El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos"

Transcripción

1 El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1

2 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo tamaño, c Jana Rodriguez Hertz p. 2/1

3 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo tamaño, se define la suma de A y B como c Jana Rodriguez Hertz p. 2/1

4 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo tamaño, se define la suma de A y B como A+B := a 11 + b 11 a 12 + b a 1n + b 1n a 21 + b 21. a 22 + b a 2n + b 2n. a m1 + b m1 a m2 + b m2... a mn + b mn c Jana Rodriguez Hertz p. 2/1

5 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo tamaño, se define la suma de A y B como A+B := a 11 + b 11 a 12 + b a 1n + b 1n a 21 + b 21. a 22 + b a 2n + b 2n. a m1 + b m1 a m2 + b m2... a mn + b mn donde c Jana Rodriguez Hertz p. 2/1

6 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo tamaño, se define la suma de A y B como A+B := a 11 + b 11 a 12 + b a 1n + b 1n a 21 + b 21. a 22 + b a 2n + b 2n. donde a m1 + b m1 a m2 + b m2... a mn + b mn A = a ij j=1,...,n i=1,...m c Jana Rodriguez Hertz p. 2/1

7 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo tamaño, se define la suma de A y B como A+B := a 11 + b 11 a 12 + b a 1n + b 1n a 21 + b 21. a 22 + b a 2n + b 2n. donde a m1 + b m1 a m2 + b m2... a mn + b mn A = a ij j=1,...,n i=1,...m B = b ij j=1,...,n i=1,...m c Jana Rodriguez Hertz p. 2/1

8 Suma de matrices - ejemplo A = B = entonces A + B = c Jana Rodriguez Hertz p. 3/1

9 Producto de un escalar por una matriz Dada una matriz A M m n K y un número α K, c Jana Rodriguez Hertz p. 4/1

10 Producto de un escalar por una matriz Dada una matriz A M m n K y un número α K, definimos el producto de α por A como c Jana Rodriguez Hertz p. 4/1

11 Producto de un escalar por una matriz Dada una matriz A M m n K y un número α K, definimos el producto de α por A como αa := αa 11 αa αa 1n αa 21. αa αa 2n. αa m1 αa m2... αa mn c Jana Rodriguez Hertz p. 4/1

12 Producto de un escalar por una matriz Dada una matriz A M m n K y un número α K, definimos el producto de α por A como αa := αa 11 αa αa 1n αa 21. αa αa 2n. donde αa m1 αa m2... αa mn c Jana Rodriguez Hertz p. 4/1

13 Producto de un escalar por una matriz Dada una matriz A M m n K y un número α K, definimos el producto de α por A como αa := αa 11 αa αa 1n αa 21. αa αa 2n. donde αa m1 αa m2... αa mn A = a ij j=1,...,n i=1,...,m c Jana Rodriguez Hertz p. 4/1

14 Producto por un escalar - ejemplo entonces A = 3A = c Jana Rodriguez Hertz p. 5/1

15 Producto de una matriz con un vector Si A M m n K y X M n 1, se define producto de A por X al vector: AX := x 1 A 1 + x 2 A x n A n c Jana Rodriguez Hertz p. 6/1

16 Producto de una matriz con un vector Si A M m n K y X M n 1, se define producto de A por X al vector: AX := x 1 A 1 + x 2 A x n A n donde A j = a 1j a 2j. M m 1K columnas de A a mj c Jana Rodriguez Hertz p. 6/1

17 Producto de una matriz con un vector De este modo el sistema a 11 x a 1j x a 1n x n = b 1. S a i1 x a ij x a in x n = b i. a m1 x a mj x a mn x n = b m c Jana Rodriguez Hertz p. 7/1

18 Producto de una matriz con un vector que se puede escribir como la ecuación vectorial: x 1 a 11 a x j a 1j a 2j. + +x n a 1n a 2n. = b 1 b 2. a m1 a mj a mn b m c Jana Rodriguez Hertz p. 8/1

