EJERCICIOS DE PORCENTAJES E INTERESES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE PORCENTAJES E INTERESES"

Transcripción

1 EJERCICIOS DE PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? Ejercicio º 2.- El precio de u litro de gasóleo era de 0,1 euros y, al cabo de u año, se trasformó e 0,6 euros. Cuál ha sido el porcetaje de subida? Ejercicio º 3.- U ordeador cuesta euros si I.V.A. Sabiedo que se aplica u 16% de I.V.A., cuál será su precio co I.V.A.? Ejercicio º 4.- El precio de u litro de leche (co I.V.A.) es de 0,6 euros. Sabiedo que el IVA e alimetació es del 7%, cuál será su precio si I.V.A.? Ejercicio º.- E u pueblo que teía 200 habitates, ahora vive solamete 80 persoas. Qué porcetaje represeta la dismiució de la població? Ejercicio º 6.- El precio si I.V.A. de u determiado medicameto es de 1 euros. a) Sabiedo que el I.V.A. es del 4%, cuato costará co I.V.A.? b) Co receta médica solo pagamos el 40% del precio total. Cuáto os costaría este medicameto si lo compráramos co receta? Ejercicio º 7.- U artículo que costaba iicialmete 60 euros fue rebajado e diciembre u 12%. E el mes de eero tuvo ua seguda rebaja de u 1%; y, e febrero, se rebajó otro 10%. a) Calcula el precio fial después de las tres rebajas. b) Cuál es el porcetaje total de rebaja? 1

2 Ejercicio º 8.- U cotrato de alquiler ha subido u 2% aual durate los tres últimos años. Calcula el precio mesual que tedremos que pagar actualmete, sabiedo que hace 3 años pagábamos 420 euros al mes. Ejercicio º 9.- El precio de u artículo ha aumetado e u 2%; pero, después, ha teido ua rebaja de u %. Calcula el ídice de variació total y la dismiució porcetual del precio. Ejercicio º 10.- Calcula e cuáto se trasforma u capital de 2 00 euros depositado durate 4 meses al 7% aual (los periodos de capitalizació so mesuales). Ejercicio º 11.- Halla e cuáto se trasforma euros depositados durate u año al 8% aual si los periodos de capitalizació so trimestrales. Ejercicio º 12.- U capital de euros colocado al 8% aual se ha covertido e 441,96 euros. Cuátos años ha trascurrido? (Los periodos de capitalizació so auales). Ejercicio º 13.- U capital de euros se ha trasformado e 2 247,2 euros al cabo de 2 años. Calcula el tato por cieto aual al que se ha colocado. Ejercicio º 14.- Calcula e cuáto se trasforma 800 euros al 10% aual, e u año, si los periodos de capitalizació so mesuales. Ejercicio º 1.- Durate 4 años, depositamos al pricipio de cada año euros al % co pago aual de itereses. Cuáto diero tedremos acumulado al fial del cuarto año? Ejercicio º 16.- Calcula la catidad total que tedremos si pagamos al fial de cada año ua aualidad de 1 00 euros durate 10 años, al 8% aual. 2

3 Ejercicio º 17.- Ua persoa igresa, al pricipio de cada año, la catidad de diero que viee reflejada e la siguiete tabla: (e euros) 1 er AÑO 2º AÑO 3 er AÑO Calcula cuál será el capital acumulado al cabo de los tres años, sabiedo que el rédito es del 6% aual. Ejercicio º 18.- Hemos decidido ahorrar igresado e u baco euros al pricipio de cada año. Calcula la catidad que tedremos ahorrado al cabo de 8 años, sabiedo que el baco os da u 6% de iterés. Ejercicio º 19.- Ua persoa igresa e u baco, al pricipio de cada año, 400 euros, durate 6 años. Calcula el diero que habrá acumulado al fial del sexto año sabiedo que el baco le da u % de iterés aual. Ejercicio º 20.- Halla la aualidad co la que se amortiza u préstamo de euros e años al 12% aual. Ejercicio º 21.- U coche cuesta euros. Nos cocede u préstamo para pagarlo e 48 mesualidades co u iterés del 6% aual. Cuál será la cuota mesual que tedremos que pagar? Ejercicio º 22.- Nos ha cocedido u préstamo hipotecario (para comprar u piso) por valor de euros. Lo vamos a amortizar e 180 mesualidades co u iterés del % aual. Cuál es el valor de cada mesualidad que tedremos que pagar? Ejercicio º 23.- Teemos que amortizar euros e 3 años, co u 8% de iterés aual, de modo que cada año pagaremos la tercera parte del capital total más los itereses del capital pediete. Calcula lo que hay que pagar cada año. Ejercicio º 24.- Calcula el valor de la aualidad co la que se amortiza u préstamo de euros e 6 años al 10% de iterés aual. 3

4 SOLUCIONES PORCENTAJES E INTERESES Ejercicio º 1.- Por u artículo que estaba rebajado u 12% hemos pagado 26,4 euros. Cuáto costaba ates de la rebaja? El ídice de variació es 0,88. Por tato: 26,4 : 0,88 30 Ates de la rebaja costaba 30 euros. Ejercicio º 2.- El precio de u litro de gasóleo era de 0,1 euros y, al cabo de u año, se trasformó e 0,6 euros. Cuál ha sido el porcetaje de subida? Dividimos la catidad fial etre la iicial para obteer el ídice de variació: 0,6 : 0,1 1,27 Este ídice de variació correspode a u 27% de aumeto. Ejercicio º 3.- U ordeador cuesta euros si I.V.A. Sabiedo que se aplica u 16% de I.V.A., cuál será su precio co I.V.A.? El ídice de variació que correspode a u aumeto del 16% es 1,16. Por tato: , ,76 El precio co I.V.A. es de 1 201,76 euros 4

5 Ejercicio º 4.- El precio de u litro de leche (co I.V.A.) es de 0,6 euros. Sabiedo que el IVA e alimetació es del 7%, cuál será su precio si I.V.A.? El ídice de variació para u aumeto del 7% es de 1,07. Como coocemos la catidad fial, la catidad iicial la hallamos dividiedo etre este ídice: 0,6 : 1,07 0,6 El precio si I.V.A. es de 0,6 euros. Ejercicio º.- E u pueblo que teía 200 habitates, ahora vive solamete 80 persoas. Qué porcetaje represeta la dismiució de la població? Dividimos la catidad fial etre la iicial para hallar el ídice de variació: 80 : 200 0,4 Este ídice de variació correspode a ua dismiució del 60%. Ejercicio º 6.- El precio si I.V.A. de u determiado medicameto es de 1 euros. a) Sabiedo que el I.V.A. es del 4%, cuato costará co I.V.A.? b) Co receta médica solo pagamos el 40% del precio total. Cuáto os costaría este medicameto si lo compráramos co receta? a) El ídice de variació para u aumeto del 4% es de 1,04. Por tato, el medicameto co I.V.A. costará: 1 1,04 1,6 euros b) Para calcular el 40% multiplicamos por 0,4: 1,6 0,4 6,24 El precio co receta sería de 6,24 euros.

