Movimiento Armónico Simple (M.A.S.)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Movimiento Armónico Simple (M.A.S.)"

Transcripción

1 Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios. Ejemplos de estos movimientos son un péndulo o un muelle. Los movimientos periódicos los vamos a caracterizar por las siguientes magnitudes periódicas: Periodo (T): tiempo que tarda el movimiento en realizar una oscilación completa Frecuencia (υ): número de oscilaciones por unidad de tiempo. La relación entre periodo y frecuencia es: T = 1 ν (1) Los movimientos oscilatorios se producen debido a que alteramos el equilibrio estable de un sistema. En estos casos, el propio sistema tenderá a recuperar su posición de equilibrio, realizando un movimiento oscilatorio. Piensa en un péndulo. Se encontrará en su punto de equilibrio estable cuando está perpendicular al suelo. En cuanto varía dicho equilibrio (se le empuja), el péndulo tenderá a recuperar su equilibrio, debido a la acción de la fuerza de la gravedad. A esta fuerza la denominaremos restauradora, pues tiende a devolver (restaurar) el péndulo a su posición de equilibrio. Al pasar por el punto de equilibrio, la fuerza restauradora le hará sobrepasarlo. Y vuelta a empezar. Hasta que el rozamiento con el aire haga que se pare. En este caso se ha producido una oscilación. Cuando la fuerza restauradora es proporcional a la separación del cuerpo del punto de equilibrio tendremos un movimiento armónico simple (M.A.S.) Matemáticamente esta fuerza se expresa como 1 F = k x (2) El signo negativo indica que la fuerza es restauradora (se opone al movimiento), x es la posición con respecto al punto de equilibrio y k es la constante de proporcionalidad. Un oscilador armónico es cualquier partícula que describe un M.A.S. 1 Nótese que esta fuerza es igual a la fuerza que obtenemos en la ley de Hooke Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 1

2 2.- Cinemática del M.A.S Posición del M.A.S. En general, la ecuación de un movimiento armónico simple puede escribirse como: x= A cos(ω t+δ) (3) donde x (elongación) es la posición en la que en cada momento se encuentra la partícula. A (amplitud) es la elongación máxima ω (frecuencia o velocidad angular) es el ángulo girado por unidad de tiempo. ω=2π ν= 2π (4) T ω t + δ (fase del movimiento). Puede observarse que cuando termina una oscilación completa (es decir, la fase aumenta en 2π), la posición vuelve a ser la misma, dado que: cos(ω t+δ)=cos(ω t +δ+2 π) (5) δ (desfase o fase inicial) es la fase cuando el tiempo vale cero y nos indica qué diferencia hay entre nuestro movimiento y un movimiento que en el instante inicial se encuentre en el punto de equilibrio. t=0 x 0 = A cos δ cosδ= x 0 A (6) La ecuación de cada M.A.S. va a depender de cuál sea la posición y el sentido inicial del movimiento. Vamos a estudiar los casos en los que la oscilación comienza en los extremos o en la posición de equilibrio. Para ello estudiaremos cómo es el movimiento en algunos tiempos importantes. Cuando es múltiplo entero de T/4 (la cuarta parte del periodo, que es el tiempo que tarda en recorrer la distancia que va desde el punto de equilibrio a cualquier extremo o viceversa), es decir: t = 0; t = T/4; t = T/2; t = 3T/4; t = T Dado que comenzaremos en un extremo o en el punto de equilibrio (y cada t = T/4 recorreremos una distancia A), las posiciones en estos tiempos serán, siempre x = A, x = 0 ó x = -A El movimiento parte desde el extremo derecho (hacia el punto de equilibrio) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cos ω t (7a) o bien, en función del seno x= A sen(ω t+ π 2 ) (7b) Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 2