19 Producto de una matriz con un vector que se puede escribir como la ecuación vectorial: x 1 A x j A j + + x n A n = B c Jana Rodriguez Hertz p. 8/1

20 Producto de una matriz con un vector se resume como: AX=B c Jana Rodriguez Hertz p. 9/1

21 Producto de matrices - definición Si A M m k K c Jana Rodriguez Hertz p. 10/1

22 Producto de matrices - definición Si A M m k K y B M k n K c Jana Rodriguez Hertz p. 10/1

23 Producto de matrices - definición Si A M m k K y B M k n K A y B conformables c Jana Rodriguez Hertz p. 10/1

24 Producto de matrices - definición Si A M m k K y B M k n K, se define el producto de A por B como AB := AB 1 AB 2... AB n M m n K c Jana Rodriguez Hertz p. 10/1

25 Producto de matrices - ejemplo A = a 11 a 12 a 21 a 22 B = b 11 b 12 b 13 b 21 b 22 b 23 c Jana Rodriguez Hertz p. 11/1

26 Producto de matrices - ejemplo A = a 11 a 12 a 21 a 22 B = b 11 b 12 b 13 b 21 b 22 b 23 c Jana Rodriguez Hertz p. 11/1

27 Producto de matrices - ejemplo AB = AB 1 AB 2 AB 3 B 1 B 2 B 3 A AB 1 AB 2 AB 3 c Jana Rodriguez Hertz p. 12/1

28 Producto de matrices - ejemplo AB = AB 1 AB 2 AB 3 AB 1 = b 11 A 1 + b 21 A 2 A 1 A 2 AB 1 b 11 b 12 b 13 b 21 b 22 b 23 c Jana Rodriguez Hertz p. 12/1

29 Producto de matrices - ejemplo AB = AB 1 AB 2 AB 3 AB 1 = b 11 A 1 + b 21 A 2 AB 2 = b 12 A 1 + b 22 A 2 b 11 b 12 b 13 b 21 b 22 b 23 A 1 A 2 AB 1 AB 1 c Jana Rodriguez Hertz p. 12/1

30 Producto de matrices - ejemplo AB = AB 1 AB 2 AB 3 AB 1 = b 11 A 1 + b 21 A 2 AB 2 = b 12 A 1 + b 22 A 2 AB 3 = b 13 A 1 + b 23 A 2 b 11 b 12 b 13 b 21 b 22 b 23 A 1 A 2 AB 1 AB 1 AB 3 c Jana Rodriguez Hertz p. 12/1

31 Producto de matrices - ejemplo A = B = c Jana Rodriguez Hertz p. 13/1

32 Producto de matrices - ejemplo A = B = c Jana Rodriguez Hertz p. 13/1

33 Producto de matrices - ejemplo A = B = c Jana Rodriguez Hertz p. 13/1

34 Producto de matrices - ejemplo A = B = c Jana Rodriguez Hertz p. 13/1

35 Producto de matrices - ejemplo A = B = c Jana Rodriguez Hertz p. 13/1

36 Producto de matrices - ejemplo A = B = = AB c Jana Rodriguez Hertz p. 13/1

37 Proposición A M m k K, B M k n K, entonces c Jana Rodriguez Hertz p. 14/1

38 Proposición A M m k K, B M k n K, entonces para todo vector X K n : c Jana Rodriguez Hertz p. 14/1

39 Proposición A M m k K, B M k n K, entonces para todo vector X K n : ABX = ABX c Jana Rodriguez Hertz p. 14/1

40 Proposición A M m k K, B M k n K, entonces para todo vector X K n : ABX = ABX anotamos de ahora en más: ABX c Jana Rodriguez Hertz p. 14/1

41 Propiedades del producto Si A, B y C son matrices conformables ASOCIATIVA: ABC = ABC c Jana Rodriguez Hertz p. 15/1

42 Propiedades del producto Si A, B y C son matrices conformables ASOCIATIVA: ABC = ABC DISTRIBUTIVA A DERECHA: CA + B = CA + CB c Jana Rodriguez Hertz p. 15/1