6 Ejercicio º 7.- U artículo que costaba iicialmete 60 euros fue rebajado e diciembre u 12%. E el mes de eero tuvo ua seguda rebaja de u 1%; y, e febrero, se rebajó otro 10%. a) Calcula el precio fial después de las tres rebajas. b) Cuál es el porcetaje total de rebaja? a) Calculamos el ídice de variació total: 0,88 0,8 0,90 0,6732 Por tato, el precio fial fue: 60 0, ,39 euros b) El ídice de variació obteido, 0,6732, correspode a ua dismiució del 32,68%. Ejercicio º 8.- U cotrato de alquiler ha subido u 2% aual durate los tres últimos años. Calcula el precio mesual que tedremos que pagar actualmete, sabiedo que hace 3 años pagábamos 420 euros al mes. El ídice de variació correspodiete a u aumeto del 2% es de 1,02. Al cabo de los tres años será: 1,02 1,02 1,02 (1,02) 3 1, Si multiplicamos por 420, obteemos el valor de la mesualidad actual: 402 1, ,71 euros Ejercicio º 9.- El precio de u artículo ha aumetado e u 2%; pero, después, ha teido ua rebaja de u %. Calcula el ídice de variació total y la dismiució porcetual del precio. 6

7 El ídice de variació total será: 1,02 0,9 0,969 Este ídice correspode a ua dismiució porcetual de: 100% 96,9% 3,1% Ejercicio º 10.- Calcula e cuáto se trasforma u capital de 2 00 euros depositado durate 4 meses al 7% aual (los periodos de capitalizació so mesuales). 7 7% aual correspoe a 12 % mesual. Al cabo de los 4 meses se habrá trasformado e: ,8 euros Ejercicio º 11.- Halla e cuáto se trasforma euros depositados durate u año al 8% aual si los periodos de capitalizació so trimestrales. Como e u año hay 4 trimestres: 8 8% aual 2% trimestral 4 Al cabo de u trimestre tedríamos: ,02 euros Al cabo de cuatro trimestres (u año) sería: , ,30 euros Ejercicio º 12.- U capital de euros colocado al 8% aual se ha covertido e 441,96 euros. Cuátos años ha trascurrido? (Los periodos de capitalizació so auales). 7

8 Al cabo de años tedremos: (1,08) 441,96 euros Por tato: 1,08 441, , 08 1, años Habrá trascurrido 4 años. Ejercicio º 13.- U capital de euros se ha trasformado e 2 247,2 euros al cabo de 2 años. Calcula el tato por cieto aual al que se ha colocado. Si se ha colocado al r % aual durate dos años, se ha trasformado e: Es decir: r ,2 euros r , r ,1236 r , 100 r r 1 106, 0, 06 r 6% Por tato, se ha colocado al 6% aual. Ejercicio º 14.- Calcula e cuáto se trasforma 800 euros al 10% aual, e u año, si los periodos de capitalizació so mesuales. U 10%aualcorrespoe a u 10 % mesual. 12 Al cabo de 12 meses (u año) se habrá trasformado e: 8

9 ,77 euros Ejercicio º 1.- Durate 4 años, depositamos al pricipio de cada año euros al % co pago aual de itereses. Cuáto diero tedremos acumulado al fial del cuarto año? Los euros del primer año se trasforma, al cabo de 4 años e: (1,0) 4 euros Los euros del segudo año se trasforma, al cabo de 3 años e: (1,0) 3 euros Los euros del tercer año se trasforma, al cabo de 2 años e: (1,0) 2 euros Los euros del cuarto año se trasforma, al cabo de 1 año e: (1,0) euros Por tato al fial del cuarto año tedremos e total: (1,0) (1,0) (1,0) (1,0) 4 Esta es la suma de los cuatro primeros térmios de ua progresió geométrica e la que: El primer térmio es a (1,0) El cuarto térmio es a (1,0) 4 La razó es r 1,0 La suma será: S ,0 1, ,0 1, , , 0 1, 0 4 2,63 euros., 1 0, 0 0, 0 4 9

10 Al fial del cuarto año tedremos 4 2,63 euros. Ejercicio º 16.- Calcula la catidad total que tedremos si pagamos al fial de cada año ua aualidad de 1 00 euros durate 10 años, al 8% aual. Como pagamos al fial de cada año, los primeros 1 00 euros estará u total de 9 años y se habrá trasformado e: ,08 9 euros Los 1 00 euros del 2º año se trasformará, e 8 años, e: ,08 8 euros Los 1 00 euros del 10º año so 1 00 euros más. E total, al fial de los 10 años tedremos: , ,08 9 Esta es la suma de los diez primeros térmios de ua progresió geométrica e la que: El primer térmio es a El décimo térmio es a ,08 9. La razó es r 1,08. La suma será: 1 00 S 9 1, 08 1, , 1, , Al fial de los años 10 años tedremos u total de ,84 euros. Ejercicio º , ,84 euros Ua persoa igresa, al pricipio de cada año, la catidad de diero que viee reflejada e la siguiete tabla: 0,08 (e euros) 1 er AÑO 2º AÑO 3 er AÑO Calcula cuál será el capital acumulado al cabo de los tres años, sabiedo que el rédito es del 6% aual. 10

