SESION 15 DISTRIBUCIONES DE MUESTREO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SESION 15 DISTRIBUCIONES DE MUESTREO"

Transcripción

1 SESION 15 DISTRIBUCIONES DE MUESTREO I. CONTENIDOS: 1. Distribució de muestreo. 2. Distribucioes de muestreo de la media 3. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes de muestreo. 4. Teorema del límite cetral, métodos de iferecia estadística. II. OBJETIVOS: Al térmio de la Clase, el alumo: Comprederá co exactitud sesgos a la izquierda o derecha, leptocurtosis, platicurtosis y mesocurtosis. III. PROBLEMATIZACIÓN: Cometa las pregutas co tu Asesor y seleccioa las ideas más sigificativas. De qué tamaño debe ser ua muestra represetativa de la població de alumos de tu grupo? Cuátas posibles muestras de cico elemetos habrá e ua població de mil? IV. TEXTO INFORMATIVO-FORMATIVO: 1.1. Distribució de muestreo Las distribucioes de muestreo describe la probabilidad co que ocurre los valores de u estadígrafo que se ha medido e diferetes muestras. Forma la base de la estadística iferecial. Simbología de estadígrafos y parámetros: Idicador Parámetro Estadígrafo Tamaño N Media µ X Mediaa µ M e Moda µ M o Variaza 2 Desviació estádar S 2 S Además se tiee, los siguietes símbolos: µ x Media de la distribució muestral de medias. 2 x Variaza de la distribució muestral de medias. x Desviació estádar de la distribució muestral de medias. 61

2 MUESTREO CON REEMPLAZO Cosiste e extraer elemetos de la població, para registrar las categorías de sus variables, y luego reitegrarlos a la població. De este modo, absolutamete todos los elemetos de la població tiee la misma oportuidad de participar e la formació de la muestra. Para calcular el úmero de muestras posibles e el muestreo co reemplazo se eleva el tamaño de la població (N) a la potecia tamaño de la muestra () úmero de muestras diferetes N MUESTREO SIN REEMPLAZO E el muestreo si remplazo; cada elemeto, que se extrae para registrar las categorías de sus variables, o se reitegra a la població. De este modo, e cada ueva elecció participa u meor úmero de elemetos de la població. El cálculo del úmero de muestras posibles e el muestreo si reemplazo es la combiació de N elemetos tomados de e N! úmero de muestras diferetes!( N )! Ejemplo 1 Se tiee ua població de 50 objetos y se quiere extraer ua muestra de tamaño 3. a) Cuátas muestras diferetes se puede extraer co reemplazo? b) Cuátas muestras diferetes se puede extraer si reemplazo? Para el iciso a) úmero de muestras diferetes N Para el iciso b) úmero de muestras diferetes N! 50! 19600!( N )! 3!(50 3)! 2.1. Distribucioes de muestreo de la media (dmm) Las distribucioes de muestreo de la media cosiste e la descripció de todas medias de las muestras posibles, el úmero de éstas lo determia si el muestreo se hace co o si reemplazo. Ejemplo 2 Los datos siguietes represeta el úmero de hijos profesioistas por familia 1, 0, 2, 3, 2, 4, 1, 0 a) Bajo la codició de muestreo co reemplazo, determiar el total de muestras posibles de tamaño 2 y aotemos las muestras. b) Bajo la codició de muestreo si reemplazo, determiar el total de muestras posibles de tamaño 2 y aotemos las muestras c) Bajo la codició de muestreo co reemplazo, expresar la dmm d) Bajo la codició de muestreo si reemplazo, expresar la dmm Para el iciso a) Como el muestreo es co reemplazo se usa N 8 y 2 e la fórmula: 2 úmero de muestras diferetes N 8 64 Las muestras posibles se puede expresar formado bias de cada elemeto cosigo mismo y co todos los demás. E la tabla siguiete se describe las muestras: 62

3 (1, 1) (1, 0) (1, 2) (1, 3) (1, 2) (1, 4) (1, 1) (1, 0) (0, 1) (0, 0) (0, 2) (0, 3) (0, 2) (0, 4) (0, 1) (0, 0) (2, 1) (2, 0) (2, 2) (2, 3) (2, 2) (2, 4) (2, 1) (2, 0) (3, 1) (3, 0) (3, 2) (3, 3) (3, 2) (3, 4) (3, 1) (3, 0) (2, 1) (2, 0) (2, 2) (2, 3) (2, 2) (2, 4) (2, 1) (2, 0) (4, 1) (4, 0) (4, 2) (4, 3) (4, 2) (4, 4) (4, 1) (4, 0) (1, 1) (1, 0) (1, 2) (1, 3) (1, 2) (1, 4) (1, 1) (1, 0) (0, 1) (0, 0) (0, 2) (0, 3) (0, 2) (0, 4) (0, 1) (0, 0) Para el iciso b) Como el muestreo es si reemplazo la fórmula es: N! úmero de muestras diferetes!( N )! Si N 8 y 2 8! 2! (8 2 )! ( 720 ) 28 Las diferetes muestras se obtiee combiado cada elemeto co los demás que tiee a su derecha. No se debe hacer la combiació co elemetos a la izquierda. (1, 0) (1, 2) (1, 3) (1, 2) (1, 4) (1, 1) (1, 0) (0, 2) (0, 3) (0, 2) (0, 4) (0, 1) (0, 0) (2, 3) (2, 2) (2, 4) (2, 1) (2, 0) (3, 2) (3, 4) (3, 1) (3, 0) (2, 4) (2, 1) (2, 0) (4, 1) (4, 0) (1, 0) Para el iciso c) Se suma los elemetos de las muestras co reemplazo y el resultado se divide etre dos para obteer las medias de cada muestra Para el iciso d) Se suma los elemetos de las muestras si reemplazo y el resultado se divide etre dos para obteer las medias de cada muestra