43 Propiedades del producto Si A, B y C son matrices conformables ASOCIATIVA: ABC = ABC DISTRIBUTIVA A DERECHA: DISTRIBUTIVA A IZQUIERDA: CA + B = CA + CB A + BC = AC + BC c Jana Rodriguez Hertz p. 15/1

44 Propiedades del producto Sin embargo, en general NO CONMUTATIVA AB BA c Jana Rodriguez Hertz p. 16/1

45 Ejemplo A = B = 0 0 c Jana Rodriguez Hertz p. 17/1

46 Ejemplo A = B = 0 0 entonces 0 0 c Jana Rodriguez Hertz p. 17/1

47 Ejemplo A = B = 0 0 entonces c Jana Rodriguez Hertz p. 17/1

48 Ejemplo A = B = 0 0 entonces 0 0 c Jana Rodriguez Hertz p. 17/1

49 Ejemplo A = B = 0 0 entonces AB = 0 0 c Jana Rodriguez Hertz p. 17/1

50 Ejemplo A = B = 0 0 entonces AB = 0 0 c Jana Rodriguez Hertz p. 17/1

51 Ejemplo A = B = 0 0 entonces AB = c Jana Rodriguez Hertz p. 17/1

52 Ejemplo A = B = 0 0 entonces AB = c Jana Rodriguez Hertz p. 17/1

53 Ejemplo A = B = 0 0 entonces AB = BA = 0 0 c Jana Rodriguez Hertz p. 17/1

54 Ejemplo A = B = 0 0 entonces AB = BA = 0 0 AB BA c Jana Rodriguez Hertz p. 17/1

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Transformaciones lineales y matrices

Transformaciones lineales y matrices CAPíTULO 5 Transformaciones lineales y matrices 1 Matriz asociada a una transformación lineal Supongamos que V y W son espacios vectoriales de dimensión finita y que T : V W es una transformación lineal

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. MATRICES Matriz Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas. a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n A = a i1 a ij a in a m1 a

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES CONCEPTO MATRICES Se llama matriz de orden (dimensión) m n a un conjunto de m n elementos dispuestos en m filas y n columnas Se representa por A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn j=1,2,,n

Más detalles

Matemá'cas generales

Matemá'cas generales Matemá'cas generales Matrices y Sistemas Patricia Gómez García José Antonio Álvarez García DPTO. DE MATEMÁTICA APLICADA Y CIENCIAS DE LA COMPUTACIÓN Este tema se publica bajo Licencia: Crea've Commons

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

Matriz sobre K = R o C de dimensión m n

Matriz sobre K = R o C de dimensión m n 2 Matrices y Determinantes 21 Matrices Matriz sobre K = R o C de dimensión m n A = a 11 a 12 a 1n a 21 a 22 a 2n a m1 a m2 a mn Tipos de matrices: Cuadrada: n n = (a ij) i=1,,m j=1,,n Nula: (0) i,j 1 0

Más detalles

Tema 5. Derivación Matricial.

Tema 5. Derivación Matricial. Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre 2012 1 / 24 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker

Más detalles

Ejemplo 1. Ejemplo introductorio

Ejemplo 1. Ejemplo introductorio . -Jordan. Ejemplo 1. Ejemplo introductorio. -Jordan Dos especies de insectos se crían juntas en un recipiente de laboratorio. Todos los días se les proporcionan dos tipos de alimento A y B. 1 individuo

Más detalles

Propiedades de las operaciones lineales con matrices

Propiedades de las operaciones lineales con matrices Propiedades de las operaciones lineales con matrices Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en M m n (R). Requisitos. Operaciones lineales en R n, definición

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

2 - Matrices y Determinantes

2 - Matrices y Determinantes Nivelación de Matemática MTHA UNLP 1 2 - Matrices y Determinantes 1 Matrices 11 Definición Una matriz A es cualquier ordenamiento rectangular de números o funciones a 11 a 12 a 1n a 21 a 22 a 2n A a m1