3 El movimiento parte desde el extremo izquierdo (hacia el punto de equilibrio) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cosω t= A cos(ω t+π) (8a) o bien, en función del seno x= A sen(ω t π 2 ) (8b) El movimiento parte desde el punto de equilibrio hacia la derecha (elongaciones positivas) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cos(ω t π 2 ) (9a) o bien, en función del seno x= A senω t (9b) El movimiento parte desde el punto de equilibrio hacia la izquierda (elongaciones negativas) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cos(ω t+ π 2 ) (10a) o bien, en función del seno x= A sen ω t=a sen(ω t +π) (10b) Velocidad del M.A.S. Consideremos la fórmula general del M.A.S. dada por (3) x= A cos(ω t+δ) Para calcular la velocidad nos basta con derivar con respecto al tiempo: v= dx dt = A ω sen(ω t+δ) (11) Observamos que la velocidad de un M.A.S. también varía de manera armónica. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 3

4 Vamos a jugar un poco con la expresión (11). Intentaremos poner el seno de la fase en función del coseno. Pare ello usaremos la relación fundamental de la trigonometría: sen 2 (ω t+δ)+cos 2 (ω t +δ)=1 sen(ω t+δ)=± 1 cos 2 (ω t +δ) (12) Si introducimos este valor en la expresión (11) tendremos que: v= A ω sen(ω t+δ)= A ω 1 cos 2 (ω t +δ) = = ±ω A 2 A 2 cos 2 (ω t +δ)=±ω A 2 x 2 (13) Nótese que tengo dos posibles soluciones de velocidad (v) para una misma elongación (x). Una corresponde a la ida (el movimiento va a la derecha, hacia elongaciones positivas) Y la otra a la vuelta (el movimiento va a la izquierda, hacia elongaciones negativas) Aceleración del M.A.S. Dado que la aceleración es la derivada de la velocidad respecto al tiempo, y usando (11): a= dv dt A ω sen(ω t +δ) =d = A ω 2 cos(ω t +δ)= ω 2 x (14) dt Nuevamente concluimos, como con la velocidad, que la aceleración de un M.A.S. también varía de forma armónica Conclusiones Vamos a sacar algunas conclusiones. Estudiemos qué pasa con la velocidad y la aceleración el los extremos y el punto de equilibrio. Velocidad ( v=±ω A 2 x 2 ) Aceleración ( a= ω 2 x ) x = -A v=0 a=+ω 2 A x = 0 v=±ω A 2 a=0 x = +A v=0 a= ω 2 A Es decir: En el punto de equilibrio la velocidad es máxima, mientras que la aceleración será nula. La velocidad puede tener dos signos, dependiendo del sentido que lleve el movimiento: será positivo si va hacia valores de la elongación positivo (hacia la derecha), y será negativo se va hacia valores de la elongación negativos (hacia la izquierda) En los extremos, en cambio, la velocidad será nula mientras que la aceleración será máxima. Y tendrá signo diferente a la velocidad, lo que nos indica que la fuerza es restauradora. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 4

5 2.5.- Representación gráfica de la posición, velocidad y aceleración Vamos a representar la posición, la velocidad y la aceleración, de un M.A.S. para sacar algunas conclusiones. Tomaremos las expresiones de estas magnitudes suponiendo que no existe desfase (δ = 0) y expresando la frecuencia angular en función del período, como vimos en la expresión (4). Volveremos a evaluar nuestra función en tiempos múltiplos de T/4. t = 0 t = T/4 t = T/2 t = 3T/4 t = T x= A cos(ω t +δ) x = A x = 0 x = -A x = 0 x = A v= A ω sen(ω t+δ) v = 0 v = - ω A v = 0 v = ω A v = 0 a= A ω 2 cos(ω t+δ) a = - ω 2 A a = 0 a = ω 2 A a = 0 a = - ω 2 A Como puede observarse: Las tres magnitudes varían de manera armónica. Dado que las tres funciones son cosenos: La posición toma todos los valores comprendidos en el intervalo [-A, A]. La velocidad varía entre [-ω A, ω A]. Y el intervalo en de la aceleración es [-ω 2 A, ω 2 A]. Cada intervalo de t = T/4, la posición varía un valor A, la velocidad un valor ω A y la aceleración ω 2 A π Entre la posición y la velocidad existe un desfase de 2 Entre la posición y la aceleración existe un desfase de π 3.- DINÁMICA DEL M.A.S. Vamos a suponer un oscilador consistente en un cuerpo unido a un muelle horizontal. Cuando apartamos el cuerpo del equilibrio una fuerza restauradora de valor F = k x tenderá a devolverlo a su sitio. Vamos a plantear la ecuación que nos sale y que deberemos resolver 2. Sabemos, por la segunda ley de Newton que la suma de todas las fuerzas que actúan en un sistema será igual a la masa por la aceleración y que la aceleración es la segunda derivada de la posición. F =m a=m d²x (15) dt² 2 La ecuación que obtenemos es una ecuación diferencial. Este tipo de ecuaciones tiene la incógnita derivándose, por lo que su resolución no suele ser fácil. Lógicamente escapa de cualquier objetivo de un curso de Bachillerato. Sin embargo, me parece oportuno ponerla para que los alumnos vayáis comprobando que las herramientas matemáticas de las que se sirve la física van mucho más allá de las simples ecuaciones, relaciones trigonométricas, vectores... Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 5

