"MEDIDA DEL COEFICIENTE LINEAL DE EXPANSIÓN TÉRMICA"

Tamaño: px
Comenzar la demostración a partir de la página:

Download ""MEDIDA DEL COEFICIENTE LINEAL DE EXPANSIÓN TÉRMICA""

Transcripción

1 EXPERIMENTO IFA3 LABORATORIO DE FÍSICA AMBIENTAL "MEDIDA DEL COEFICIENTE LINEAL DE EXPANSIÓN TÉRMICA" MATERIAL: 1 (1) BANCO DE MEDIDA DE 70 CM DE LONGITUD DOTADO DE DIAL MICROMÉTRICO Y TERMISTOR. 2 (1) GENERADOR DE VAPOR. 3 (1) POLÍMETRO, USO DE ÓHMETRO. 4 (1) TUBO DE COBRE. 5 (1) TUBO DE ALUMINIO. 6 (1) TUBO DE ACERO. 7 (1) VASO DE 250 ML. 8 REGLA MILIMÉTRICA (COMPARTIDA). OBSERVACIONES: ANTES DE CONECTAR EL GENERADOR DE VAPOR CERCIÓRATE DE QUE TIENE AGUA EN SUS 3/4 PARTES. AL CAMBIAR DE TUBO METÁLICO ESPERA A QUE SE ENFRÍE, DESCONECTA EL TUBO QUE TRANSPORTA EL VAPOR Y EL CONTACTO DEL TERMISTOR SITUADO EN SU CENTRO. REALIZA ESTAS OPERACIONES CON EXTREMA PRECAUCIÓN. ATENCIÓN CON EL NIVEL DE AGUA EN EL GENERADOR DE VAPOR!. M.Ramos Página 1 11/03/02

2 EXPERIMENTO IFA3 LABORATORIO DE FÍSICA AMBIENTAL "Medida del coeficiente lineal de expansión térmica" I.- Introducción al experimento: La experiencia que vais a realizar tiene por objetivo la medida del coeficiente de dilatación lineal de tres metales diferentes: acero, aluminio (98.9% Al, 0.7% Mg, 0.4% Si) y cobre (99.5% Cu,0.5% Te). Dicho coeficiente nos expresa la dependencia de la longitud de las muestras con su temperatura y tiene importancia en el estudio de las ecuaciones de estado de los diferentes materiales, a través de las relaciones termodinámicas adecuadas [1] [2]. La mayor parte de los materiales se dilatan cuando se realiza una transformación isóbara (a presión constante) en la que aumente su temperatura, siempre que no haya ningún proceso de cambio de fase en dicha transformación. Generalmente, en el caso de sustancias sólidas, el calor que se introduce en el sistema para aumentar su temperatura hace aumentar la amplitud de vibración de los átomos que componen el material y con ello la separación media entre ellos, este efecto corresponde a una dilatación macroscópica. Si suponemos un objeto de longitud, L, sometido a un cambio de temperatura D T, suficientemente pequeño, podemos considerar proporcional la dependencia entre el aumento de longitud total de la muestra, D L, y su aumento de temperatura. Para casos más generales consultar [1]. Matemáticamente, lo podríamos expresar como sigue: D L = a L D T (1) donde a es el denominado coeficiente lineal de dilatación térmica, objeto de medida en esta experiencia, siendo sus dimensiones [1/ºC] o [1/K] en el Sistema Internacional de unidades (SI). 2

3 En materiales anisótropos a es diferente en cada dirección de simetría, en aquellos isótropos, como los que se proponen en el experimento, el coeficiente de dilatación lineal es el mismo en todas las direcciones. Por ello, con una sóla medida se determina completamente el coeficiente de dilatación cúbico. Por otro lado, ya que el rango de temperatura en el que se van a realizar los ensayos [T amb, T ebullición ], es pequeño. Se puede considerar que en dicho intervalo el parámetro a no depende de la temperatura, aproximación que se ha realizado en la ecuación (1). II.- Aparatos: El material del que consta el experimento está formado por tres tubos de diferentes materiales y huecos, de tal suerte que puede fluir a su través vapor de agua, generado por el denominado generador de vapor. Los tres tubos están dotados de un soporte para la conexión de un termistor [2], en su parte central, de los que sólo se aprecia un pequeño tornillo donde se engancha la arandela que tiene embutido el sensor que exteriormente se conecta al polímetro en su función de óhmetro [2], que permite determinar indirectamente a través de la respuesta eléctrica del termistor la temperatura en equilibrio del dispositivo, temperatura que se considera uniforme a lo largo de toda la muestra. Observad que en la base del banco de pruebas aparece una tabla de conversión, no lineal, entre respuesta eléctrica (resistencia) del dispositivo y temperatura medida, para reducir el error de conversión es conveniente extrapolar linealmente en el rango de medida los valores de la tabla, consulta con tu profesor. Así se puede llegar a obtener una precisión de 0.2ºC. Asimismo, en el banco de medida se encuentra instalado un dispositivo micrométrico para la determinación del aumento de longitud del tubo con el que se esté ensayando, su precisión es de 0.01 mm. Observa que cuando se dilata el tubo el micrómetro gira en dirección opuesta, familiarizate con la lectura de la longitud. En los siguientes apartados se ofrece una descripción somera de los detalles de instalación y método de medida para la realización de esta experiencia. 3