11 Los euros del primer año se trasforma, al cabo de tres años, e: (1,06) 3 euros Los 1 00 euros del segudo año se trasforma, al cabo de dos años, e: 1 00 (1,06) 2 euros Los euros del tercer años se trasforma, al cabo de u año, e: (1,06) Por tato, el total acumulado al cabo de los tres años será: (1,06) (1,06) (1,06) 4 996,42 euros Ejercicio º 18.- Hemos decidido ahorrar igresado e u baco euros al pricipio de cada año. Calcula la catidad que tedremos ahorrado al cabo de 8 años, sabiedo que el baco os da u 6% de iterés. Los euros del primer año se trasforma, al cabo de 8 años, e: (1,06) 8 euros. Los euros del segudo años se trasforma, al cabo de 7 años, e: (1,06) 7 euros. Los euros del último año se trasforma, al cabo de u año, e: (1,06) euros. Por tato, al fial de los ocho años tedremos, e total: (1,06) (1,06) (1,06) 8 Esta es la suma de los ocho primeros térmios de ua progresió geométrica e la que: El primer térmio es a (1,06) El octavo térmio es a (1,06) 8 La razó es r 1,06. Su suma será: 1000 S 8 1, 06 1, , , 06 1, 06 1, 061 Al fial de los ocho años tedremos ,32 euros , euros. 0, 06 11

12 Ejercicio º 19.- Ua persoa igresa e u baco, al pricipio de cada año, 400 euros, durate 6 años. Calcula el diero que habrá acumulado al fial del sexto año sabiedo que el baco le da u % de iterés aual. Los 400 euros del 1 er año se trasforma, al cabo de 6 años, e: 400 (1,0) 6 euros. Los 400 euros del 2º año se trasforma, al cabo de años e: 400 (1,0) euros. Los 400 euros del 6º año se trasforma, al cabo del 1 año e: 400 (1,0) euros. Por tato, el total acumulado al cabo de los 6 años será: 400 (1,0) (1,0) 400 (1,0) 6 Esta es la suma de los seis primeros térmios de ua progresió geométrica e la que: El primer térmio es a (1,0) El sexto térmio es a (1,0) 6 La razó es r 1,0. Su suma será: 400 S 6 1, 0 1, , , 0 1, 0 1, , 80 euros 0, 0 Al fial del sexto año tedremos 2 86,80 euros. Ejercicio º 20.- Halla la aualidad co la que se amortiza u préstamo de euros e años al 12% aual. El capital es C euros. El tiempo so años. r 12 El iterésesdel r 12% aual i 0,

13 La aualidad será: a C 1 1 i i i ,12 0, ,39 1,12 1 euros Cada año se debe pagar ,39 euros. Ejercicio º 21.- U coche cuesta euros. Nos cocede u préstamo para pagarlo e 48 mesualidades co u iterés del 6% aual. Cuál será la cuota mesual que tedremos que pagar? El capital es C euros. El tiempo so 48 meses. r 6 El iterésesdel r 6%aual i 0, La mesualidad será: m C 1 1 i i i 1,00 0, , , euros Cada mes tedremos que pagar 281,82 euros. Ejercicio º 22.- Nos ha cocedido u préstamo hipotecario (para comprar u piso) por valor de euros. Lo vamos a amortizar e 180 mesualidades co u iterés del % aual. Cuál es el valor de cada mesualidad que tedremos que pagar? El capital es C euros. El tiempo so 180 meses. Eliterésdel r %aual i 1200 La mesualidad será: m C 1 1 i i 1 i ,63 euros Cada mes tedremos que pagar 632,63 euros. 13

14 Ejercicio º 23.- Teemos que amortizar euros e 3 años, co u 8% de iterés aual, de modo que cada año pagaremos la tercera parte del capital total más los itereses del capital pediete. Calcula lo que hay que pagar cada año. Hagamos ua tabla: El primer año habrá que pagar euros, el segudo año euros y, el tercer año, euros. Ejercicio º 24.- Calcula el valor de la aualidad co la que se amortiza u préstamo de euros e 6 años al 10% de iterés aual. El capital es C euros. El tiempo so 6 años. r 10 El iterésesdel r 10%aual i 0, La aualidad será: i 1 a C 1 i i ,1 0,1 740,18 6 1,1 1 euros Cada año se debe pagar 740,18 euros. 14

TEMA 2 MATEMÁTICAS FINANCIERAS

TEMA 2 MATEMÁTICAS FINANCIERAS Tema Matemáticas fiacieas 1 TEMA MATEMÁTICAS FINANCIERAS EJERCICIO 1 : Po u atículo que estaba ebajado u 1% hemos pagado, euos. Cuáto costaba ates de la ebaja? 1 Solució: El ídice de vaiació es: IV = 1

Más detalles

TEMA4: MATEMÁTICA FINANCIERA

TEMA4: MATEMÁTICA FINANCIERA TEMA4: MATEMÁTICA FINANCIEA 1. AUMENTOS Y DISMINUCIONES POCENTUALES Si expresamos u porcetaje % como u úmero decimal: tato por uo: r = 23 23% = 0, 23 obteemos el Para calcular el porcetaje % de ua catidad

Más detalles

CONCEPTOS BÁSICOS DE PRESTAMOS.

CONCEPTOS BÁSICOS DE PRESTAMOS. GESTIÓN FINANCIERA. TEMA 8º. PRESTAMOS. 1.- Coceptos básicos de préstamos. CONCEPTOS BÁSICOS DE PRESTAMOS. Coceptos básicos de prestamos. Préstamo. U préstamo es la operació fiaciera que cosiste e la etrega,

Más detalles

PROBLEMAS FINANCIEROS

PROBLEMAS FINANCIEROS PROBLEMAS FINANCIEROS 1. Por un artículo que estaba rebajado un 12% hemos pagado 26,4 euros. Cuánto costaba antes de la rebaja? (Sol: 30 ) 2. Un ordenador cuesta 1 036 euros sin I.V.A. Sabiendo que se

Más detalles

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables :

donde n e i, están en la misma unidad de tiempo. Por tanto, la expresión de los intereses ordinarios ó simples y pospagables : 1 1. LEY FINANCIERA DE CAPITALIZACIÓN SIMPLE. 1.- Calcular los itereses producidos por u capital de 1800 colocado 10 días al 7% de iterés aual simple. a) Cosiderado el año civil. b) Cosiderado el año comercial.