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior

Álgebra de Boole. Adición booleana. Multiplicación booleana. Escuela Politécnica Superior Álgebra de Boole El Álgebra de Boole es una forma muy adecuada para expresar y analizar las operaciones de los circuitos lógicos. Se puede considerar las matemáticas de los sistemas digitales. Operaciones

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 57

INSTITUTO VALLADOLID PREPARATORIA página 57 INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es

Más detalles

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES. Matrices: Se llama matriz de dimensión m n a un conjunto de números reales dispuestos en m filas y n columnas de la siguiente forma: 11 a 12 a 13... a 1n A= a a 21

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ALGEBRA II Guía de Matrices y Determinantes Primer año Plan Común de Ingeniería Segundo Semestre 2009 1. Hallar una matriz B que

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

MATRICES. M(n) ó M nxn A =

MATRICES. M(n) ó M nxn A = MTRICES Definición de matriz. Una matriz de orden m n es un conjunto de m n elementos pertenecientes a un conjunto, que para nosotros tendrá estructura de cuerpo conmutativo y lo denotaremos por K, dispuestos

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Capitulo 6. Matrices y determinantes

Capitulo 6. Matrices y determinantes Capitulo 6. Matrices y determinantes Objetivo. El alumno aplicará los conceptos fundamentales de las matrices, determinantes y sus propiedades a problemas que requieran de ellos para su resolución. Contenido.

Más detalles

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES

MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES 5 de Abril de 2 MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES (Clase ) Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Puntos a tratar. Definición

Más detalles

Matrices, determinantes, sistemas de ecuaciones lineales.

Matrices, determinantes, sistemas de ecuaciones lineales. UNIVERSIDAD DE MURCIA Departamento de Matemáticas Óptica y Optometría Resúmenes Curso 2007-2008 Matrices, determinantes, sistemas de ecuaciones lineales. Una matriz A de orden m n es una colección de m

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

Operaciones con matrices

Operaciones con matrices Operaciones con matrices Problemas teóricos En todos los problemas de esta lista se supone que F es un campo (cuerpo). Si no conoce bien el concepto de campo, entonces puede pensar que F = R. Operaciones

Más detalles

MATRICES. Capítulo 3. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción Definición y Tipo de Matrices

MATRICES. Capítulo 3. Martínez Héctor Jairo Sanabria Ana María Semestre 02, Introducción Definición y Tipo de Matrices 55 Capítulo 3 MATRICES Martínez Héctor Jairo Sanabria Ana María Semestre 02, 2007 3 Introducción En los capítulos anteriores, utilizando la noción de matriz, simplificamos la representación de problemas

Más detalles

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj.

Matrices. p ij = a ik b kj = a i1 b 1j + a i2 b 2j + + a in b nj. Matrices Introducción Una matriz de m filas y n columnas con elementos en el cuerpo K es un rectángulo de elementos de K (es decir, números) del tipo a a 2 a n a 2 a 22 a 2n A = (a ij ) = a m a m2 a mn

Más detalles

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca

Teoría de Matrices. Julio Yarasca. 30 de junio de 2015. Julio Yarasca 30 de junio de 2015 Matriz de m por n Definimeros a una matriz A de orden m por n como un arreglo de números de m filas y n columnas. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n A = a 31 a 32 a 33 a 3n....

Más detalles

Álgebra Lineal, Ejercicios

Álgebra Lineal, Ejercicios Álgebra Lineal, Ejercicios MATRICES 1 Se llama traza de una matriz cuadrada a la suma de los elementos de su diagonal principal Sea G el conjunto de todas las matrices cuadradas de orden n con traza nula

Más detalles

Producto escalar. Longitudes, distancias y ángulos en R 3. c Jana Rodriguez Hertz p. 1/2

Producto escalar. Longitudes, distancias y ángulos en R 3. c Jana Rodriguez Hertz p. 1/2 Producto escalar Longitudes, distancias y ángulos en R 3 c Jana Rodriguez Hertz p. 1/2 Producto escalar - definición Dados X = (x 1,x 2,x 3 ) Y = (y 1,y 2,y 3 ) c Jana Rodriguez Hertz p. 2/2 Producto escalar