4 III.- Método de Experimentación: Este procedimiento es idéntico para cada muestra. 1.- Mide con una regla, la longitud total del tubo a temperatura ambiente, desde el soporte plano en un extremo hasta el tope cilíndrico en el otro, tal y como aparece en la figura 1. Anota tus medidas en la tabla 1. Figura Monta el tubo sobre su soporte, tal y como aparece en la figura 2, apretando el tornillo del soporte en su extremo plano y apoyando el micrómetro sobre su tope. Conecta con precaución el cable del termistor en el centro del tubo protegiéndolo térmicamente con su funda aislante. Figura Conecta el polímetro en su función de óhmmetro y determina la temperatura del tubo, esta lectura será de la temperatura ambiente T amb. Anota el valor de la resistencia leída, R amb, y de la temperatura, T amb, correspondiente; una vez 4

5 realizada la extrapolación lineal en la tabla de conversión anota tus resultados en la tabla Para esta temperatura pon el micrómetro a cero girando su corona exterior. 5.- Conecta los tubos de entrada y salida de vapor de agua en los extremos de la muestra que se está experimentando. Comprueba que el depósito de agua del generador de vapor está lleno en sus 3/4 partes y, siendo así, conéctalo eléctricamente. 6.- Mientras se calienta la muestra observa, simultáneamente, el micrómetro y el polímetro y apreciarás una relación directa entre el aumento de la temperatura de la muestra y su longitud. Ten en cuenta que para mantener la precisión de la medida de las resistencia eléctrica debes escoger la escala más adecuada en el polímetro. Espera a que la temperatura del tubo se estabilice, condición de equilibrio térmico. En ese momento anota la temperatura del tubo (R ebullición y T ebullición ) y el aumento de longitud o dilatación del tubo D L, en la tabla Repite el mismo proceso para los tubos restantes. IV.- Resultados y Conclusiones: L R amb D R ebu D T amb D T ebu D T ebu D T (ºC) D L (mm) (mm) R amb R ebu T amb (ºC) (KW ) (KW ) (ºC) Cu Al Acero Tabla 1 D T = T ebullición - T ambiente D L Aumento de longitud del tubo medido por el micrómetro directamente tras ponerlo en la posición de cero para el estado de temperatura ambiente. Completa los cálculos que se exigen en la tabla 1 y empleando la ecuación (1) calcula los coeficientes de dilatación lineal para las tres sustancias estudiadas y sus correspondientes errores. 5

6 Cobre (a D a ) Acero (a D a ) Aluminio (a D a ) Para finalizar responde a las siguientes cuestiones: 1.- Compara los datos que has obtenido con los que aparecen en la bibliografía, pide los manuales a tu profesor. Qué diferencia se encuentra en cada caso?. Consideras que el error que has obtenido es grande o pequeño, en comparación con los datos de la bibliografía?. Justifica el cálculo de errores realizado con anterioridad. 2.- Cuáles serán las fuentes de error más importantes en tu experimento?. Cómo podrías mejorar la precisión del mismo?. 3.- A partir de los datos del coeficiente de dilatación lineal que has obtenido. Podrías calcular los coeficientes correspondientes a la dilatación cúbica en las sustancias que has estudiado? Qué valor tienen?. V.- Bibliografía: 1.- Zemansky, M.W; Dittiman, R.H: "Calor y Termodinámica". M c Graw Hill (1984). 2.- Serway: "Física". M c Graw Hill. 3 ra Edición (1992). 3.- Handbook of Chemistry and Physics. 52 Edition. CRC. 4.- American Institute of Physics Handbook. Third Edition. Mc Graw-Hill. 6

"DETERMINACIÓN DEL RENDIMIENTO DE UNA MÁQUINA TÉRMICA"

DETERMINACIÓN DEL RENDIMIENTO DE UNA MÁQUINA TÉRMICA EXPERIMENTO FA3 LABORATORIO DE FÍSICA AMBIENTAL "DETERMINACIÓN DEL RENDIMIENTO DE UNA MÁQUINA TÉRMICA" MATERIAL: 1 (1) DISPOSITIVO PELTIER. 2 (1) POLÍMETRO (FUNCIÓN DE ÓHMETRO). 3 (1) POLÍMETRO (FUNCIÓN

Más detalles

"DETERMINACIÓN DE LA CONDUCTIVIDAD TÉRMICA"

DETERMINACIÓN DE LA CONDUCTIVIDAD TÉRMICA EXPERIMENTO FA4 LABORATORIO DE FISICA AMBIENTAL "DETERMINACIÓN DE LA CONDUCTIVIDAD TÉRMICA" MATERIAL: 1 (1) GENERADOR DE VAPOR. 2 (1) RECIPIENTE PARA HIELO. 3 (1) RECIPIENTE COLECTOR DE AGUA DE DESHIELO.

Más detalles

Física II Cecyte El Niño Ing. Francisco Arreola C.

Física II Cecyte El Niño Ing. Francisco Arreola C. Calor y temperatura Temperatura: Es una magnitud física que indica que tan caliente o fría es una sustancia respecto a un cuerpo que se toma como base o patrón. Calor: Es energía en tránsito y siempre

Más detalles

Física para Ciencias: Termodinámica

Física para Ciencias: Termodinámica Física para Ciencias: Termodinámica Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 La Termodinámica Trata de: Calor (energía térmica) Temperatura Dilatación Comportamiento de gases (tratamiento

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

LABORATORIO 9: COEFICIENTE DE DILATACIÓN LINEAL

LABORATORIO 9: COEFICIENTE DE DILATACIÓN LINEAL UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICA LABORATORIO DE FISICA ASIGNATURA: FISICA TECNICA I. OBJETIVO GENERAL LABORATORIO 9: COEFICIENTE DE DILATACIÓN LINEAL Determinar la relación entre los

Más detalles

COEFICIENTES DE DILATACIÓN

COEFICIENTES DE DILATACIÓN PRÁCTICA 3 COEFICIENTES DE DILATACIÓN OBJETIVO Determinación del coeficiente de dilatación del agua a temperatura ambiente utilizando un picnómetro. Determinación del coeficiente de dilatación lineal de

Más detalles

Identificar conceptos básicos, procesos y fenómenos relacionados con la dilatación y procesos cognitivos usados en la metodología científica.