4 3.1. Media, mediaa y moda, así como su relació co la desviació estádar de las distribucioes de muestreo E las distribucioes de muestreo de la media es posible calcular la media, la mediaa, la moda y la desviació estádar. Si se obtiee la media de la dmm el valor es igual al de la media de la població. Si el muestreo se hace co reemplazo, o cuado el tamaño de las muestras es meor al 5% del tamaño de la població, la desviació estádar de la dmm es igual a la desviació estádar de la població etre la raíz cuadrada del tamaño de las muestras. x Pero si el muestreo se hace si reemplazo, hay que agregar u factor de correcció que es igual a la raíz cuadrada del cociete de la diferecia del tamaño de la població y el de la muestra etre el tamaño de la població meos uo. x N N 1 La expresió aterior se cooce tambié como error de muestreo. Es la desviació e la distribució de muestreo de la media. La gráfica de esta distribució se aproxima a la distribució ormal coforme aumeta el tamaño de las muestras, y además co ello dismiuye el error de muestreo. Esto tiee grades aplicacioes e los estudios de poblacioes eormes, pues es ua medida de la precisió. Ejemplo 3 Para los datos del ejemplo 2, ecuetra la media, la mediaa, la moda y la desviació estádar de la dmm, para el muestreo si reemplazo. La dmm es: Ordeado los datos: 0, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2, 2, 2, 2, 2, 2.5, 2.5, 2.5, 2.5, 3, 3, 3.5 Segú los temas vistos e la clase 4 La mediaa es 1.5 La moda es 1.5 La media es Como se puede comprobar, la mediaa y la media de la població coicide co la media y la mediaa de la dmm. La desviació estádar de la dmm es La desviació estádar de la població es Sustituyedo esta última e la expresió del error de muestreo: x N N Los últimos dos ejemplos ha de ser útiles para compreder mejor el Teorema del límite cetral. 64

5 4.1. Teorema del límite cetral, métodos de iferecia estadística El Teorema del límite cetral establece que si se matiee u muestreo aleatorio y el tamaño de la muestra es mayor a 30, etoces la media de la distribució de muestreo de la media es igual a la media de la població y la desviació estádar de la distribució muestreo de la media es igual al error de muestreo. Además la distribució de muestreo de la media es aproximadamete ormal si el tamaño de la muestra es mayor a 30, por lo que es posible hacer cálculos de probabilidad como se estudió e la clase 13. Este Teorema es posiblemete el cocepto más importate de la teoría estadística, su aplicació se extiede al cálculo de los límites de cofiaza o al tamaño de ua muestra, etre otros. MÉTODOS DE INFERENCIA ESTADÍSTICA La estimació de parámetros a partir de los estadígrafos del muestreo, se puede dar como ua estimació de puto al asociar directamete el estadígrafo co el parámetro correspodiete. Se utiliza e la estimació de puto el error de muestreo para idicar lo precisa que es. Se puede hacer ua estimació utilizado la desviació estádar de la muestra e lugar de la desviació estádar de la població, pues a meudo se descooce. Tambié existe la estimació de itervalo, e dode se aprovecha la distribució ormal que tiee la dmm. Se da u ivel de cofiaza del 95%, por lo geeral, de que el valor del parámetro está etre u par de límites que forma el itervalo de cofiaza. Ua distribució puede teer sesgos, esto ya se explicó e la clase 5, pero la cutosis es el grado de distorsió e el setido vertical co respecto a la curva ormal. Se llama leptocurtosis si se tiee u pico elevado, mesocurtosis si la curva es poco elevada, y platicurtosis si la curva es más bie aplaada. Bie, termiamos! V. ESTRATEGIAS CENTRADAS EN EL APRENDIZAJE: A. Realiza las siguietes actividades. 1. Dado u uiverso de tamaño 20 determia el total de muestras de tamaño 5, 7, 10, 13 co reemplazo. 2. Los datos siguietes represeta el igreso mesual de 6 persoas. 5, 500, 3,800 12,000 4,500 3,000 a) Bajo la codició de muestreo si reemplazo, determia el total de muestras posibles de tamaño 2 y aótalas. b) Aota la distribució de muestreo de la media. c) Calcula la media y desviació estádar de la dmm. 3. Estima el error de muestreo de la media y efectúa ua estimació de puto apropiada a partir de los datos de las muestras dadas a cotiuació. a) b) c) d) x 37 S 3.7 x 75 S 1.6 x 50, 000 S 7500 x 1 S.05 65