Más detalles

Transformaciones lineales Definición Ejemplos Propiedades

Transformaciones lineales Definición Ejemplos Propiedades Transformaciones lineales Definición Ejemplos Propiedades c Jana Rodriguez Hertz p. 1/1 transformaciones lineales Dados V y W e.v. sobre K, c Jana Rodriguez Hertz p. 2/1 transformaciones lineales Dados

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Ejercicios Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, matriz identidad, habilidades básicas de resolver sistemas de ecuaciones

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 1 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

PROPIEDADES DE LOS NUMEROS REALES

PROPIEDADES DE LOS NUMEROS REALES PROPIEDADES DE LOS NUMEROS REALES Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Prof. Yuitza T. Humarán Martínez Adaptado por Prof. Caroline Rodriguez Naturales N={1, 2, 3, 4, } {0}

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 1 Matrices y determinantes Objetivos: Al inalizar la unidad, el alumno: Identiicará qué es una matriz y cuáles son sus elementos. Distinguirá los principales tipos de matrices. Realizará operaciones

Más detalles

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones. TEMA 1: MATRICES Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

Sistema de ecuaciones algebraicas

Sistema de ecuaciones algebraicas Sistema de ecuaciones algebraicas Curso: Métodos Numéricos en Ingeniería Profesor: Dr. José A. Otero Hernández Correo: j.a.otero@itesm.mx web: http://metodosnumericoscem.weebly.com Universidad: ITESM CEM

Más detalles

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................

Más detalles

Resumen 3: Matrices, determinantes y sistemas de ecuaciones

Resumen 3: Matrices, determinantes y sistemas de ecuaciones Resumen 3: Matrices, determinantes y sistemas de ecuaciones lineales 1 Matrices Una matriz con coeficientes sobre un cuerpo K (normalmente K R) consiste en una colección de números (o escalares) del cuerpo

Más detalles

The shortest path between two truths in the real domain passes through the complex domain.

The shortest path between two truths in the real domain passes through the complex domain. The shortest path etween two truths in the real domain passes through the complex domain. Jacques Hadamard Introducción En este ejercicio vamos a emprender un enfoque distinto de la geometría analítica

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Cálculo de la matriz asociada a una transformación lineal (ejemplos)

Cálculo de la matriz asociada a una transformación lineal (ejemplos) Cálculo de la matriz asociada a una transformación lineal ejemplos Objetivos Estudiar con ejemplos cómo se calcula la matriz asociada a una transformación lineal Requisitos Transformación lineal, definición

Más detalles

Álgebra Booleana y Simplificación Lógica

Álgebra Booleana y Simplificación Lógica Álgebra Booleana y Simplificación Lógica M. en C. Erika Vilches Parte 1 Operaciones Booleanas y Expresiones Variable, complemento y literal son los términos utilizados en álgebra booleana. Variable símbolo

Más detalles

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3. . Producto escalar. Propiedades... Norma de un vector. Espacio normado...ortogonalidad. Ángulos..3.Producto escalar en V..4.Producto escalar en V 3.. Producto vectorial de dos vectores de V 3...Expresión

Más detalles

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL

DEPARTAMENTO DE GEOMETRIA ANALITICA SEMESTRE 2016-1 SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre los ejes coordenados X,

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

Tópicos. en Álgebra Lineal

Tópicos. en Álgebra Lineal Tópicos en Álgebra Lineal Miguel A Marmolejo L Manuel M Villegas L Departamento de Matemáticas Universidad del Valle Índice general Introducción 1 Índice de guras iii Capítulo 1 Prerrequisitos 1 11 Matrices

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Matrices y Determinantes

Matrices y Determinantes Capítulo 1 Matrices y Determinantes 11 Matrices Generalidades Definición 11 Sea E un conjunto cualquiera, m, n N Definimos matriz de orden m n sobre E a una expresión de la forma: a 11 a 12 a 1n a 21 a

Más detalles

Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

Expresiones algebraicas. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Expresiones algebraicas Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Variables Álgebra utiliza letras como x & y para representar números. Si una letra se utiliza para representar varios números,

Más detalles

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas.