Identificar conceptos básicos, procesos y fenómenos relacionados con la dilatación y procesos cognitivos usados en la metodología científica. Segunda Práctica Dilatación Propósito: Comprobar, clasificar los diferentes tipos de dilatación de las sustancias a partir de fenómenos cotidianos, por medio de la experimentación que si se eleva la temperatura

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONDUCCIÓN

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONDUCCIÓN LABORATORIO DE OPERACIONES UNITARIAS II Página 1 de 10 LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE 2010-1 CONDUCCIÓN Laura Franco, Yeni Ramírez, Luis García OBJETIVOS: Conducción

Más detalles

MANUAL DE LABORATORIO DE FÍSICA II 9ª Edición EXPERIENCIA N 07

MANUAL DE LABORATORIO DE FÍSICA II 9ª Edición EXPERIENCIA N 07 DILATACIÓN TÉRMICA DE SÓLIDOS Y LÍQUIDOS EXPERIENCIA N 07 I. OBJETIVO Determinar los coeficientes de expansión lineal de diferentes varillas metálicas usando un dilatómetro. Observar el comportamiento

Más detalles

COEFICIENTE DE EXPANSIÓN LINEAL

COEFICIENTE DE EXPANSIÓN LINEAL COEFICIENTE DE EXPANSIÓN LINEAL OBJETIVO: Calcular el coeficiente de expansión lineal (α) de varillas de diferentes materiales tales como: aluminio, cobre y acero. INTRODUCCIÓN: Bajo la acción del calor,

Más detalles

Unidad IV: Propiedades fundamentales de la materia.

Unidad IV: Propiedades fundamentales de la materia. Unidad IV: Propiedades fundamentales de la materia. Facultad de Ingeniería 2012 UPV Unidad IV: Propiedades fundamentales de la materia: Masa y densidad Concepto de masa Relación entre masa y volumen Concepto

Más detalles

PRÁCTICA NÚMERO 11 DILATACIÓN LINEAL. I. Objetivos. Observar la expansión térmica lineal de un sólido y medir su coeficiente de dilatación lineal.

PRÁCTICA NÚMERO 11 DILATACIÓN LINEAL. I. Objetivos. Observar la expansión térmica lineal de un sólido y medir su coeficiente de dilatación lineal. PRÁCTICA NÚMERO 11 DILATACIÓN LINEAL Laboratorio de Fluidos y Calor. Práctica 11 I. Objetivos. Observar la expansión térmica lineal de un sólido y medir su coeficiente de dilatación lineal. II. Material.

Más detalles

DILATACIÓN PREGUNTAS PROBLEMAS

DILATACIÓN PREGUNTAS PROBLEMAS DILATACIÓN 1. Qué es la temperatura? PREGUNTAS PROBLEMAS 1. Dos barras idénticas de fierro (α = 12 x 10-6 /Cº) de 1m de longitud, fijas en uno de sus extremos se encuentran a una temperatura de 20ºC si

Más detalles

GUÍA III MEDIO COMÚN FÍSICA CALOR Y TEMPERATURA. Año 2017

GUÍA III MEDIO COMÚN FÍSICA CALOR Y TEMPERATURA. Año 2017 GUÍA III MEDIO COMÚN FÍSICA CALOR Y TEMPERATURA Año 2017 1. Si un cuerpo varía su temperatura en 20 ºC, entonces la variación de su temperatura en la escala Kelvin es: A) 20 K B) 273/20 K C) 253 K D) 273

Más detalles

"EQUIVALENTE MECANICO DE LA CALORIA"

EQUIVALENTE MECANICO DE LA CALORIA EXPERIMENTO IFA4 LABORATORIO DE FISICA AMBIENTAL "EQUIVALENTE MECANICO DE LA CALORIA" MATERIAL: 1 (1) TRANSFORMADOR. 2 (1) TERMO DEWAR CON SOPORTE. 3 (1) CALEFACTOR. 4 (1) TERMOPAR TIPO "K". 5 (1) TERMÓMETRO

Más detalles

TRABAJO PRÁCTICO. Medición del coeficiente de dilatación lineal en tubos de distintos materiales

TRABAJO PRÁCTICO. Medición del coeficiente de dilatación lineal en tubos de distintos materiales FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA TRABAJO PRÁCTICO Medición del coeficiente de dilatación lineal

Más detalles

"Fuerza magnética ejercida por una corriente eléctrica I"

Fuerza magnética ejercida por una corriente eléctrica I EXPERIMENTO IFA5 LABORATORIO DE FISICA AMBIENTAL "Fuerza magnética ejercida por una corriente eléctrica I" MATERIAL: 1 (1) FUENTE DE ALIMENTACIÓN. [ 0,30 VDC]. I máx. 5 A. 2 (1) BALANZA. [ 0,310 g]. D

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO : RESISTIVIDAD ELÉCTRICA Determinar la resistividad eléctrica

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

INTRODUCCIÓN Con C t on act act T o é T rmi Equi librio T o é T rmi

INTRODUCCIÓN Con C t on act act T o é T rmi Equi librio T o é T rmi INTRODUCCIÓN La Temperatura es una propiedad que no es fácil de describir. La Temperatura esta comúnmente asociada, con que tanto calor o frio se siente en un objeto. Entender el concepto de Temperatura

Más detalles

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.1. Propiedades Particulares de la Materia Área de Ciencias Naturales LABORATORIO DE FISICA Física II ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No.1 Propiedades Particulares de la Materia EXPERIMENTO No.