6 Como la única fuerza que actúa sobre mi sistema es la restauradora (suponemos que no existe rozamiento), obtendremos que: m d²x dt² = k x m d²x dt² +k x=0 d²x dt² + k m x=0 (16) Hasta ahora hemos supuesto que la ecuación de la solución era del tipo x= A cos(ω t+δ). Hacemos la segunda derivada de esta expresión y obtenemos: d²x dt² = A ω ² cos(ω t+δ) (17) Por lo que la expresión (16) queda, sustituyendo el resultado obtenido en (17): A ω ² cos(ω t+δ)+ k m A cos(ω t+δ)=0 (18) Si sacamos factor común A cos(ω t+δ) en la expresión (18): A cos(ω t+δ) [ ω ²+ k m ]=0 (19) Esta ecuación se cumplirá siempre que: A = 0, lo que indica que no hay movimiento. Este resultado no nos es válido. cos(ω t+δ)=0 ω t +δ= (2n+1)π, lo que ocurre solamente para algunos valores de t. 2 Tampoco nos es válido este resultado. ω ²+ k m =0 ω ²= k m (20), condición que sí que se le puede exigir a mi sistema. Por lo tanto, mi ecuación diferencial tiene como solución x= A cos(ω t +δ) con ω ²= k m, donde k es la constante elástica del muelle y m es la masa del cuerpo unido al mismo. Dado que existe una relación entre la frecuencia y el periodo, dada por (4), podemos concluir que: ω ²= k m T =2 π m k (21) Esta expresión nos relaciona el periodo de oscilación del muelle, con su constante restauradora y la masa de la partícula asociada a él. 4.- Consideraciones energéticas del M.A.S. El trabajo para llevar un cuerpo desde el punto x hasta la posición de equilibrio, será pues: W = x 0 F dx= x 0 ( k x) dx= 1 2 k [ x² ] x 0 = 1 2 k x² (22) Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 6

7 Pero, como las fuerzas restauradoras son del tipo de la ley de Hooke, sabemos que serán conservativas. En estos casos W = - ΔE P W = Δ E P =E P ( x) E P (0) (23) En el punto de equilibrio, la energía potencial será nula. Por lo que, igualando (22) y (23) E P (x)= 1 2 k x² =1 2 k A² cos² (ω t+δ) (24) Por lo tanto, la energía potencial de un oscilador armónico varía periódicamente desde un valor mínimo en el punto de equilibrio ( E Pmin =0 ) hasta un valor máximo en los extremos ( E Pmax = 1 2 k A² ) La energía mecánica total será: E=E p +E c = 1 2 k x² m v² (25) Dado que sabemos de (13) que v=±ω A 2 x 2, si sustituimos este valor en (25) E=E p +E c = 1 2 k x² m (ω A² x² )²= 1 2 k x² m ω ² (A² x² ) (26) Además, llegamos a la conclusión de que para que la ecuación diferencial se cumpliese tenía que darse la condición (21), es decir, ω ²= k m ω ²=k, que sustituyendo en (26) m E= 1 2 k x² k ( A² x² )= 1 2 k A² (27) La energía mecánica de un oscilador que realiza un M.A.S. permanece constante, y es directamente proporcional al cuadrado de la amplitud del movimiento y a la constante recuperadora de la fuerza. En los extremos la energía potencial es máxima y la cinética nula; mientras en el punto de equilibrio es al revés; la energía potencial nula y la cinética máxima. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 7