Más detalles

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública

Unidad Central del Valle del Cauca Facultad de Ciencias Administrativas, Económicas y Contables Programa de Contaduría Pública Uidad Cetral del Valle del Cauca acultad de Ciecias Admiistrativas, Ecoómicas y Cotables Programa de Cotaduría Pública Curso de Matemáticas iacieras Profesor: Javier Herado Ossa Ossa Ejercicios resueltos

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTIAS FINANIERAS Secció: 1 Profesores: ristiá Bargsted Adrés Kettlu oteido Matemáticas Fiacieras: Iterés Simple vs Iterés ompuesto Valor Presete y Valor Futuro Plaificació estratégica Matemáticas

Más detalles

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento.

UNIDAD Nº 2. Leyes financieras: Interés simple. Interés compuesto. Descuento. UNIDAD Nº 2 Leyes fiacieras: Iterés simple. Iterés compuesto. Descueto. 2.1 La Capitalizació simple o Iterés simple 2.1.1.- Cocepto de Capitalizació simple Es la Ley fiaciera segú la cual los itereses

Más detalles

Imposiciones y Sistemas de Amortización

Imposiciones y Sistemas de Amortización Imposicioes y Sistemas de Amortizació La Imposició u caso particular de reta e el cual cada térmio devega iterés (simple o compuesto) desde la fecha de su aboo hasta la fecha fial. Imposicioes Vecidas

Más detalles

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general

Progresiones. Objetivos. Antes de empezar. 1.Sucesiones.. pág. 74 Definición. Regla de formación Término general 5 Progresioes Objetivos E esta quicea aprederás a: Recoocer ua sucesió de úmeros. Recoocer y distiguir las progresioes aritméticas y geométricas. Calcular él térmio geeral de ua progresió aritmética y

Más detalles

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación)

1. Lección 11 - Operaciones Financieras a largo plazo - Préstamos (Continuación) Aputes: Matemáticas Fiacieras 1. Lecció 11 - Operacioes Fiacieras a largo plazo - Préstamos (Cotiuació) 1.1. Préstamo: Método de cuotas de amortizació costates E este caso se verifica A 1 = A 2 = = A =

Más detalles

A N U A L I D A D E S

A N U A L I D A D E S A N U A L I D A D E S INTRODUCCION Y TERMINOLOGIA Se deomia aualidad a u cojuto de pagos iguales realizados a itervalos iguales de tiempo. Se coserva el ombre de aualidad por estar ya muy arraigado e el

Más detalles

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING

FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDITO LEASING . GLOSARO DE TÉRMNOS FÓRMULAS Y EJEMPLOS PARA EL CÁLCULO DE CRÉDTO LEASNG a. Amortizació: Pago total o parcial del capital de ua deuda o préstamo. b. Capital Fiaciado (CF): Equivale al valor de veta meos

Más detalles

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO

FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO FORMULAS PARA EL PRODUCTO : CREDITO CONSUMO DEFINICIONES Crédito de Cosumo: So aquellos créditos que se otorga a persoas aturales co igresos depedietes o idepedietes co la fialidad de ateder gastos de

Más detalles

Sucesiones numéricas.

Sucesiones numéricas. SUCESIONES 3º ESO Sucesioes uméricas. Ua sucesió es u cojuto ordeado de úmeros reales: a 1, a 2, a 3, a 4, Cada elemeto de la sucesió se deomia térmio, el subídice es el lugar que ocupa e la sucesió. El

Más detalles

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS

TEMA 1: OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS TEMA : OPERACIONES FINANCIERAS DE AMORTIZA- CION: PRESTAMOS Y EMPRESTITOS..-INTRODUCCION : Etedemos por operació fiaciera de amortizació, aquella, e que u ete ecoómico, (acreedor ó prestamista), cede u

Más detalles

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno:

Unidad 5. Anualidades vencidas. Objetivos. Al finalizar la unidad, el alumno: Uidad 5 Aualidades vecidas Objetivos Al fializar la uidad, el alumo: Calculará el valor de la reta de ua perpetuidad simple vecida. Calculará el valor actual de ua perpetuidad simple vecida. Calculará

Más detalles

2. LEYES FINANCIERAS.

2. LEYES FINANCIERAS. TEMA 1: CONCEPTOS PREVIOS 1. INTRODUCCIÓN. Se va a aalizar los itercambios fiacieros cosiderado u ambiete de certidumbre. El itercambio fiaciero supoe que u agete etrega a otro u capital (o capitales),

Más detalles

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión

4) Calcular el plazo necesario para obtener 20.000 a partir de una inversión ) alcular el motate o capital fial obteido al ivertir u capital de. al 8% de iterés aual simple durate 8 años.. 8 o i. 8,8 ( i ) 8.( 8,8) ) alcular el capital iicial ecesario para obteer u capital de.

Más detalles

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL

ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL ANUALIDADES CON LA UTILIZACION DE LAS FUNCIONES FINANCIERAS DEL EXCEL Dr. Wisto Castañeda Vargas ASPECTOS GENERALES Ua aualidad es u cojuto de dos o más flujos, e el que a partir del segudo, los períodos

Más detalles

ANEXO 2 INTERES COMPUESTO

ANEXO 2 INTERES COMPUESTO ANEXO 2 INTERES COMPUESTO EJERCICIOS VARIOS: 1. Adrés y Silvaa acaba de teer a su primer hijo. Es ua iña llamada Luciaa. Adrés ese mismo día abre ua cueta para Luciaa co la catidad de $3 000,000.00. Qué

Más detalles

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica.