Más detalles

Contenidos clase calor 1

Contenidos clase calor 1 Contenidos clase calor 1 Concepto de temperatura Escalas termométricas Conversión de unidades termométricas Concepto de calor Transmisión de calor Dilatación y contracción de la materia Estados de la materia

Más detalles

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA

17. CURVA CARACTERÍSTICA DE UNA LÁMPARA 17. CURVA CARACTERÍSTICA DE UNA LÁMPARA OBJETIVO Medir las resistencias de los filamentos metálicos y de carbón de dos tipos de lámpara al variar la intensidad de corriente que pasa por los mismos. Representar

Más detalles

Circuito RC en régimen transitorio. Ajustes a expresiones no lineales.

Circuito RC en régimen transitorio. Ajustes a expresiones no lineales. Circuito RC en régimen transitorio. Ajustes a expresiones no lineales. Objetivos En esta práctica se empezará a trabajar con señales eléctricas que cambiam periódicamente con el tiempo así como con los

Más detalles

Unidad 16: Temperatura y gases ideales

Unidad 16: Temperatura y gases ideales Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 16: Temperatura y gases ideales Universidad Politécnica de Madrid 14 de abril de 2010

Más detalles

LABORATORIO TERMODINÁMICA PRÁCTICA 4: RENDIMIENTO DE UNA MÁQUINA TÉRMICA

LABORATORIO TERMODINÁMICA PRÁCTICA 4: RENDIMIENTO DE UNA MÁQUINA TÉRMICA LABORATORIO TERMODINÁMICA PRÁCTICA 4: RENDIMIENTO DE UNA MÁQUINA TÉRMICA 1. OBJETIVO Determinar el rendimiento de una máquina térmica 2. MATERIAL - Aparato de eficiencia térmica PASCO Modelo TD-8564. -

Más detalles

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F UNIDAD 5: TEMPERATURA Y CALOR 5. A: Temperatura y dilatación Temperatura, energía y calor. Medición de la temperatura. Escalas de temperatura. Dilatación lineal, superficial y volumétrica. Dilatación anómala

Más detalles

MINI ENSAYO DE FÍSICA Nº 3

MINI ENSAYO DE FÍSICA Nº 3 MINI ENSAYO DE FÍSICA Nº 3 TEMA: CALOR, TEMPERATURA Y ONDAS. 1. Una pieza de cobre cae dentro de una fuente con agua. Si el sistema está aislado, y la temperatura del agua sube. Qué sucede con la temperatura

Más detalles

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES

PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES PRÁCTICA 2: CONDUCTIVIDAD TÉRMICA DE LOS METALES 1. OBJETIVO En esta práctica se determina la conductividad térmica del cobre y del aluminio midiendo el flujo de calor que atraviesa una barra de cada uno

Más detalles

COEFICIENTE DE EXPANSIÓN TÉRMICA

COEFICIENTE DE EXPANSIÓN TÉRMICA COEFICIENTE DE EXPANSIÓN TÉRMICA A: JUSTIFICACIÓN Los efectos más comunes que ocasionan las variaciones temperatura en los cuerpos o sustancias, son las modificaciones o cambios sus dimensiones (sólidos

Más detalles

FÍSICA II. Guía De Problemas Nº3: Dilatación

FÍSICA II. Guía De Problemas Nº3: Dilatación Universidad Nacional del Nordeste Facultad de Ingeniería Departamento de Físico-Química/átedra Física II FÍSIA II Guía De Problemas Nº3: Dilatación PROBLEMAS RESUELTOS Una regla de acero de aproximadamente

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN

UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA. Laboratorios Reales: Electricidad y Magnetismo II INTRODUCCIÓN UNIVERSIDAD NACIONAL AUTÓNOMA DE HONDURAS FACULTAD DE CIENCIAS ESCUELA DE FÍSICA Laboratorios Reales: Electricidad y Magnetismo II MAPEO DEL CAMPO MAGNETICO DE UN SOLENOIDE FINITO ELABORADO POR: ROBERTO

Más detalles

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS ESCUELA DE FÍSICA TÉRMINOS DE REFERENCIA PRELIMINARES

UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS ESCUELA DE FÍSICA TÉRMINOS DE REFERENCIA PRELIMINARES UNIVERSIDAD INDUSTRIAL DE SANTANDER FACULTAD DE CIENCIAS ESCUELA DE FÍSICA TÉRMINOS DE REFERENCIA PRELIMINARES VOLUMEN II: ESPECIFICACIONES TÉCNICAS CONVOCATORIA PÚBLICA No. 044 DE 2007 ADQUISICIÓN DE

Más detalles

TEMA 2.1 Conceptos de calor y temperatura a partir de la energía cinética promedio que posee la materia