8 5.- Un ejemplo de M.A.S. El péndulo simple Todo cuerpo capaz de oscilar alrededor de un eje horizontal, que no pase por su centro de gravedad, constituye un péndulo. Supongamos un cuerpo de masa m, suspendido de un punto fijo O mediante un hilo de masa despreciable. En reposo, el hilo se encontrará en posición vertical y el cuerpo ocupará la posición A de la figura, punto en el cual la fuerza peso, P = m g, se anula con la tensión del hilo, T Si desviamos el cuerpo un ángulo α respecto a su posición de equilibrio A y lo llevamos a la posición B, el peso P se descompone en una componente normal (F n ) a la trayectoria que describirá la masa en su movimiento y en una componente tangencial (F t ) a dicha trayectoria. La componente normal se anula con la tensión del hilo, mientras que la componente tangencial tiende a devolver el cuerpo a su posición de equilibrio A. Esta fuerza siempre es opuesta a la desviación respecto del equilibrio, por ello viene afectada de un signo negativo, y es la que da origen al movimiento del péndulo. De la figura anterior se deduce F t = m g senα (28) Combinando esta ecuación con la 2ª ley de Newton, se tiene F t = m g sen α=m a (29) Por trigonometría llegamos a que senα= x L (30) donde L es la longitud del péndulo y x es la desviación a la que lo hemos sometido Sustituyendo (30) en (29) obtenemos: F =m a= m g x m g = L L x= k x (25) siendo k = m g L (31) Vemos que (25) es la expresión de una fuerza restauradora que da origen a un M.A.S. Podremos aplicarle todas las fórmulas que hemos encontrado para el M.A.S. En concreto, la expresión (21) T =2π m k =2π m m g =2π L g (32) L Esta expresión nos indica que el periodo de oscilación de un péndulo depende tan sólo de la longitud del mismo y del valor de la aceleración de la gravedad. Es independiente, por ejemplo, del ángulo de desviación (α) respecto a su posición de equilibrio. Si en esta expresión despejamos el valor de la aceleración de la gravedad obtenemos que: g= 4π ² L (28) T² Concluimos que podemos calcular el valor de la aceleración de la gravedad a partir de la medición del periodo de un péndulo simple y la longitud del mismo. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 8

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

1. Estudio de la caída de un puente.

1. Estudio de la caída de un puente. 1 1. Estudio de la caída de un puente. A. Introducción Las oscilaciones de un puente bajo la acción de una fuerza externa pueden estudiarse a partir de la resolución de una ecuación a derivadas parciales

Más detalles

Slide 1 / 71. Movimiento Armónico Simple

Slide 1 / 71. Movimiento Armónico Simple Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

Movimiento armónico simple

Movimiento armónico simple Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton.

Mecánica Racional 20 TEMA 2: Cinética de Partículas. Leyes de Newton. 1. Introducción. 2. Leyes de Newton: 2.1 Primera Ley de Newton o Ley de Inercia. 2.2 Segunda Ley de Newton o Principio Fundamental de la Dinámica. 2.3 Tercera Ley de Newton o Principio de Acción o Reacción.

Más detalles

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo.

Elongación. La distancia a la que está un punto de la cuerda de su posición de reposo. 1. CONSIDERACIONES GENERALES La mayor parte de información del mundo que nos rodea la percibimos a través de los sentidos de la vista y del oído. Ambos son estimulados por medio de ondas de diferentes

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades

Más detalles

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple.