6 Uiversidad América Latia Av. Cuauhtémoc 188-E Fracc. Magallaes C.P Acapulco, Guerrero, México Para cualquier cometario o sugerecia relativa a los Servicios, Persoal Docete, Admiistrativo ó Guías de Estudio, favor de comuicarse a los teléfoos: Direcció Geeral: 01 (33) ext co Claudia Ley de 10:00 a 16:00 Hrs. Coordiació de Asesores: 01 (33) ext co el Lic. Miguel Machuca García de 08:00 a 17:00 Hrs.

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Problemas de Estimación de Una y Dos Muestras. UCR ECCI CI-1352 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Problemas de Estimació de Ua y Dos Muestras UCR ECCI CI-35 Probabilidad y Esradística Prof. M.Sc. Kryscia Daviaa Ramírez Beavides Iferecia Estadística La teoría de la iferecia estadística cosiste e aquellos

Más detalles

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel

CLAVES DE CORRECCIÓN GUÍA DE EJERCITACIÓN FACTORES Y PRODUCTOS PREGUNTA ALTERNATIVA Nivel x Estimado alumo: Aquí ecotrarás las claves de correcció, las habilidades y los procedimietos de resolució asociados a cada preguta, o obstate, para reforzar tu apredizaje es fudametal que asistas a la

Más detalles

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción

Curso de Estadística Aplicada a las Ciencias Sociales. Tema 11. Estimación de una media. Introducción. Introducción (2) Introducción Curso de Estadística Aplicada a las Ciecias Sociales Tema 11. Estimació de ua (Cap. 1 del libro) Tema 11. Estimació de ua Itroducció 1. Distribució de la e el. La muestral es cetrada 3. El error típico

Más detalles

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN

INFERENCIA ESTADÍSTICA Y ESTIMACIÓN INFERENCIA ESTADÍSTICA Y ESTIMACIÓN La estadística iferecial se ocupa de exteder o extrapolar a toda ua població, iformacioes obteidas a partir de ua muestra, así como de tomar de decisioes. El muestreo

Más detalles

UT-4: Distribuciones fundamentales de muestreo y descripción de datos

UT-4: Distribuciones fundamentales de muestreo y descripción de datos UT-4: Distribucioes fudametales de muestreo y descripció de datos Sub tema: Muestreo aleatorio. Distribucioes muestrales. Distribucioes muestrales de medias. Teorema del límite cetral. Aplicacioes. DF

Más detalles

MUESTREO Y ESTIMACIÓN ESTADÍSTICA

MUESTREO Y ESTIMACIÓN ESTADÍSTICA 1 MUESTREO Y ESTIMACIÓN ESTADÍSTICA Muestreo. Métodos de muestreo Se llama població al cojuto de idividuos que posee cierta característica. Ua muestra es ua parte de esa població. Muestreo es el proceso

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales.

Resumen Tema 2: Muestreo aleatorio simple. Muestreo con probabilidades desiguales. Resume Tema 2: Muestreo aleatorio simple. Muestreo co probabilidades desiguales. M.A.S.: Muestreo aleatorio simple co probabilidades iguales si reemplazo. Hipótesis: Marco perfecto, si omisioes i duplicados

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Guía 1 Matemática: Estadística NM 4

Guía 1 Matemática: Estadística NM 4 Cetro Educacioal Sa Carlos de Aragó. Sector: Matemática. Prof.: Ximea Gallegos H. 1 Guía 1 Matemática: Estadística NM 4 Nombre: Curso: Fecha. Uidad: Estadística y Probabilidades. Apredizajes Esperados:

Más detalles

EJERCICIOS RESUELTOS TEMA 8

EJERCICIOS RESUELTOS TEMA 8 EJERCICIOS RESUELTOS TEMA 8 8.. U ivestigador desea coocer la opiió de los madrileños sobre la saidad pública. Para ello, acude a las 8 de la mañaa al hospital público de la capital más cercao a su domicilio

Más detalles

Importancia de las medidas de tendencia central.