SUCESIONES Y SERIES página 205 SUCESIONES Y SERIES. 12.1 Una sucesión es un conjunto de números ordenados bajo cierta regla específica. págia 05. Ua sucesió es u cojuto de úmeros ordeados bajo cierta regla específica. E muchos problemas cotidiaos se preseta sucesioes, como por ejemplo los días del mes, ya que se trata del cojuto {,,, 4,

Más detalles

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA

FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA FORMULAS PARA EL PRODUCTO: CREDITO A LA MICROEMPRESA DEFINICIONES: CRÉDITO A LA MICROEMPRESA: So aquellos créditos que se otorga a persoas aturales y jurídicas que realiza algua actividad ecoómica por

Más detalles

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004

Solución del examen de Investigación Operativa de Sistemas de septiembre de 2004 Solució del eame de Ivestigació Operativa de Sistemas de septiembre de 4 Problema (,5 putos: Ua marca de cereales para el desayuo icluye u muñeco de regalo e cada caja de cereales. Hay tres tipos distitos

Más detalles

ASIGNATURA: MATEMATICAS FINANCIERAS

ASIGNATURA: MATEMATICAS FINANCIERAS APUNTES DOCENTES ASIGNATURA: MATEMATICAS FINANCIERAS PROFESORES: MARIN JAIMES CARLOS JAVIER SARMIENTO LUIS JAIME UNIDAD 3: EVALUACIÓN ECONÓMICA DE PROYECTOS DE INVERSIÓN EL VALOR PRESENTE NETO VPN Es ua

Más detalles

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios.

Ejemplos y ejercicios de. Análisis Exploratorio de Datos. 2 Descripción estadística de una variable. Ejemplos y ejercicios. ANÁLISIS EXPLORATORIO DE DATOS Ejemplos y ejercicios de Aálisis Exploratorio de Datos Descripció estadística de ua variable. Ejemplos y ejercicios..1 Ejemplos. Ejemplo.1 Se ha medido el grupo saguíeo de

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math.

Matemáticas Financieras Material recopilado por El Prof. Enrique Mateus Nieves. Financial math. Matemáticas Fiacieras Material recopilado por El Prof. Erique Mateus Nieves Fiacial math. 2.10 DESCUENO El descueto es ua operació de crédito que se realiza ormalmete e el sector bacario, y cosiste e que

Más detalles

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES

ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES ANEXO F CRITERIOS DE EVALUACIÓN ECONÓMICA DE LAS OPCIONES DE PML TÉCNICAMENTE VIABLES Las medidas de PML a ser implemetadas, se recomieda e base a las opcioes de PML calificadas como ecoómicamete factibles.

Más detalles

5. Crecimiento, decrecimiento. y Economía

5. Crecimiento, decrecimiento. y Economía 5. Crecimieto, decrecimieto y Ecoomía Matemáticas aplicadas a las Ciecias Sociales I. Sucesioes. Matemática fiaciera 3. Fució epoecial y logarítmica 4. Modelos de crecimieto 80 Crecimieto, decrecimieto

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL UNIDAD 2 ARITMÉTICA MERCANTIL Página 52 1. Vamos a calcular en cuánto se transforma una cantidad C al sufrir un aumento del 12%: 12 C + 100 C = C + 0,12 C = 1,12 C Conclusión: Si C aumenta el 12%, se transforma

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN 3 INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 99 REFLEXIONA Y RESUELVE Cuátas caras cabe esperar? Repite el razoamieto aterior para averiguar cuátas caras cabe esperar si lazamos 00 moedas

Más detalles

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es

CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES. Mercedes Fernández mercedes@upucomillas.es CONCEPTOS BÁSICOS DE DIRECCIÓN FINANCIERA: SELECCIÓN DE INVERSIONES Mercedes Ferádez mercedes@upucomillas.es CONTENIDO El valor temporal del diero. Selecció de iversioes CONTENIDO El valor temporal del

Más detalles

±. C inicial = C inicial. Índice de variación

±. C inicial = C inicial. Índice de variación Aitmética mecatil: coteidos 2.1 Aumetos y dismiucioes pocetuales 2.2 Iteeses bacaios 2.3 Tasa aual equivalete ( T.A.E.) 2.4 Amotizació de péstamos 2.5 Pogesioes geométicas 2.6 Aualidades Pocetajes: C fial

Más detalles

ARITMÉTICA MERCANTIL

ARITMÉTICA MERCANTIL ARITMÉTICA MERCANTIL Página 49 REFLEXIONA Y RESUELVE Aumentos porcentuales En cuánto se transforman 50 si aumentan el 1%? 50 1,1 = 80 Calcula en cuánto se transforma un capital C si sufre un aumento del:

Más detalles

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2013 (Reserva 2 Modelo 1 ) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Graada Juio de 03 (Reserva Modelo ) Solucioes Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 03 MODELO (RESERVA ) OPCIÓN A EJERCICIO (A) ( 5 putos) U fabricate elabora

Más detalles

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE

DESCUENTO DESCUENTO SIMPLE DESCUENTO COMERCIAL SIMPLE 1 OBJETIVOS Defiir escueto y valor actual. Distiguir las actualizacioes simples y compuestas. Ietificar los istitos tipos e escuetos. Demostrar fórmulas pricipales y erivaas. Resolver situacioes problemáticas.

Más detalles

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas:

ESTADÍSTICA. Al preguntar a 20 individuos por el número de personas que viven en su casa, hemos obtenido las siguientes respuestas: ESTADÍSTICA Ejercicio º.- Al pregutar a 0 idividuos por el úmero de persoas que vive e su casa, hemos obteido las siguietes respuestas: Elabora ua tabla de frecuecias. Ejercicio º.- E ua empresa de telefoía

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MATEMÁTICAS FINANCIERAS Asigatura Clave: CON015 Numero de créditos Teóricos: 4 Prácticos: 4 Asesor Resposable: M.C. Eduardo Suárez Mejia (correo electróico esuarez@uaim.edu.mx) Asesor de Asistecia: Ig.