TEMA 2.1 Conceptos de calor y temperatura a partir de la energía cinética promedio que posee la materia TRABAJO DE FÍSICA II CALOR Y TEMPERATURA Nombre: Grupo: N/L: Fecha de entrega: M.E. Aldo Viezcas Alcántar INSTRUCCIONES: Contestar en el cuaderno el siguiente trabajo, hacerlo legible y con limpieza. TEMA

Más detalles

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos

RADIACIÓN TÉRMICA TRABAJO PRÁCTICO. Objetivos FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA ESCUELA DE FORMACIÓN BÁSICA DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA II TERMODINÁMICA TRABAJO PRÁCTICO RADIACIÓN TÉRMICA Objetivos Verificar experimentalmente

Más detalles

COEFICIENTE DE DILATACION LINEAL

COEFICIENTE DE DILATACION LINEAL DILATACIÓN TERMICA. Describa los siguiente conceptos: Dilatación. Clasificación de la dilatación. Dilatación lineal. Formula de la dilatación lineal. Coeficiente de dilatación lineal. Llenar la siguiente

Más detalles

Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura

Física 2 Biólogos y Geólogos. Termometría-Sensores de temperatura Física 2 Biólogos y Geólogos Curso de Verano 2007 Guía de laboratorio N 8 Termometría-Sensores de temperatura Objetivos Estudiar las características básicas de diferentes termómetros y sensores de temperatura.

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

FÍSICA EXPERIMENTAL II TRABAJO DE LABORATORIO Nº 1 Termometría

FÍSICA EXPERIMENTAL II TRABAJO DE LABORATORIO Nº 1 Termometría FÍSICA EXPERIMENTAL II - 2013 TRABAJO DE LABORATORIO Nº 1 Termometría Objetivos: Calibración de termómetros. Estudio del tiempo de respuesta de un termómetro. Introducción: Para poder definir temperatura

Más detalles

Introducción Equilibrio térmico Principio Cero Temperatura Escalas termométricas Termómetro de gas a volumen constante Dilatación térmica

Introducción Equilibrio térmico Principio Cero Temperatura Escalas termométricas Termómetro de gas a volumen constante Dilatación térmica TERMODINÁMICA Tema 8: Temperatura r y Principio ipi Cero Fundamentos Físicos de la Ingeniería 1 er Curso Ingeniería Industrial Dpto. Física Aplicada III 1 Índice Introducción Equilibrio térmico Principio

Más detalles

Dilatación Térmica. Noviembre,

Dilatación Térmica. Noviembre, Dilatación Térmica Noviembre, 2014 http://www.uaeh.edu.mx/virtual DILATACIÓN TERMICA. El aumento de temperatura en una sustancia origina que las moléculas de la misma se agiten más rápido y tiendan a separarse;

Más detalles

DETERMINACIÓN DE LA CAPACIDAD TÉRMICA

DETERMINACIÓN DE LA CAPACIDAD TÉRMICA DETERMINACIÓN DE LA CAPACIDAD TÉRMICA DE SÓLIDOS 1. OBJETIVO Determinación de la capacidad térmica de s; por ejemplo: aluminio, acero, etc. 2. MATERIALES - Calorímetro Joule. - Balanza (precisión : de

Más detalles

1. MEDIDA Y MÉTODO CIENTÍFICO

1. MEDIDA Y MÉTODO CIENTÍFICO 1. MEDIDA Y MÉTODO CIENTÍFICO 1. Introduce un recipiente con agua caliente en el congelador del frigorífico. Observa y describe lo que sucede con el tiempo. En la superficie libre del agua aparece una

Más detalles

PRÁCTICA NÚMERO 4 DETERMINACIÓN DEL CALOR ESPECÍFICO

PRÁCTICA NÚMERO 4 DETERMINACIÓN DEL CALOR ESPECÍFICO PRÁCTICA NÚMERO 4 DETERMINACIÓN DEL CALOR ESPECÍFICO I. Objetivo Determinar el calor específico de algunos materiales sólidos, usando el calorímetro y como sustancia cuyo valor de calor específico es conocido.

Más detalles

Determinación del calor específico de un sólido

Determinación del calor específico de un sólido Determinación del calor específico de un sólido 1. Objetivos Determinar el calor específico de algunos es sólidos utilizando el método de las mezclas. Introducción al manejo experimental de instrumentación

Más detalles

Tema 8: Temperatura y Principio Cero

Tema 8: Temperatura y Principio Cero 1/30 Tema 8: Temperatura y Principio Cero Fátima Masot Conde Ing. Industrial 2007/08 Tema 8: Temperatura y Principio Cero 2/30 Índice: 1. Introducción. 2. Temperatura y Ley Cero. 3. Termómetros y escalas.

Más detalles

LEY DE RADIACIÓN DE STEFAN-BOLTZMANN OBJETIVO Comprobación de la ley de radiación de Stefan-Boltzmann. MATERIAL Termómetro, 2 polímetros, amperímetro, termopila, bombilla con filamento de tungsteno, generador

Más detalles

Física

Física Física http://www.fisicanet.com.ar/fisica/termoestatica/ap05_dilatacion.php Termoestática: Dilatación Lineal. Dilatación Superficial. Dilatación Volumétrica. Problemas. DILATACION La experiencia muestra

Más detalles

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo.

Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. ! " # $ %& ' () ) Objetivos: Principal: Investigar las propiedades de un gas a presión constante. Secundario: Determinar la tasa de enfriamiento de un cuerpo. Conceptos a afianzar: Descripción termodinámica

Más detalles

1. Propagación de ondas en los sólidos. 2. Interacción de los sólidos iónicos con la radiación IR 3. Calor específico. 4. Temperatura de fusión.