Importancia de las medidas de tendencia central. UNIDAD 5: UTILICEMOS MEDIDAS DE TENDENCIA CENTRAL. Importacia de las medidas de tedecia cetral. Cuado recopilamos ua serie de datos podemos resumirlos utilizado ua tabla de clases y frecuecias. La iformació

Más detalles

Tema 4. Estimación de parámetros

Tema 4. Estimación de parámetros Estadística y metodología de la ivestigació Curso 2012-2013 Pedro Faraldo, Beatriz Pateiro Tema 4. Estimació de parámetros 1. Estimació putual 1 1.1. Estimació de la proporció e la distribució Bi(m, p).......................

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 013 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Juio, Ejercicio 4, Opció B Reserva 1, Ejercicio 4, Opció

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3

Estadística y sus aplicaciones en Ciencias Sociales Práctico 4 - Solución Curso ) Como se trata de muestreo sin reposición, se tiene C 5 3 Estadística y sus aplicacioes e Ciecias Sociales Práctico 4 - Solució Curso 016 Ejercicio 1 5! 1) Como se trata de muestreo si reposició, se tiee C 5 3 3!! muestras de tamaño =3. ) Distribució muestral

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

Distribuciones en el muestreo, EMV

Distribuciones en el muestreo, EMV Distribucioes e el muestreo, E Tema 6 Descripció breve del tema. Itroducció y coceptos básicos. Propiedades de los estimadores Sesgo, Variaza, Error Cuadrático Medio y Cosistecia 3. Distribució de u estimador

Más detalles

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)

DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y

Más detalles

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

1.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky 106 1. INTERVALO DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL upogamos que X1,...,X es ua muestra aleatoria de ua

Más detalles

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal.

Mirando las gráficas, justifica estas afirmaciones: Cuantos más dados intervienen, más se parece la distribución de sus promedios a la curva normal. Uidad 1. Iferecia estadística. Estimació de la media Matemáticas aplicadas a las Ciecias Sociales II Resuelve Págia 85 Lazamieto de varios dados Comprueba e la tabla aterior ue: DESV. TÍPICA DESV. TÍPICA

Más detalles

6. DISTRIBUCIONES MUESTRALES

6. DISTRIBUCIONES MUESTRALES 6. DISTRIBUCIONES MUESTRALES Dr. Edgar Acua http://math.uprm.edu/~edgar UNIVERSIDAD DE UERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber

Más detalles

Estimación de Parámetros

Estimación de Parámetros Igacio Cascos Ferádez Departameto de Estadística Uiversidad Carlos III de Madrid Estimació de Parámetros Estadística I curso 008 009 Veremos cómo costruir valores aproximados de los parámetros de los modelos

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es coocer acerca del comportamieto de parámetros poblacioales tales como: la media ( μ ), la variaza ( ) o la proporció ( p ).

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS

8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS 8 DESIGUALDAD DE TCHEBYCHEFF LEY DE LOS GRANDES NÚMEROS Sea ua variable aleatoria de ley descoocida co 0,00. Si 0,, emplear la desigualdad de TCHEBYCHEFF para acotar iferiormete la probabilidad E( ) [

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA DISTRIBUCIÓN DE FRECUENCIAS, HISTOGRAMA, POLIGONO Y ESTADÍSITICOS DE TENDENCIA CENTRAL, DISPERSIÓN, ASIMETRÍA Y CURTOSIS. Prof.: MSc. Julio R. Vargas I. Las calificacioes fiales

Más detalles

1. Intervalos de Conanza

1. Intervalos de Conanza M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.: Itervalos de coaza Objetivos Costruir itervalos de coaza para los parámetros más importates. Aplicar coveietemete los IC atediedo a cada situació

Más detalles

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple)

3.1. Muestreo aleatorio sin reposición Muestreo aleatorio con reposición (muestreo aleatorio simple) 1 Muestreo Tema 1 1. Muestreo. Muestreo aleatorio 3. Tipos de muestreo aleatorio 3.1. Muestreo aleatorio si reposició 3.. Muestreo aleatorio co reposició (muestreo aleatorio simple) 3.3. Muestreo aleatorio

Más detalles

Determinación del tamaño de una muestra (para dos o más muestras)

Determinación del tamaño de una muestra (para dos o más muestras) STATGRAPHICS Rev. 457 Determiació del tamaño de ua muestra (para dos o más muestras) Este procedimieto determia el tamaño de muestra apropiado para estimar o realiar pruebas de hipótesis respecto a alguo

Más detalles

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES

CAPÍTULO 6 DISTRIBUCIONES MUESTRALES CAPÍTULO 6 DISTRIBUCIONES MUESTRALES Uo de los objetivos de la estadística es saber acerca del comportamieto de parámetros poblacioales tales como: la media ( ), la variaza ( ) o la proporció ( p ). Para

Más detalles

Ejercicios de intervalos de confianza en las PAAU

Ejercicios de intervalos de confianza en las PAAU Ejercicios de itervalos de cofiaza e las PAAU 2008 1 1.-El úmero de días de permaecia de los efermos e u hospital sigue ua ley Normal de media µ días y desviació típica 3 días. a)determiar u itervalo de

Más detalles

Prueba A = , = [ 7.853, 8.147]

Prueba A = , = [ 7.853, 8.147] PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 5-6 - CONVOCATORIA: Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe

Más detalles

UNIDAD 3.- INFERENCIA ESTADÍSTICA I

UNIDAD 3.- INFERENCIA ESTADÍSTICA I UNIDAD 3.- INFERENCIA ESTADÍSTICA I 1. ESTADÍSTICA INFERENCIAL. MUESTREO La Estadística es la ciecia que se preocupa de la recogida de datos, su orgaizació y aálisis, así como de las prediccioes que, a

Más detalles

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ.