Más detalles

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS

CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS CRITERIOS DE DECISIÓN EN LA EVALUACION DE PROYECTOS Curso Preparació y Evaluació Social de Proyectos Sistema Nacioal de Iversioes Divisió de Evaluació Social de Iversioes MINISTERIO DE DESARROLLO SOCIAL

Más detalles

GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera:

GENERALIDADES. La Empresa de Transmisión Eléctrica, S. A. (ETESA) maneja 151 estaciones, clasificadas de la siguiente manera: GENERALIDADES I. DEFINICIÓN DE METEOROLOGÍA Es la ciecia iterdiscipliaria que estudia el estado del tiempo, el medio atmosférico, los feómeos allí producidos y las leyes que lo rige. Es el estudio de los

Más detalles

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas

Sistemas Automáticos. Ing. Organización Conv. Junio 05. Tiempo: 3,5 horas Sistemas Automáticos. Ig. Orgaizació Cov. Juio 05. Tiempo: 3,5 horas NOTA: Todas las respuestas debe ser debidamete justificadas. Problema (5%) Ua empresa del sector cerámico dispoe de u horo de cocció

Más detalles

SISTEMA DE EDUCACIÓN ABIERTA

SISTEMA DE EDUCACIÓN ABIERTA --- UNIVERSIDAD LOS ÁNGELES DE CHIMBOTE SISTEMA DE EDUCACIÓN ABIERTA DOCENTE : Julio Lezama Vásquez. E-MAIL : fervas@yahoo.es TELÉFONO : 044-9906504 ATENCIÓN AL ALUMNO : sea@uladech.edu.pe TELEFAX : 043-327846

Más detalles

Análisis de datos en los estudios epidemiológicos II

Análisis de datos en los estudios epidemiológicos II Aálisis de datos e los estudios epidemiológicos II Itroducció E este capitulo cotiuamos el aálisis de los estudios epidemiológicos cetrádoos e las medidas de tedecia cetral, posició y dispersió, ídices

Más detalles

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES TEMA 2 ARITMÉTICA MERCANTIL MATEMÁTICAS CCSSI - 1º Bach. 1 TEMA 2 ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la

Más detalles

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS

INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS INICIACIÓN TEORICO-PRÁCTICA A LAS MATEMÁTICAS FINANCIERAS II: CONSTITUCIÓN, PRÉSTAMOS Y EMPRÉSTITOS Autor: Profesor de la Uiversidad de Graada (Dpto. Ecoomía Fiaciera y Cotabilidad) Profesor Tutor del

Más detalles

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.)

ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS COCOS. (Resolución por JMEB.) ANÁLISIS DEL PROBLEMA DE LOS MONOS Y LOS OOS. (Resolució por JMEB.) 1. Defiició. El problema cosiste e calcular la catidad de cocos que había iicialmete e u motó que... ierto día se reuiero moos para recoger

Más detalles

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN

INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN INFERENCIA ESTADÍSTICA: ESTIMACIÓN DE UNA PROPORCIÓN Págia 98 Cuátas caras cabe esperar? El itervalo característico correspodiete a ua probabilidad del 95% (cosideramos casas raros al 5% de los casos extremos)

Más detalles

Ejercicios Tema 4. Estructuras de Repetición

Ejercicios Tema 4. Estructuras de Repetición Ejercicios Tema 4. Estructuras de Repetició 1. Calcular el factorial de u úmero etero itroducido por teclado. 2. Calcular de la suma y la media aritmética de N úmeros reales. Solicitar el valor de N al

Más detalles

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2001 (Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 001 (Modelo ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) Se quiere orgaizar u puete aéreo etre dos ciudades, co plazas suficietes de pasaje y carga,

Más detalles

Análisis en el Dominio del Tiempo para Sistemas Discretos

Análisis en el Dominio del Tiempo para Sistemas Discretos OpeStax-CNX module: m12830 1 Aálisis e el Domiio del Tiempo para Sistemas Discretos Do Johso Traslated By: Erika Jackso Fara Meza Based o Discrete-Time Systems i the Time-Domai by Do Johso This work is

Más detalles

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A

IES Fco Ayala de Granada Sobrantes de 2006 (Modelo 5 ) Solución Germán-Jesús Rubio Luna OPCIÓN A IES Fco Ayala de Graada Sobrates de 2006 (Modelo 5 ) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A Sea la regió defiida por las siguietes iecuacioes: x/2 + y/3 1 ; - x + 2y 0; y 2. (2 putos) Represete

Más detalles

Planificación contra stock

Planificación contra stock Plaificar cotra stock 5 Plaificació cotra stock Puede parecer extraño dedicar u tema al estudio de métodos para plaificar la producció de empresas que trabaja cotra stock cuado, actualmete, sólo se predica

Más detalles

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014.

EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. 11-Septiembre-2014. EXAMEN DE TÉCNICAS PARA EL ANÁLISIS DEL MERCADO. -Septiembre-04. APELLIDOS: DNI: NOMBRE:. Se quiere hacer u estudio sobre las persoas que usa iteret e ua regió dode el 40% de los habitates so mujeres.

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.001-.00 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO.-.3 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

16 Distribución Muestral de la Proporción

16 Distribución Muestral de la Proporción 16 Distribució Muestral de la Proporció 16.1 INTRODUCCIÓN E el capítulo aterior hemos estudiado cómo se distribuye la variable aleatoria media aritmética de valores idepedietes. A esta distribució la hemos

Más detalles

CURSO 2.004-2.005 - CONVOCATORIA:

CURSO 2.004-2.005 - CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE / LOCE CURSO 4-5 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M.

ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Julián de la Horra Departamento de Matemáticas U.A.M. ESTADÍSTICA DESCRIPTIVA: UNA VARIABLE Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Cuado estamos iteresados e estudiar algua característica de ua població (peso, logitud de las hojas,

Más detalles

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011

CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS. Año 2011 CARERRA DE CONTABILIDAD SEPARATA DE MATEMÁTICAS FINANCIERAS Año 20 El presete documeto es ua recopilació de iformació obteida e libros de autores prestigiosos y diversos sitios de iteret. El uso de este

Más detalles

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441

PRUEBA A ( ) ( ) p z p z 0.4988 1 0.4988 0.4988 1 0.4988 0.4988 1.96,0.4988 + 1.96 = 0.4521, 0.5455 441 441 PRUEBAS DE ACCESO A LA UNIVERSIDAD LOGSE CURSO 007-008 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC SS - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

-------- --------//-------- --------//-------- -------- TAE i 1.6.1.-.-EN ESTE MÉTODO DE AMORTIZACIÓN AMERICANO, DEBEMOS

-------- --------//-------- --------//-------- -------- TAE i 1.6.1.-.-EN ESTE MÉTODO DE AMORTIZACIÓN AMERICANO, DEBEMOS TEMA.- METODOS DE AMORTIZACION CON AGO DE INTERESES OSAGABLES Amortizació Americaa. Método Fracés. Método de cuotas de amortizació costates. Térmios amortizativos variables e progresió geométrica ó térmios

Más detalles

100 15% de 5000 = 0,15 5000 = 750 9) Se sabe que el iva (18%) de una cantidad es 5400, cuál es la cantidad?