1. Propagación de ondas en los sólidos. 2. Interacción de los sólidos iónicos con la radiación IR 3. Calor específico. 4. Temperatura de fusión. La aproximación armónica ha permitido predecir alguno de los comportamientos característicos de los sólidos. En los apartados previos hemos visto que esta aproximación permite entender fenómenos como:

Más detalles

K-FLEX K-FLEX TWIN SOLAR SYSTEM 34 A NEW GENERATION OF INSULATION MATERIALS

K-FLEX K-FLEX TWIN SOLAR SYSTEM 34 A NEW GENERATION OF INSULATION MATERIALS K-FLEX 34 SYSTEM K-FLEX SOLAR R ACOPLAMIENTO A COMPRESIÓN SYSTEM SPIRAL Gama completa de productos para aislamiento Fácil y rápida instalación Resistente a los rayos UV Minimiza las pérdidas de calor Aplicaciones:

Más detalles

Práctica No 5. Capacidad calorífica de un sólido

Práctica No 5. Capacidad calorífica de un sólido Práctica No 5 Capacidad calorífica de un sólido 1. Objetivo general: Determinación de la capacidad calorífica especifica de un sólido en un proceso a presión constante. 2. Objetivos específicos: 1) Identificar

Más detalles

INSTRUMENTOS ELECTROTÉRMICOS

INSTRUMENTOS ELECTROTÉRMICOS INSTRUMENTOS ELECTROTÉRMICOS Estos indicadores, también denominados simplemente térmicos, realizan su función convirtiendo primero la magnitud física a medir, en un valor eléctrico y luego, a través de

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

PRACTICA Nº 2: SOLIDIFICACIÓN Y ENFRIAMIENTO DE BAJO PUNTO DE FUSIÓN

PRACTICA Nº 2: SOLIDIFICACIÓN Y ENFRIAMIENTO DE BAJO PUNTO DE FUSIÓN UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADEMICO PUNTO FIJO AREA DE TECNOLOGÍA UNEFM DEPARTAMENTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN CÁTEDRA: LABORATORIO DE CIENCIA DE LOS

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

Termometría Sensores de temperatura

Termometría Sensores de temperatura Termometría Sensores de temperatura Objetivos Estudio de las características básicas de diferentes termómetros y sensores de temperatura y realización de la calibración de alguno de ellos. Uso del termómetro

Más detalles

Mapeo del Campo Magnético de un Solenoide Finito

Mapeo del Campo Magnético de un Solenoide Finito Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Mapeo del Campo Magnético de un Solenoide Finito Elaborado por: Roberto Ortiz Introducción Se tiene un Solenoide de N 1

Más detalles

Fig. 1 Fig. 2. Fig. 3

Fig. 1 Fig. 2. Fig. 3 EL VERNIER El calibre o vernier es en esencia una regla graduada, perfeccionada para aumentar la seguridad y precisión de las mediciones. En la figura 1 se muestra en su mayor simplicidad. Como puede verse,

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO UNDECIMO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO UNDECIMO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO UNDECIMO IDENTIFICACIÓN AREA: Ciencias Naturales ASIGNATURA: Física DOCENTE. Juan Gabriel Chacón c. GRADO. Undécimo. PERIODO: Tercero UNIDAD: Termodinámica TEMA:

Más detalles

FLUJO DE CALOR EN BARRAS METÁLICAS

FLUJO DE CALOR EN BARRAS METÁLICAS PRÁCTICA 9 FLUJO DE CALOR EN BARRAS METÁLICAS OBJETIVO Estudio de la transmisión de calor en una barra metálica que se calienta por un extremo. Determinación del coeficiente de enfriamiento de Newton y

Más detalles

CAMBIOS PROVOCADOS POR LA TEMPERATURA

CAMBIOS PROVOCADOS POR LA TEMPERATURA CAMBIOS PROVOCADOS POR LA TEMPERATURA DILATACIÓN TÉRMICA DE LOS CUERPOS Los cambios de temperatura afectan el tamaño de los cuerpos, pues la mayoría de ellos se dilatan al calentarse y se contraen si se

Más detalles

Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal.

Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal. Verificación de la Ley de Ohm. Asociación de resistencias. Ajustes a rectas y regresión lineal. Objetivos En esta práctica se verificará la Ley de Ohm, esto es, la dependencia lineal entre la intensidad

Más detalles

Física General II. Guía N 3: Termometría y Dilatación Térmica

Física General II. Guía N 3: Termometría y Dilatación Térmica Física General II Guía N 3: Termometría y Dilatación Térmica Año académico 2016 Problema 1: Históricamente se ha definido de manera empírica la temperatura θ (o T ) a partir de una magnitud termométrica

Más detalles

Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura.

Práctica No 9. Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. Práctica No 9 Ley Cero de la Termodinámica y su aplicación en El establecimiento de una escala empírica de temperatura. 1. Objetivo general: Establecer empíricamente una escala de temperatura, aplicándose

Más detalles

FÍSICA EXPERIMENTAL II

FÍSICA EXPERIMENTAL II FÍSICA EXPERIMENTAL II TRABAJO DE LABORATORIO Nº 1 Termometría Objetivos: Calibración de termómetros. Estudio del tiempo de respuesta de un termómetro. Introducción: Para poder definir temperatura es necesario

Más detalles

Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua

Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua Diseño, Construcción y Evaluación de un Reflector Solar Fresnel de Concentración de Foco Lineal para Generar Vapor de Agua Presentado por: Jorge Choque Chacolla Lic. Física Aplicada Universidad Nacional

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 1 - LA TEMPERATURA Y OTROS CONCEPTOS BÁSICOS DE LA TERMODINÁMICA Introducción: características generales y objetivos de la termodinámica. Comparación de los criterios

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 41092 Sevilla Práctica 1. Condensador de placas planas y paralelas 1.1. Objeto de la práctica En esta

Más detalles

El calor y la temperatura

El calor y la temperatura El calor y la temperatura por Enrique Hernández El calor y la temperatura son dos conceptos que utilizas comúnmente de manera indistinta, pero cuál es la diferencia entre ambos? Los cuerpos que tienen

Más detalles

MANUAL DE PRÁCTICAS DE LABORATORIO I DE QUÍMICA 7 PRÁCTICA 6. CAMBIOS FÍSICOS: DETERMINACIÓN DE PUNTOS DE FUSIÓN Y EBULLICIÓN. CURVA DE CALIBRACIÓN

MANUAL DE PRÁCTICAS DE LABORATORIO I DE QUÍMICA 7 PRÁCTICA 6. CAMBIOS FÍSICOS: DETERMINACIÓN DE PUNTOS DE FUSIÓN Y EBULLICIÓN. CURVA DE CALIBRACIÓN Página 57 de 98 7 PRÁCTICA 6. CAMBIOS FÍSICOS: DETERMINACIÓN DE PUNTOS DE FUSIÓN Y EBULLICIÓN. CURVA DE CALIBRACIÓN 7.1 OBJETIVOS Familiarizarse con los términos temperatura, punto de fusión, punto, calor,

Más detalles

Práctica No 10. Capacidad térmica de un calorímetro (constante calorimétrica)

Práctica No 10. Capacidad térmica de un calorímetro (constante calorimétrica) Práctica No 10 Capacidad térmica de un calorímetro (constante calorimétrica) 1. Objetivo general: Determinar la capacidad térmica (constante calorimétrica), del calorímetro que se le proporcione. 2. Marco

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

Microscópicamente las moléculas pueden presentar tres tipos de movimiento:

Microscópicamente las moléculas pueden presentar tres tipos de movimiento: TEMPERATURA y ESCALAS TERMOMÉTRICAS. TEMPERATURA: Es una forma de energía, que tiene su origen en el movimiento de las moléculas de los cuerpos y que se desarrolla por el roce o choque entre las mismas.

Más detalles

CORRIENTE Y RESISTENCIA ELÉCTRICA

CORRIENTE Y RESISTENCIA ELÉCTRICA Laboratorio de Física General (Electricidad y Magnetismo) CORRIENTE Y RESISTENCIA ELÉCTRICA Fecha: 02/10/2013 1. Objetivo de la práctica Estudio de la variación de la resistencia eléctrica con la tensión

Más detalles

INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLÓGICOS WILFRIDO MASSIEU PÉREZ LABORATORIO DE QUÍMICA I

INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLÓGICOS WILFRIDO MASSIEU PÉREZ LABORATORIO DE QUÍMICA I INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLÓGICOS WILFRIDO MASSIEU PÉREZ LABORATORIO DE QUÍMICA I Nombre: Boleta: Grupo: Equipo: Fecha: Calificación PRÁCTICA 7 PROPIEDADES DE

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE III

FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE III UNIVERSIDAD NACIONAL DEL NORDESTE FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO FÍSICA II 2012 CLASE III Prof. Juan José Corace CUANDO VEMOS ESTA ANIMACIÓN ES PARA TENER EN CUENTA EL CONCEPTO

Más detalles

ESTUDIO DE UN MODELO LINEAL ESCALAS DE TEMPERATURA

ESTUDIO DE UN MODELO LINEAL ESCALAS DE TEMPERATURA ESTUDIO DE UN MODELO LINEAL ESCALAS DE TEMPERATURA Autor: Ing. Carmen González-Mesa OBJETIVOS Encontrar la relación que existe entre diferentes escalas de temperatura comúnmente utilizadas versus una escala

Más detalles

INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II DILATACIÓN. Nombre: Grupo Calif

INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II DILATACIÓN. Nombre: Grupo Calif INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II DILATACIÓN Práctica N 6 Nombre: Grupo Calif OBJETIVO El alumno analizará el comportamiento de la dilatación lineal,

Más detalles

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 1RA Y 2DA LEY DE LA TERMODINÁMICA M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 INTRODUCCIÓN: En esta presentación se estudiarán los enunciados correspondientes a la 1ra y 2da

Más detalles

Práctica 5 Determinación de la constante de resistividad y medición de resistencias eléctricas

Práctica 5 Determinación de la constante de resistividad y medición de resistencias eléctricas Práctica 5 Determinación de la constante de resistividad y medición de resistencias eléctricas Objetivos Interpretar el código de colores de una serie de resistencias. Medir la resistencia eléctrica de

Más detalles

Efecto de los tratamientos térmicos en la circona utilizada como electrolito en las pilas de combustible de óxido sólido. INDICE DEL ANEXO...

Efecto de los tratamientos térmicos en la circona utilizada como electrolito en las pilas de combustible de óxido sólido. INDICE DEL ANEXO... INDICE DEL ANEXO INDICE DEL ANEXO... 80 ANEXO 1... 81 1.1. Diseño del circuito para medición de resistividad eléctrica a partir del método de las 4 puntas.... 81 1.1.1. Objetivo... 81 1.1.2. Introducción...