Intervalos de Confianza basados en una sola muestra. Denotaremos al parámetro de interés con la letra θ y con θ un estimador para θ. Itervalos de Cofiaza basados e ua sola muestra Ua estimació putual sólo os proporcioa u valor umérico, pero NO proporcioa iformació sobre la precisió y cofiabilidad de la estimació del parámetro. Etoces

Más detalles

MEDIDAS DE DISPERSIÓN.

MEDIDAS DE DISPERSIÓN. MEDIDA DE DIPERIÓN. Las medidas de tedecia cetral solamete da ua medida de la localizació del cetro de los datos. Co mucha frecuecia, es igualmete importate describir la forma e que las observacioes está

Más detalles

Preguntas más Frecuentes: Tema 2

Preguntas más Frecuentes: Tema 2 Pregutas más Frecuetes: Tema 2 Pulse sobre la preguta para acceder directamete a la respuesta 1. Se puede calcular la media a partir de las frecuecias absolutas acumuladas? 2. Para calcular la media aritmética,

Más detalles

Trabajo Especial Estadística

Trabajo Especial Estadística Estadística Resolució de u Problema Alumas: Arrosio, Florecia García Fracaro, Sofía Victorel, Mariaela FECHA DE ENTREGA: 12 de Mayo de 2012 Resume Este trabajo es ua ivestigació descriptiva, es decir,

Más detalles

Muestreo e Intervalos de Confianza

Muestreo e Intervalos de Confianza Muestreo e Itervalos de Cofiaza PROBLEMAS DE SELECTIVIDAD RESUELTOS MUESTREO E INTERVALOS DE CONFIANZA 1) E ua població ormal co variaza coocida se ha tomado ua muestra de tamaño 49 y se ha calculado su

Más detalles

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica,

DISTRIBUCIÓN DE LA MEDIA MUESTRAL. (a) Las muestras de tamaño n obtenidas en una población de media y desviación típica, 1 MAJ04 DISTRIBUCIÓN DE LA MEDIA MUESTRAL 1. E u servicio de ateció al cliete, el tiempo de espera hasta recibir ateció es ua variable ormal de media 10 miutos y desviació típica 2 miutos. Se toma muestras

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

- estimación de parámetros, - intervalos de confianza y

- estimación de parámetros, - intervalos de confianza y Iferecia estadística: es el proceso de sacar coclusioes de la població basados e la iformació de ua muestra de esa població. Objetivos de la iferecia: - estimació de parámetros, - itervalos de cofiaza

Más detalles

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos:

T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD. x 1. x 2 = 1 = 2. x 3 = 3. x 4. Variable aleatoria: definición y tipos: T ema 6 DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Variable aleatoria: defiició y tipos: Ua variable aleatoria es ua fució que asiga u úmero real, y sólo uo, a cada uo de los resultados de u eperimeto aleatorio.

Más detalles

1. QUÉ ES LA ESTADÍSTICA?

1. QUÉ ES LA ESTADÍSTICA? 1. QUÉ ES LA ESTADÍSTICA? Cuado coloquialmete se habla de estadística, se suele pesar e ua relació de datos uméricos presetada de forma ordeada y sistemática. Esta idea es la cosecuecia del cocepto popular

Más detalles

Estadística Teórica II

Estadística Teórica II tervalos de cofiaza Estadística Teórica NTERVALOS DE CONFANZA Satiago de la Fuete Ferádez 77 tervalos de cofiaza CÁLCULO DE NTERVALOS DE CONFANZA PARA LA MEDA CON DESVACÓN TÍPCA POBLACONAL CONOCDA Y DESCONOCDA.