100 15% de 5000 = 0,15 5000 = 750 9) Se sabe que el iva (18%) de una cantidad es 5400, cuál es la cantidad? º MAGISTERIO TARDES PROFESOR: RUBÉN MALONDA ) Simplificar a) 6 = ) = = 6 = 6 b) 5 5 = 5 5 = 75 0 = 75 0 c) = = = 5 5 5 = = = 9 7 d) 5 6 + 50 = + 5 = 6 + 5 = 6 + ) Escribir 999 e úmeros romaos 999 MCMXCIX

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A IES Fco Ayala de Graada Sobrates de 2012 (Modelo 1 ) Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2012 (MODELO 1) OPCIÓN A EJERCICIO 1_A -1-6 -1 1 2 a 0 1 Sea las matrices A

Más detalles

ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES

ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES ARITMÉTICA MERCANTIL 2.1 AUMENTOS Y DISMINUCIONES PORCENTUALES E u aumeto o dismiució pocetual, el úmeo po el que hay que multiplica la catidad iicial paa obtee la catidad fial se llama ídice de vaiació.

Más detalles

TEMA 3.- OPERACIÓN FINANCIERA

TEMA 3.- OPERACIÓN FINANCIERA . DEFINICIÓN Y CLASIFICACIÓN. TEMA 3.- OPEACIÓN FINANCIEA Se deomia operació fiaciera a todo itercambio o simultáeo de capitales fiacieros pactado etre dos agetes, siempre que se verifique la equivalecia,

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON

BINOMIO DE NEWTON página 171 BINOMIO DE NEWTON págia 171 Los productos otables tiee la fialidad de obteer el resultado de ciertas multiplicacioes si hacer dichas multiplicacioes. Por ejemplo, cuado se desea multiplicar los biomios cojugados siguietes:

Más detalles

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones

Modulo IV. Inversiones y Criterios de Decisión. Inversión en la empresa. Análisis de Inversiones Modulo IV Iversioes y Criterios de Decisió Aálisis de Iversioes 1. Iversió e la empresa 2. Métodos aproximados de valoració y selecció de iversioes 3. Criterio del valor actualizado eto (VAN) 4. Criterio

Más detalles

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO

MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FACULTAD DE INGENIERIA ESCUELA DE INGENIERIA MECANICA MODELO PARA EL ESTUDIO DEL REEMPLAZO DE UN EQUIPO PRODUCTIVO FERNANDO ESPINOSA FUENTES Necesidad del reemplazo. Si se matiee u riesgo durate u tiempo

Más detalles

1.1. Campos Vectoriales.

1.1. Campos Vectoriales. 1.1. Campos Vectoriales. Las fucioes, ampliamete empleadas e la igeiería, para modelar matemáticamete y caracterizar magitudes físicas, y cuyo domiio podría ser multidimesioal, puede teer u rago uidimesioal

Más detalles

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple

2 Concepto de Capital Financiero. 3 Comparación de capitales financieros. 3 Ley financiera. 14 Capitalización compuesta. 23 Descuento comercial simple MODULO : FUNDAMENTOS DE LA INVERSIÓN Ídice oceptos básicos de la iversió 2 ocepto de apital Fiaciero 3 omparació de capitales fiacieros 3 Ley fiaciera apitalizació 8 apitalizació simple 4 apitalizació

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 1) Enunciado Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 011 (Modelo 1) Euciado Germá-Jesús Rubio Lua SOLUCIONES PRUEBA DE ACCESO A LA UNIVERSIDAD DEL AÑO 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

Propuesta A. { (x + 1) 4. Se considera la función f(x) =

Propuesta A. { (x + 1) 4. Se considera la función f(x) = Pruebas de Acceso a Eseñazas Uiversitarias Oficiales de Grado (0) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá cotestar a ua de las dos opcioes propuestas A o B. Se podrá utilizar

Más detalles

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS

INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS INFERENCIA ESTADÍSTICA. CONTRASTE DE HIPÓTESIS 1. El peso medio de ua muestra aleatoria de 100 arajas de ua determiada variedad es de 272 g. Se sabe que la desviació típica poblacioal es de 20 g. A u ivel

Más detalles

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos:

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos: FEE02-5 FÓRMULAS Y EJEMPLOS cluye a los productos: - Epresariales - Credifácil - El tiepo vale oro - Micro agropecuario - Agro crédito - Credigaadero - Credicostruye - Mi terreito - Multioficios - Crédito

Más detalles

14 Intervalos de confianza

14 Intervalos de confianza Solucioario 14 Itervalos de cofiaza ACTIVIDADES INICIALES 14.I. Calcula tal que P z < Z z α α = 0,87. P zα < Z zα = P Z zα P Z < zα = P Z zα 1= 0,87 P Z P Z P Z = 1,87 = 0,935. Buscado e el iterior de

Más detalles

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos.

Calculamos los vértices del recinto convexo, resolviendo las ecuaciones las rectas de dos en dos. IES Fco Ayala de Graada Sobrates de 2000 (Modelo 1) Solució Germá-Jesús Rubio Lua Los Exámees del año 2000 me los ha proporcioado D. José Gallegos Ferádez OPCIÓN A EJERCICIO 1_A (2 putos) Dibuje el recito

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+

IES Fco Ayala de Granada Sobrantes 2009 (Modelo 3 Junio) Soluciones Germán-Jesús Rubio Luna+ IES Fco Ayala de Graada Sobrates 009 (Modelo 3 Juio) Solucioes Germá-Jesús Rubio Lua+ MATEMÁTICAS CCSS JUNIO 009 (MODELO 3) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea la igualdad A X + B = A, dode

Más detalles

ALGORITMOS Y DIAGRAMAS DE FLUJO

ALGORITMOS Y DIAGRAMAS DE FLUJO ALGORITMOS Y DIAGRAMAS DE LUJO Elabore diagramas de flujo para expresar la solució de los problemas que se preseta a cotiuació. Auque sólo se pida explícitamete e alguos casos, es ecesario que Ud. siempre