4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1. Movimiento oscilatorio: el movimiento vibratorio armónico simple. 4.1.1. Movimiento oscilatorio características. 4.1.2. Movimiento periódico: período. 4.1.3. Movimiento armónico simple: características

Más detalles

ASOCIACIÓN DE POLEAS

ASOCIACIÓN DE POLEAS ASOCIACIÓN DE POLEAS Dos objetos de masas m 1 y m 2 cuelgan de un conjunto de poleas combinadas de dos formas distintas (asociación A y B). Calcula en qué condiciones el conjunto se encuentra en equilibrio.calcula

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE

Más detalles

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR

INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR Dinámica y Leyes de Newton INSTITUCION EDUCATIVA PREBITERO JUAN J ESCOBAR DINÁMICA: Es la rama de la mecánica que estudia las causas del movimiento de los cuerpos. FUERZA: Es toda acción ejercida capaz

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Razona la veracidad o la falsedad de la siguiente proposición: «En el movimiento ondulatorio hay transporte de materia y de energía». La proposición es falsa. En el

Más detalles

FUERZAS CENTRALES. Física 2º Bachillerato

FUERZAS CENTRALES. Física 2º Bachillerato FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión

Más detalles

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.

Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s. Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal

Más detalles

Parámetros cinéticos de un sistema pistón-biela-cigüeñal

Parámetros cinéticos de un sistema pistón-biela-cigüeñal Parámetros cinéticos de un sistema pistón-biela-cigüeñal 3-1-1 Revisado 04-07-13 En el esquema anexo vemos los componentes característicos de un compresor, que es semejante a un motor alternativo de combustión

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna

Física III (sección 3) ( ) Ondas, Óptica y Física Moderna Física III (sección 3) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid M. Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil, Ingeniería

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

MOVIMIENTO ARMÓNICO PREGUNTAS

MOVIMIENTO ARMÓNICO PREGUNTAS MOVIMIENTO ARMÓNICO PREGUNTAS 1. Qué ocurre con la energía mecánica del movimiento armónico amortiguado? 2. Marcar lo correspondiente: la energía de un sistema masa resorte es proporcional a : i. la amplitud

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

Introducción. Flujo Eléctrico.

Introducción. Flujo Eléctrico. Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)

Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio) demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección

Más detalles

LAS FUERZAS Y LAS MÁQUINAS

LAS FUERZAS Y LAS MÁQUINAS FICHA 1 ACTIVIDADES DE 1 ara qué se utiliza el dinamómetro. 2 ara los dinamómetros A y B indica: a) Cuál es el valor mínimo y el máximo que pueden medir? Cuál es su precisión? Cuál es el valor de la fuerza

Más detalles

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013

FÍSICA EXPERIMENTAL I. Péndulo Simple. Mediciones de Período para amplitudes mayores a 7. 11/11/2013 FÍSICA EXPERIMENTAL I Péndulo Simple Mediciones de Período para amplitudes mayores a 7. 11/11/2013 Autores: Grigera Paladino, Agustina (agrigerapaladino@yahoo.com.ar) Lestani, Simón Exequiel (saimon_l_f@hotmail.com)

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Péndulo en Plano Inclinado

Péndulo en Plano Inclinado Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: banfa@sion.com - Matías Benitez: matiasbenitez@fibertel.com.ar y Victoria Crawley: v_crawley@hotmail.com Resumen El

Más detalles

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas

NÚCLEO DE BOLÍVAR CÓDIGO: Horas Teóricas Horas para Evaluaciones Horas Perdidas Horas Efectivas UNIVERSIDAD DE ORIENTE ASIGNATURA: Física I NÚCLEO DE BOLÍVAR CÓDIGO: 005-1814 UNIDAD DE ESTUDIOS BÁSICOS PREREQUISITO: Ninguno ÁREA DE FÍSICA HORAS SEMANALES: 6 horas OBJETIVOS GENERALES: Al finalizar

Más detalles

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente. Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la

[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 3 Movimiento armónico simple Ejercicio Una partícula que vibra a lo largo de un segmento de 0 cm de longitud tiene en el instante inicial su máxima velocidad que es de 0 cm/s.

Más detalles

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso

Oscilaciones. José Manuel Alcaraz Pelegrina. Curso José Manuel Alcaraz Pelegrina Curso 007-008 1. Introducción En el presente capítulo vamos a estudiar el movimiento en torno a una posición de equilibrio estable, concretamente estudiaremos las oscilaciones

Más detalles

Práctico 2: Mecánica lagrangeana

Práctico 2: Mecánica lagrangeana Mecánica Anaĺıtica Curso 2016 Práctico 2: Mecánica lagrangeana 1. La polea y la cuerda de la figura son ideales y los bloques deslizan sin roce. Obtenga las aceleraciones de los bloques a partir de las

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

La Hoja de Cálculo en la resolución de problemas de Física.