Más detalles

Estimación de Parámetros. Estimación de Parámetros

Estimación de Parámetros. Estimación de Parámetros Uiversidad Técica Federico Sata María Capítulo 7 Estimació de Parámetros Estadística Computacioal II Semestre 007 Prof. Carlos Valle Págia : www.if.utfsm.cl/~cvalle e-mail : cvalle@if.utfsm.cl C.Valle

Más detalles

ESTADISTICA UNIDIMENSIONAL

ESTADISTICA UNIDIMENSIONAL ESTADISTICA UIDIMESIOAL La estadística estudia propiedades de ua població si recurrir al sufragio uiversal. El estudio estadístico tiee dos posibilidades (1) Describir lo que ocurre e la muestra mediate

Más detalles

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO

INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO INTRODUCCIÓN A LA INFERENCIA ESTADÍSTICA DISTRIBUCIÓN EN EL MUESTREO Objetivos geerales del tema E este tema se itroducirá el cocepto de estadístico como medio para extraer iformació acerca de la ley de

Más detalles

CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS

CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS Págia 1 de 11 CAPÍTULO 8: INTERVALOS DE CONFIANZA PARA PROPORCIONES Y MEDIAS Itervalos de Cofiaza para ua proporció Cuado hacemos u test de hipótesis decidimos sobre u valor hipotético del parámetro. Qué

Más detalles

INTERVALOS DE CONFIANZA

INTERVALOS DE CONFIANZA Gestió Aeroáutica: Estadística Teórica Facultad Ciecias Ecoómicas y Empresariales Departameto de Ecoomía Aplicada Profesor: Satiago de la Fuete Ferádez NTERVALOS DE CONFANZA Gestió Aeroáutica: Estadística

Más detalles

Práctica 7 CONTRASTES DE HIPÓTESIS

Práctica 7 CONTRASTES DE HIPÓTESIS Práctica 7. Cotrastes de hipótesis Práctica 7 CONTRATE DE IPÓTEI Objetivos Utilizar los cotrastes de hipótesis para decidir si u parámetro de la distribució de uos datos objeto de estudio cumple o o ua

Más detalles

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS

Bloque 3 Tema 12 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Bloque 3 Tema 1 PRUEBAS ESTADÍSTICAS PARA EL CONTRASTE DE HIPÓTESIS: PRUEBAS PARAMÉTRICAS Hay ocasioes e las que teemos que tomar decisioes relativas a ua població sobre la base de los coocimietos que

Más detalles

MATERIAL DE LA 3era VISITA

MATERIAL DE LA 3era VISITA Material de clase 2 Domigo 27 Juio TEMAS: MATERIAL DE LA 3era VISITA 1. DISTRIBUCION DE LAS PROPORCIONES MUESTRALES 2. INTERVALOS DE CONFIANZA Desarrollo Tema 1: La Distribució de las Proporcioes Muéstrales

Más detalles

Distribuciones de probabilidad

Distribuciones de probabilidad Distribucioes de probabilidad 1. Variable aleatoria real: Ejemplo: Ua variable aleatoria X es ua fució que asocia a cada elemeto del espacio muestral E u úmero X: E ú Cosideremos el experimeto aleatorio

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 2.001-2.002 - CONVOCATORIA: Juio MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella,

Más detalles

Intervalos de Confianza basados en una muestra. Instituto de Cálculo

Intervalos de Confianza basados en una muestra. Instituto de Cálculo Itervalos de Cofiaza basados e ua muestra. Istituto de Cálculo Dra. Diaa Kelmasky Hay dos razoes por las cuales el itervalo (6.63,.37) tiee mayor logitud que el obteido ateriormete (7.69, 0.3). la variaza

Más detalles

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias

2 Algunos conceptos de convergencia de sucesiones de variables aleatorias INTRODUCCIÓN A LA CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIAS Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció Se puede utilizar diferetes coceptos de covergecia para las sucesioes

Más detalles

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir:

DERIVADA DE FUNCIONES DEL TIPO f ( x) c, donde c es una constante, la derivada de esta función es siempre cero, es decir: DERIVADA DE FUNCIONES DEL TIPO f ( ) c Coceptos clave: 1. Derivada de la fució costate f ( ) c, dode c es ua costate, la derivada de esta fució es siempre cero, es decir: f '( ) 0 c. Derivada de ua fució

Más detalles

Muestreo. Tipos de muestreo. Inferencia Introducción

Muestreo. Tipos de muestreo. Inferencia Introducción Germá Jesús Rubio Lua Catedrático de Matemáticas del IES Fracisco Ayala Muestreo. Tipos de muestreo. Iferecia Itroducció Nota.- Puede decirse que la Estadística es la ciecia que se preocupa de la recogida

Más detalles

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n.

1. Teorema del Límite Central. Como se dijo varias clases atras si tenemos n variables aleatorias, cada una de. X i = X. n = 1 n. 1. Teorema del Límite Cetral Teorema: ea Y 1, Y,..., Y variables aleatorias idepedietes idéticamete distribuidas co EY i = µ y V Y i =

Más detalles

ESTADÍSTICA UNIDIMENSIONAL

ESTADÍSTICA UNIDIMENSIONAL I.E.S. Virge de la Paz. Alcobedas DEPARTAMETO DE MATEMÁTICAS Itroducció ESTADÍSTICA UIDIMESIOAL El ombre de Estadística alude al eorme iterés de esta rama matemática para los asutos del Estado y su itroducció