Una matriz es una arreglo rectangular ordenado de elementos, comúnmente llamados escalares, dispuestos en m renglones y n columnas. MATRICES Las matrices tienen una importancia fundamental en el análisis económico sobre todo en el estudio de sistemas de ecuaciones lineales, como en el modelo insumo-producto. Cuando trabajamos con modelos

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

7. PRINCIPALES COMANDOS DE DERIVE PARA EL ÁLGEBRA LINEAL.

7. PRINCIPALES COMANDOS DE DERIVE PARA EL ÁLGEBRA LINEAL. Principales comandos de DERIVE para el álgebra 97 7. PRINCIPALES COMANDOS DE DERIVE PARA EL ÁLGEBRA LINEAL. En este apartado vamos a introducir las principales operaciones que DERIVE realiza en el cálculo

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

La forma de denotar los elementos de una matriz ya la introdujimos en (1.11). Una matriz de m n ( m filas y n columnas ) es de la forma

La forma de denotar los elementos de una matriz ya la introdujimos en (1.11). Una matriz de m n ( m filas y n columnas ) es de la forma Capítulo 2 Álgebra de matrices 21 Operaciones con matrices La forma de denotar los elementos de una matriz ya la introdujimos en (111) Una matriz de m n ( m filas y n columnas ) es de la forma a 11 a 12

Más detalles

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática.

Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática. Álgebra Geometría Analítica Prof. Gisela Saslavsk Vectores en R en R 3. Rectas planos en el espacio Verifique los resultados analíticos mediante la resolución gráfica usando un software de Matemática..

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ...

Una matriz es una tabla ordenada (por filas y columnas) de escalares a i j de la forma: ... ... a... ... MATRICES Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas parciales. Tienen también muchas aplicaciones

Más detalles

EJERCICIOS RESUELTOS DE MATRICES

EJERCICIOS RESUELTOS DE MATRICES EJERCICIOS RESUELTOS DE MATRICES. Dadas las matrices A - 3, B 0 - y C 3 -, calcular si es posible: a) A + B b) AC c) CB y C t B d) (A+B)C a) A + B - 3 + 0 - b) AC - 3 3 - +0 -+ 3+ +(-) 0 7 0.+(-).3+(-)(-).+(-)

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

Operaciones con transformaciones lineales Suma y Producto por un escalar Composición e Inversa Matriz asociada

Operaciones con transformaciones lineales Suma y Producto por un escalar Composición e Inversa Matriz asociada Operaciones con transformaciones lineales Suma y Producto por un escalar Composición e Inversa Matriz asociada c Jana Rodriguez Hertz p. 1/1 transformaciones lineales Dados V y W e.v. sobre el cuerpo K,

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

Introducción al Álgebra Lineal

Introducción al Álgebra Lineal UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Álgebra Lineal Ramón Bruzual Marisela Domínguez Caracas, Venezuela Septiembre

Más detalles

Ing. Ramón Morales Higuera

Ing. Ramón Morales Higuera MATRICES. Una matriz es un conjunto ordenado de números. Un determinante es un número. CONCEPTO DE MATRIZ. Se llama matriz a un conjunto ordenado de números, dispuestos en filas y Las líneas horizontales

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Apuntes de Álgebra. Publicación Valentín Barros Puertas

Apuntes de Álgebra. Publicación Valentín Barros Puertas Apuntes de Álgebra Publicación 0.0.1 Valentín Barros Puertas 16 de January de 2015 Índice general 1. Tema 1 2 1.1. Cuerpo.................................................. 2 1.2. Matriz..................................................

Más detalles

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Matrices Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas. Cada uno de los números de que consta la matriz se denomina elemento. Un elemento

Más detalles