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONVECCIÓN

LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE CONVECCIÓN LABORATORIO DE OPERACIONES UNITARIAS II Página 1 de 8 LABORATORIO DE OPERACIONES UNITARIAS II GUÍA DE LABORATORIO SEMESTRE 2010-1 CONVECCIÓN Diana Catalina Correa I. OBJETIVOS 1.1. GENERAL 1.1.1 Determinar

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Eléctrica y Electrónica Escuela Profesional de Ingeniería Eléctrica Ciclo 2010-B VISCOSIMETRO

UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Eléctrica y Electrónica Escuela Profesional de Ingeniería Eléctrica Ciclo 2010-B VISCOSIMETRO VISCOSIMETRO ENGLER 1 1. OBJETIVOS: Determinar la viscosidad de una muestra de aceite lubricante. Mostrar la variación de la viscosidad de un fluido líquido con el cambio de temperatura. 2. FUNDAMENTO

Más detalles

Viscosidad de un líquido

Viscosidad de un líquido Viscosidad de un líquido Laboratorio de Mecánica y fluidos Objetivos Determinar el coeficiente de viscosidad de un aceite utilizando el viscosímetro de tubo y aplicando la ecuación de Poiseuille. Equipo

Más detalles

TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO

TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO Mª PILAR RUIZ OJEDA BORJA MUÑOZ LEOZ Contenidos: 1. Introducción 2. Propiedades de los metales 3. Teoría del mar de electrones 4. Teoría de bandas: 4.1. Conductores

Más detalles

K-FLEX TWIN SOLAR SYSTEM SOLAR SYSTEM

K-FLEX TWIN SOLAR SYSTEM SOLAR SYSTEM K-FLEX TWIN SOLAR SYSTEM K-FLEX TWIN SOLAR SYSTEM K-FLEX TWIN SOLAR SYSTEM SYSTEMS 8 SYSTEM GAMA COMPLETA DE PRODUCTOS AISLANTES INSTALACIÓN FÁCIL Y RÁPIDA RESISTENTE A LOS RAYOS UV MINIMIZA LAS PERDIDAS

Más detalles

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR 13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR OBJETIVO El objetivo de la práctica es la determinación del equivalente mecánico J de la caloría. Para obtenerlo se calcula el calor absorbido por una

Más detalles

TUBO DE KUNDT ONDAS ESTACIONARIAS

TUBO DE KUNDT ONDAS ESTACIONARIAS TUBO DE KUNDT ONDAS ESTACIONARIAS 1. OBJETIVO Estudio de ondas acústicas y su propagación en el interior del tubo de Kundt. Cálculo de la velocidad del sonido. 2.- FUNDAMENTO TEÓRICO La resultante de dos

Más detalles

TEMPERATURA: Es aquella propiedad física que permite asegurar si dos o mas sistemas están o no en equilibrio térmico.

TEMPERATURA: Es aquella propiedad física que permite asegurar si dos o mas sistemas están o no en equilibrio térmico. CONCEPTO DE CALOR: Es una forma de energía, que tiene su origen en el movimiento de las moléculas de los cuerpos y que se desarrolla por el roce o choque entre las mismas. Principales efectos del calor:

Más detalles

DETERMINACIÓN DE LA CAPACIDAD CALORÍFICA DE UNA MUESTRA METÁLICA

DETERMINACIÓN DE LA CAPACIDAD CALORÍFICA DE UNA MUESTRA METÁLICA Práctico 10 Página: 1/6 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 10: DETERMINACIÓN DE LA CAPACIDAD CALORÍFICA DE UNA MUESTRA METÁLICA Bibliografía: Química, La Ciencia Central, T.L.Brown, H.E.LeMay, Jr.,

Más detalles

Medición de la Conductividad

Medición de la Conductividad Medición de la Conductividad 1.1. Introducción Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

TEMPERATURA. las sustancias están compuestas de partículas que poseen un movimiento desordenado:

TEMPERATURA. las sustancias están compuestas de partículas que poseen un movimiento desordenado: TEMPERATURA las sustancias están compuestas de partículas que poseen un movimiento desordenado: La temperatura indica el grado de agitación de las moléculas Depende de la energía cinética de las moléculas

Más detalles

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.3. Temperatura y calor (primera parte)

Área de Ciencias Naturales LABORATORIO DE FISICA. Física II. Actividad experimental No.3. Temperatura y calor (primera parte) Área de Ciencias Naturales LABORATORIO DE FISICA Física II ALUMNO(A): GRUPO: EQUIPO: PROFESOR(A): FECHA: CALIFICACION: Actividad experimental No.3 Temperatura y calor (primera parte) EXPERIMENTO No. 1

Más detalles

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia.

A.- Electrones fluyendo por un buen conductor eléctrico, que ofrece baja resistencia. DEPARTAMENTO DE ORIENTACIÓN: TECNOLOGÍA 4E_F Primer trimestre Curso: 2014/2015 TEMA II: ELECTRICIDAD Y ELECTRÓNICA La electrónica forma parte de nuestra vida cotidiana.- Los electrodomésticos, los medios

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

EFECTO DEL CALOR SOBRE LA MATERIA

EFECTO DEL CALOR SOBRE LA MATERIA EFECTO DEL CALOR SOBRE LA MATERIA MATERIA: es todo aquello que ocupa un lugar en el espacio y tiene masa LOS EFECTOS QUE PRODUCE EL CALOR SOBRE LA MATERIA SE PUEDEN CLASIFICAR EN: * CAMBIOS FÍSICOS. *

Más detalles