Más detalles

SOLUCIÓN EXAMEN I PARTE II

SOLUCIÓN EXAMEN I PARTE II Nombre: Apellido: C.I.: Fecha: Firma: MÉTODOS ESTADÍSTICOS I EXAMEN I Prof. Gudberto Leó PARTE I: (Cada respuesta correcta tiee u valor de 1 puto) E los siguietes gráficos se represeta distitas distribucioes

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva 1, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS

DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS DISTRIBUCIÓN DE PROBABILIDAD DE VARIABLES ALEATORIAS DISCRETAS ESPACIO MUESTRAL. El cojuto de todos los resultados posibles de u eperimeto estadístico deotado por S o Ω VARIABLE. Se deomia variable a la

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A

ANDALUCÍA / JUNIO 04. LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / EXAMEN COMPLETO OPCIÓN A EXAMEN COMPLETO Istruccioes: a) Duració: 1 hora y 30 miutos. b) Elija ua de las dos opcioes propuestas y coteste los ejercicios de la opció elegida. c) E cada ejercicio, parte o apartado se idica la putuació

Más detalles

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE)

PROBLEMAS DE LOS TEMAS 5, 6 Y 7 PROPUESTOS EN EXÁMENES DE ESTADÍSTICA EMPRESARIAL (ANTIGUA LICENCIATURA ADE) TUTORÍA DE ETADÍTICA EMPREARIAL (º A.D.E.) e-mail: imozas@elx.ued.es https://www.iova.ued.es/webpages/ilde/web/idex.htm PROBLEMA DE LO TEMA 5, 6 Y 7 PROPUETO EN EXÁMENE DE ETADÍTICA EMPREARIAL (ANTIGUA

Más detalles

Práctica 2 VARIABLES ALEATORIAS CONTINUAS

Práctica 2 VARIABLES ALEATORIAS CONTINUAS Práctica. Objetivos: a) Apreder a calcular probabilidades de las distribucioes Normal y Chi-cuadrado. b) Estudio de la fució de desidad de la distribució Normal ~ N(µ;σ) c) Cálculo de la fució de distribució

Más detalles

Medidas de tendencia central

Medidas de tendencia central Medidas de tedecia cetral Por: Sadra Elvia Pérez Las medidas de tedecia cetral tiee este ombre porque so valores cetrales represetativos de los datos. Las medidas de tedecia cetral que se estudia e esta

Más detalles

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra.

En esta tema sentaremos las bases del muestreo estadístico y estudiaremos las distribuciones de algunos estadísticos a partir de una muestra. Capítulo 6 Muestreo Estadístico E esta tema setaremos las bases del muestreo estadístico y estudiaremos las distribucioes de alguos estadísticos a partir de ua muestra. 6.1. Coceptos básicos Auque e el

Más detalles

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO.6-.7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA

E.U.I.T.I. Bilbao. Asignatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA E.U.I.T.I. Bilbao Asigatura: MÉTODOS ESTADÍSTICOS DE LA INGENIERÍA PARTE : ESTADÍSTICA INFERENCIAL 0. RECORDATORIO Estadística iferecial.

Más detalles

Formulas. Población infinita. Población finita

Formulas. Población infinita. Población finita Formulas X~N(μ, σ 2 ) x = x i x ~N si X~N o si > 30 Població ifiita Població fiita x ~N(μ, σ2 ) N x ~N(μ, N 1 σ2 ) Ejercicio Se sabe que la media poblacioal e u exame de Estadística es de 70 y que la variaza

Más detalles

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE

PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE PRÁCTICA 6: TEOREMA CENTRAL DEL LÍMITE Objetivos Comprobar que la suma de variables aleatorias idepedietes y co la misma distribució es aproximadamete ormal. Estudiar la robustez de la aproximació frete

Más detalles

PRUEBAS DE HIPÓTESIS.

PRUEBAS DE HIPÓTESIS. PRUEBAS DE HIPÓTESIS. HIPÓTESIS ESTADÍSTICA Paramétrica : No Paramétrica Es ua afirmació sobre los valores de los parámetros poblacioales descoocidos. Es ua afirmació sobre algua característica Simple

Más detalles

1. Propiedades de los estimadores

1. Propiedades de los estimadores . Propiedades de los estimadores.. Eficiecia relativa. Defiició: Dados dos estimadores isesgados, ˆ y ˆ, de u parámetro, co variazas V ( ˆ ) y V ( ˆ ), etoces la eficiecia (eff) de ˆ respecto a ˆ, se defie

Más detalles

Estimación de parámetros. Biometría

Estimación de parámetros. Biometría Estimació de parámetros Biometría Estimació Las poblacioes so descriptas mediate sus parámetros Para variables cuatitativas, las poblacioes so descriptas mediate y Para variables cualitativas, las poblacioes

Más detalles

Topografía 1. II semestre, José Francisco Valverde Calderón Sitio web:

Topografía 1. II semestre, José Francisco Valverde Calderón   Sitio web: II semestre, 2013 José Fracisco Valverde Calderó Email: geo2fra@gmail.com Sitio web: www.jfvc.wordpress.com José Fracisco Valverde C Cualquier actividad técica dode se requiera recopilar iformació espacial,

Más detalles

Tema 9. Inferencia Estadística. Intervalos de confianza.