Más detalles

Gradiente, divergencia y rotacional

Gradiente, divergencia y rotacional Lecció 2 Gradiete, divergecia y rotacioal 2.1. Gradiete de u campo escalar Campos escalares. U campo escalar e R es ua fució f : Ω R, dode Ω es u subcojuto de R. Usualmete Ω será u cojuto abierto. Para

Más detalles

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES

FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES FORMULAS Y EJEMPLOS EXPLICATIVOS PARA EL CALCULO DE INTERESES Cosideracioes Las fórmulas detalladas tiee el objeto de iformar sobre el cálculo del iterés del crédito y la cuota a pagar La tasa de iterés

Más detalles

La volatilidad implícita

La volatilidad implícita La volatilidad implícita Los mercados de opcioes ha evolucioado bastate desde los años setetas, época e la que ue publicada la órmula de Black Scholes (BS). Dicha órmula quedó ta arraigada e la mete de

Más detalles

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES

METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES METODOLOGÍA UTILIZADA EN LA ELABORACIÓN DEL ÍNDICE DE PRECIOS AL POR MAYOR EN LA REPÚBLICA DE PANAMÁ I. GENERALIDADES La serie estadística de Ídice de Precios al por Mayor se iició e 1966, utilizado e

Más detalles

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com

www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve Correo electrónico: josearturobarreto@yahoo.com Autor: José Arturo Barreto M.A. Págias web: www.abaco.com.ve www.abrakadabra.com.ve www.miprofe.com.ve El cocepto de límite Correo electróico: josearturobarreto@yahoo.com Zeó de Elea (90 A.C) plateó la

Más detalles

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17.

2 Halla la diferencia de una progresión aritmética sabiendo que el segundo término es 8 y el quinto 17. EJERCICIOS EXTRA PROGERSIONES ARITMETICAS Y GEOMETRICAS 1 15 Halla la suma de los 1 primeros térmios de la progresió aritmética: 8,, 7,... Halla la diferecia de ua progresió aritmética sabiedo que el segudo

Más detalles

SOLUCIÓN ACTIVIDADES UNIDAD 7

SOLUCIÓN ACTIVIDADES UNIDAD 7 SOLUCIÓN ACTIVIDADES UNIDAD 7 1.- Qué es ua fuete fiaciera?.- Cuál es la diferecia etre los fodos propios y los fodos ajeos? La forma de obteer recursos fiacieros la empresa para llevar a cabo sus iversioes.

Más detalles

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ

FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA. CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ FACULTAD DE CIENCIAS CONTABLESY ADMINISTRATIVAS MATEMÁTICA FINANCIERA CPC. Oscar Suzuki Muroy HUANCAYO - PERÚ TABLA DE CONVERSIONES UNIVERSIDAD PERUANA LOS ANDES Educació a Distacia. Huacayo. Impresió

Más detalles

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2002 (Modelo 3 Junio) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Graada Sobrates de 2002 (Modelo 3 Juio) Solució Germá-Jesús Rubio Lua OPCIÓN A EJERCICIO 1_A (3 putos) U cliete de u supermercado ha pagado u total de 156 euros por 24 litros de leche,

Más detalles

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS)

DISTRIBUCION DE FRECUENCIA (DATOS AGRUPADOS) Los valores icluidos e u grupo de datos usualmete varía e magitud; alguos de ellos so pequeños y otros so grades. U promedio es u valor simple, el cual es cosiderado como el valor más represetativo o típico

Más detalles

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4)

SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 2008 (MODELO 4) IES Fco Ayala de Graada Sobrates de 8 (Modelo 4) Solució Germá-Jesús Rubio Lua SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SOBRANTES 8 (MODELO 4) OPCIÓN A EJERCICIO 1_A (3 putos) U joyero fabrica dos modelos

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS SEPTIEMBRE 013 MODELO OPCIÓN A EJERCICIO 1 (A) Sea R la regió factible defiida por las iecuacioes x 3y, x 5, y 1. (0 5 putos) Razoe si el puto (4 5,1 55) perteece

Más detalles

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL

REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 375 REVISIÓN DE ALGUNOS INDICADORES PARA MEDIR LA DESIGUALDAD XAVIER MANCERO CEPAL 376 Revisió de alguos idicadores para medir desigualdad Medidas de Desigualdad Para medir el grado de desigualdad e la

Más detalles

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL

MEDIDAS DE TENDENCIA CENTRAL CON EXCEL ) MEDIA ARITMÉTICA MEDIDAS DE TENDENCIA CENTRAL CON EXCEL Las medidas de tedecia cetral so medidas represetativas que como su ombre lo idica, tiede a ubicarse hacia el cetro del cojuto de datos, es decir,

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (Parte I) Tema 6- Parte 1 1 EL MÉTODO de la TASA de DESCUENTO AJUSTADA al RIESGO : a = k + p E presecia de iflació a = k + p ( 1 + a ) = ( 1 + a )(

Más detalles

Posible solución del examen de Investigación Operativa de Sistemas de junio de 2007

Posible solución del examen de Investigación Operativa de Sistemas de junio de 2007 Posible soluió del exame de Ivestigaió Operativa de Sistemas de juio de 7 Problema : (3 putos) E u laboratorio se aaliza las probabilidades de que u átomo radioativo se ovierta e u átomo de otro tipo,

Más detalles

8 Funciones, límites y continuidad

8 Funciones, límites y continuidad Solucioario 8 Fucioes, límites y cotiuidad ACTIVIDADES INICIALES 8.I. Copia y completa la siguiete tabla, epresado de varias formas los cojutos uméricos propuestos. Gráfica Itervalo Desigualdad Valor absoluto

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD

PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD PRUEBAS DE ACCESO A LA UNIVERSIDAD FASE GENERAL: MATERIAS DE MODALIDAD CURSO 009-010 CONVOCATORIA: MATERIA: MATEMATICAS APLICADAS A LAS CC. SS. - Cada alumo debe elegir sólo ua de las pruebas (A o B) y,

Más detalles