La Hoja de Cálculo en la resolución de problemas de Física. a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de Albacete.jesusruiz@sociedadelainformacion.com

Más detalles

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS

RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES

Más detalles

MOVIMIENTO ARMÓNICO AMORTIGUADO

MOVIMIENTO ARMÓNICO AMORTIGUADO MOVIMIENTO ARMÓNICO AMORTIGUADO OBJETIVO Medida experimental de la variación exponencial decreciente de la oscilación en un sistema oscilatorio de bajo amortiguamiento. FUNDAMENTO TEÓRICO A) SISTEMA SIN

Más detalles

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU

Ejercicios de M.A.S y Movimiento Ondulatorio de PAU 1. En el laboratorio del instituto medimos cinco veces el tiempo que un péndulo simple de 1m de longitud tarda en describir 45 oscilaciones de pequeña amplitud. Los resultados de la medición se muestran

Más detalles

Física: Dinámica Conceptos básicos y Problemas

Física: Dinámica Conceptos básicos y Problemas Física: Dinámica Conceptos básicos y Problemas Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Mecánica Cinemática Descripción del movimiento. Cómo se mueve? Dinámica Causas del movimiento. Por

Más detalles

Teoría Tema 6 Ecuaciones de la recta

Teoría Tema 6 Ecuaciones de la recta página 1/14 Teoría Tema 6 Ecuaciones de la recta Índice de contenido Base canónica en dos dimensiones como sistema referencial...2 Ecuación vectorial de la recta...4 Ecuación paramétrica de la recta...6

Más detalles

Un experimento con integración

Un experimento con integración Un experimento con integración numérica Se dispone de una varilla uniforme de madera dotada de unos agujeros situados simétricamente. Estos agujeros pueden ser centros de suspensión, lo cual permite variar

Más detalles

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético

Movimiento Armónico Simple. Estudio cinemático, dinámico y energético Movimiento Armónico Simple Estudio cinemático, dinámico y energético Objetivos Identificar el M.A.S. como un movimiento rectilíneo periódico, oscilatorio y vibratorio Saber definir e identificar las principales

Más detalles

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física

Las leyes de Newton. Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Las leyes de Newton Unidad III, tema 2 Segundo medio Graciela Lobos G. Profesora de física Diagrama de cuerpo libre (DCL) Esquema que sirve para representar y visualizar las fuerzas que actúan en un cuerpo.

Más detalles

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación

UD Trigonometría Ejercicios Resueltos y Propuestos Col La Presentación En este documento se da una relación de los tipos de ejercicios que nos podemos encontrar en el tema de Trigonometría de º de Bachillerato. En todo el documento se sigue el mismo esquema: Enunciado tipo

Más detalles

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS

SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos

Más detalles

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica

Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete

Más detalles

1.1. Movimiento armónico simple

1.1. Movimiento armónico simple Problemas resueltos 1.1. Movimiento armónico simple 1. Un muelle cuya constante de elasticidad es k está unido a una masa puntual de valor m. Separando la masa de la posición de equilibrio el sistema comienza

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física 1 o Bachillerato Conservación de la cantidad de movimiento 1. Calcular la velocidad de la bola m 2 después de la colisión, v 2, según se muestra en la siguiente figura. El movimiento

Más detalles

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui

TEMA I.4. Descripción Matemática de una Onda. Dr. Juan Pablo Torres-Papaqui TEMA I.4 Descripción Matemática de una Onda Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas,

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com OSCILACIONES Y ONDAS 1- Todos sabemos que fuera del campo gravitatorio de la Tierra los objetos pierden su peso y flotan libremente. Por ello, la masa de los astronautas en el espacio se mide con un aparato

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

CONSIDERACIONES GENERALES SOBRE ESTÁTICA

CONSIDERACIONES GENERALES SOBRE ESTÁTICA CONSIDERACIONES GENERALES SOBRE ESTÁTICA Índice 1. CONCEPTOS ÚTILES 2 1.1. Configuración geométrica de un sistema....................... 2 1.2. Ligaduras....................................... 2 1.3. Coordenadas

Más detalles

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A

Departamento de Física y Química. PAU Física, junio 2012 OPCIÓN A 1 PAU Física, junio 2012 OPCIÓN A Pregunta 1.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita circular a una altura de 2 10 4 km sobre su superficie. Calcule la velocidad orbital

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 PRODUCTO ESCALAR INTRODUCCIÓN El espacio vectorial de los vectores libres del plano se caracteriza por tener definidas dos operaciones: una interna, suma de vectores, y otra externa, producto de un número

Más detalles

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.

Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.

Más detalles

Tema 7: Geometría Analítica. Rectas.

Tema 7: Geometría Analítica. Rectas. Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

5.5 LÍNEAS TRIGONOMÉTRICAS

5.5 LÍNEAS TRIGONOMÉTRICAS 5.5 LÍNES TRIGONOMÉTRIS Sea (O, ) una circunferencia con centro en el origen de coordenadas O(0, 0) radio la unidad. Si se construe un ángulo con vértice en el origen sentido positivo podemos obtener las

Más detalles

Fuerzas de Rozamiento

Fuerzas de Rozamiento Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina romibaldi@hotmail.com Viale, Tatiana tatianaviale@hotmail.com Objetivos Estudio de las fuerzas

Más detalles

PRÁCTICA 4 ESTUDIO DEL RESORTE

PRÁCTICA 4 ESTUDIO DEL RESORTE INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos

Más detalles

1.3.- V A L O R A B S O L U T O

1.3.- V A L O R A B S O L U T O 1.3.- V A L O R A B S O L U T O OBJETIVO.- Que el alumno conozca el concepto de Valor Absoluto y sepa emplearlo en la resolución de desigualdades. 1.3.1.- Definición de Valor Absoluto. El valor absoluto

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición.

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2

Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 Guía de Repaso 12: Primera Ley de Newton g=10 m s 2 1) Dos fuerzas F1 y F2 actúan sobre un pequeño cuerpo; F1 es vertical hacia abajo y vale F1=8,0 N, mientras que F2 es horizontal hacia la derecha y vale

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica

Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica Ámbito Científico-Tecnológico Módulo IV Bloque 3 Unidad 3 La antena parabólica Cuántas veces hemos pensado para qué sirven cosas tan raras de las matemáticas como la ecuación de segundo grado, por ejemplo.

Más detalles

Departamento de Matemáticas http://matematicasiestiernogalvancom 1 Desigualdades e inecuaciones de primer grado Hemos visto ecuaciones de 1º y º grados, en los cuales el número de soluciones era siempre

Más detalles

Capítulo 12. Sistemas de control

Capítulo 12. Sistemas de control Capítulo 12 Sistemas de control 1 Caso estacionario En un sistema de control el punto de equilibrio se determina resolviendo las ecuaciones que definen el sistema simultáneamente. Supondremos dos procesos

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Derivada. 1. Pendiente de la recta tangente a una curva

Derivada. 1. Pendiente de la recta tangente a una curva Nivelación de Matemática MTHA UNLP Derivada Pendiente de la recta tangente a una curva Definiciones básicas Dada una curva que es la gráfica de una función y = f() y sea P un punto sobre la curva La pendiente

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

Tema 1. Leyes de Newton

Tema 1. Leyes de Newton Tema 1. Leyes de Newton Tercera parte: Sistemas de masa variable Los sistemas de masa variable, es decir, sistemas en los que la masa que se encuentra en movimiento depende del tiempo, no conservan la

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B

Física y Química 4º ESO. Dinámica 22/11/11. Tipo A Tipo B Física y Química 4º ESO Dinámica /11/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Problemas [6 Ptos] Tipo A Tipo B 1. Se lanza horizontalmente un objeto de 400 g con una velocidad de 14,0 m/s sobre una

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página 8. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos radianes corresponden

Más detalles