Tema 9. Inferencia Estadística. Intervalos de confianza. Tema 9. Iferecia Estadística. Itervalos de cofiaza. Idice 1. Itroducció.... 2 2. Itervalo de cofiaza para media poblacioal. Tamaño de la muestra.... 2 2.1. Itervalo de cofiaza... 2 2.2. Tamaño de la muestra...

Más detalles

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS

CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS CAPÍTULO XIV. SERIES NUMÉRICAS ARBITRARIAS SECCIONES A. Series de térmios de sigo variable. B. Series depedietes de parámetros. C. Ejercicios propuestos. 193 A. SERIES DE TÉRMINOS DE SIGNO VARIABLE. E

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

Población Joven Adulta Total A favor En contra Total

Población Joven Adulta Total A favor En contra Total Nombre: Libre Reglametado C.I.: EXAMEN El exame costa de dos partes. La Primera Parte debe ser realizada por todos los alumos y el tiempo previsto es de 2 horas. La Seguda Parte debe ser realizada sólo

Más detalles

MEDIDAS DE DISTRIBUCION

MEDIDAS DE DISTRIBUCION MEDIDAS DE DISTRIBUCION ASIMETRIA Y CURTOSIS Dr. EDGAR APAZA ZUÑIGA UNIVERSIDAD NACIONAL DEL ALTIPLANO MEDIDAS DE DISTRIBUCIÓN Las Medidas de Distribució permite idetificar y caracterizar la forma e que

Más detalles

Ejercicios resueltos de Muestreo

Ejercicios resueltos de Muestreo Tema Ejercicios resueltos de Muestreo Ejercicio Sea ua població ita de 4 elemetos: P = f; 4; ; g : Se cosidera muestras de elemetos que se supoe extraidos y o devueltos a la població y que el muestreo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Juio, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció A Reserva, Ejercicio 4, Opció

Más detalles

Estimación puntual y por intervalos de confianza

Estimación puntual y por intervalos de confianza Ídice 6 Estimació putual y por itervalos de cofiaza 6.1 6.1 Itroducció.......................................... 6.1 6. Estimador........................................... 6. 6.3 Método de costrucció

Más detalles

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA

13.1 INTERVALOS DEL 95% DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL VARIANZA CONOCIDA Dra. Diaa M. Kelmasky 109 13. INTERVALOS DE CONFIANZA PARA LA MEDIA DE UNA POBLACIÓN NORMAL Supogamos que X1,...,X es ua muestra aleatoria de ua població ormal co media μ y variaza. Sabemos que la media

Más detalles

UNIVERSIDAD DE ATACAMA

UNIVERSIDAD DE ATACAMA UNIVERSIDAD DE ATACAMA FACULTAD DE INGENIERÍA / DEPARTAMENTO DE MATEMÁTICA ESTADÍSTICA Y PROBABILIDAD PAUTA DE CORRECCIÓN PRUEBA RECUPERATIVA N 2 Profesor: Hugo S. Salias. Segudo Semestre 2009 DESARROLLO

Más detalles

ESTIMACIONES DE MEDIAS

ESTIMACIONES DE MEDIAS COLEGIO SAN BARTOLOMÉ LA MERCED ESTADÍSTICA GRADO ESTIMACIÓN 0-0 Símbolos que se debe teer e cueta: POBLACIÓN MUESTRA MEDIA VARIANZA DESVIACIÓN ESTÁNDAR TAMAÑO N La estimació cosiste e determiar el valor

Más detalles

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA

EJERCICIOS TEMA 8. INFERENCIA ESTADISTICA º BACHILLERATO. CIENCIAS SOCIALES 1. Ua variable aleatoria tiee ua distribució ormal de media m y desviació típica s. Si se extrae muestras aleatorias de tamaño : a) Qué distribució tiee la variable aleatoria

Más detalles

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes)

FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES. (Algunos conceptos importantes) FÍSICA GENERAL 2º CUATRIMESTRE 2014 TT.PP. LABORATORIOS- TEORIA DE ERRORES (Alguos coceptos importates) 1. Error de apreciació. Lo primero que u experimetador debe coocer es la apreciació del istrumeto

Más detalles

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL

LÍMITES DE FUNCIONES REALES CON TENDENCIA A REAL INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: MATEMÁTICAS DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición:

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición: Parcial de Probabilidad y Estadística : parte A Ejercicio 1: U embalaje cotiee 9 cajas de CDs. Las 9 cajas tiee la siguiete composició: 6 cajas cotiee 5 discos de música rock y 15 discos de música clásica

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles