protones y neutrones

Más detalles

Principio de conservación de la carga. Cuantización de la carga. Medición de la carga eléctrica

Principio de conservación de la carga. Cuantización de la carga. Medición de la carga eléctrica Principio de conservación de la carga En concordancia con los resultados experimentales, el principio de conservación de la carga establece que no hay destrucción ni creación neta de carga eléctrica, y

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.

Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua. Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 4192 Sevilla Física II Grupos 2 y 3 Bien Mal Nulo El test se calificará sobre 1 puntos, repartidos equitativamente

Más detalles

Módulo 1: Electrostática Fuerza eléctrica

Módulo 1: Electrostática Fuerza eléctrica Módulo 1: Electrostática Fuerza eléctrica 1 Cargas eléctricas y fuerzas Hay dos tipos de cargas cargas positivas y cargas negativas REPELEN REPELEN ATRAEN Fuerzas del mismo signo se repelen, mientras que

Más detalles

Capítulo 2. Ley de Gauss

Capítulo 2. Ley de Gauss Capítulo 2. Ley de Gauss En estos apuntes se presenta un resumen de los contenidos tratados en más detalle en el libro: Física para la Ciencia y la Tecnología (Volumen 2) Autors P. A. Tipler i E. Mosca

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

Calcular la diferencia de potencial entre el centro de la esfera y el infinito.

Calcular la diferencia de potencial entre el centro de la esfera y el infinito. Problema 2.1 Carga volumétrica, principio de superpo- sición Figura 2.1. Esfera con distribución de carga no simétrica (Problema 2.1) Una esfera no conductora de radio R está dividida es dos semiesferas.

Más detalles

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato

EL CAMPO ELÉCTRICO. Física de 2º de Bachillerato EL CAMPO ELÉCTRICO Física de 2º de Bachillerato Los efectos eléctricos y magnéticos son producidos por la misma propiedad de la materia: la carga. Interacción electrostática: Ley de Coulomb Concepto de

Más detalles

TEMA 4. CAMPO ELÉCTRICO

TEMA 4. CAMPO ELÉCTRICO TEMA 4. CAMPO ELÉCTRICO ÍNDICE 1. Evolución histórica de la electricidad. 2. Fuerza eléctrica. Ley de Coulomb. 2.1. Fuerza eléctrica creada por varias cargas. 3. Campo eléctrico. 3.1. Campo eléctrico creado

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Electricidad y Magnetismo. Ley de Coulomb.

Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. Ley de Coulomb. Electricidad y Magnetismo. 2 Electricidad y Magnetismo. 3 Electricidad y Magnetismo. 4 Electricidad y Magnetismo. 5 Electricidad y Magnetismo. Electrización es

Más detalles

Interacción Electrostática

Interacción Electrostática Interacción Electrostática Área Física Resultados de aprendizaje Reconocer las características de las cargas eléctricas en diversos problemas. Resolver problemas de electrostática mediante las leyes de

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

Campo y potencial eléctrico de una carga puntual

Campo y potencial eléctrico de una carga puntual Campo y potencial eléctrico de una carga puntual La ley de Coulomb nos describe la interacción entre dos cargas eléctricas del mismo o de distinto signo. La fuerza que ejerce la carga Q sobre otra carga

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

Problemas de Potencial Eléctrico. Boletín 2 Tema 2

Problemas de Potencial Eléctrico. Boletín 2 Tema 2 1/22 Problemas de Potencial Eléctrico Boletín 2 Tema 2 Fátima Masot Conde Ing. Industrial 21/11 Problema 1 Ocho partículas con una carga de 2 nc cada una están uniformemente distribuidas sobre el perímetro

Más detalles

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES.

1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. 1.- CONCEPTO DE FUERZA. MAGNITUD VECTORIAL. TIPOS DE FUERZAS. UNIDADES. a) CONCEPTO DE FUERZA La fuerza es una magnitud asociada a las interacciones entre los sistemas materiales (cuerpos). Para que se

Más detalles

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO

Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO Departamento de Electrónica y Sistemas PARTE II) ELECTROSTÁTICA. CAMPO ELÉCTRICO 1. Carga eléctrica y materia. Distribuciones de carga 2. Ley de Coulomb 3. Campo eléctrico Departamento de Electrónica y

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

4.3 Almacenamiento de energía eléctrica.

4.3 Almacenamiento de energía eléctrica. CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.

Más detalles

Introducción histórica

Introducción histórica Introducción histórica Tales de Mileto (600 a.c.) observó la propiedad del ámbar de atraer pequeños cuerpos cuando se frotaba. Ámbar en griego es electron ELECTRICIDAD. En Magnesia existía un mineral que

Más detalles

Capacidad y dieléctricos

Capacidad y dieléctricos Capacidad y dieléctricos Física II Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 211212 Dpto. Física Aplicada III Universidad de Sevilla Índice Introducción Capacidad:

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

27.1. Una revisión del electromagnetismo. Capítulo 27

27.1. Una revisión del electromagnetismo. Capítulo 27 27 La carga eléctrica y la ley de Coulomb Muchas de las propiedades de los materiales residen en sus propiedades electromagnéticas. Aquí se inicia con el estudio de la cargá eléctrica, algunas propiedades

Más detalles

Campo eléctrico 1: Distribuciones discretas de carga

Campo eléctrico 1: Distribuciones discretas de carga Campo eléctrico 1: Distribuciones discretas de carga Introducción Carga eléctrica Conductores y aislantes y carga por inducción Ley de Coulomb El campo eléctrico Líneas de campo eléctrico Movimiento de

Más detalles

SISTEMAS DE UNIDADES. Carga y mas del electrón, protón y neutron. Partícula Carga (C) Masa (Kg.) Electron (e) Proton (p) Neutron (n)

SISTEMAS DE UNIDADES. Carga y mas del electrón, protón y neutron. Partícula Carga (C) Masa (Kg.) Electron (e) Proton (p) Neutron (n) Electrostática SISTEMAS DE UNIDADES Carga y mas del electrón, protón y neutron Partícula Carga (C) Masa (Kg.) Electron (e) Proton (p) Neutron (n) -1.6021917 X 10-19 +1.6021917 X10-19 0 9.1095 X 10-31 1.67261

Más detalles

Tema 7: Polarización. Índice

Tema 7: Polarización. Índice Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen

Más detalles

TECNOLOGÍA E INFORMÁTICA GRADO DECIMO

TECNOLOGÍA E INFORMÁTICA GRADO DECIMO TECNOLOGÍA E INFORMÁTICA GRADO DECIMO EDUARDO OROZCO OTERO I. Introducción II. Objetivos III. El átomo IV. Video del átomo V. Ley de Atracción y Repulsión VI. La Ley de Coulomb VII. Fuerza eléctrica VIII.

Más detalles

Tema 4* Dinámica de la partícula

Tema 4* Dinámica de la partícula Tema 4* Dinámica de la partícula Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción. Primer principio de la dinámica:

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas.

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas. Tema 9 Campo eléctrico 1. Fuerza eléctrica Ley de Coulomb La fuerza con la que se atraen o repelen dos cargas es directamente proporcional al producto de la de ambas cargas e inversamente proporcional

Más detalles