Movimiento Armónico Simple (M.A.S.)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Movimiento Armónico Simple (M.A.S.)"

Transcripción

1 Anexo: Movimiento Armónico Simple (M.A.S.) 1.- Oscilaciones armónicas Los movimientos periódicos que se producen siempre sobre la misma trayectoria los vamos a denominar movimientos oscilatorios o vibratorios. Ejemplos de estos movimientos son un péndulo o un muelle. Los movimientos periódicos los vamos a caracterizar por las siguientes magnitudes periódicas: Periodo (T): tiempo que tarda el movimiento en realizar una oscilación completa Frecuencia (υ): número de oscilaciones por unidad de tiempo. La relación entre periodo y frecuencia es: T = 1 ν (1) Los movimientos oscilatorios se producen debido a que alteramos el equilibrio estable de un sistema. En estos casos, el propio sistema tenderá a recuperar su posición de equilibrio, realizando un movimiento oscilatorio. Piensa en un péndulo. Se encontrará en su punto de equilibrio estable cuando está perpendicular al suelo. En cuanto varía dicho equilibrio (se le empuja), el péndulo tenderá a recuperar su equilibrio, debido a la acción de la fuerza de la gravedad. A esta fuerza la denominaremos restauradora, pues tiende a devolver (restaurar) el péndulo a su posición de equilibrio. Al pasar por el punto de equilibrio, la fuerza restauradora le hará sobrepasarlo. Y vuelta a empezar. Hasta que el rozamiento con el aire haga que se pare. En este caso se ha producido una oscilación. Cuando la fuerza restauradora es proporcional a la separación del cuerpo del punto de equilibrio tendremos un movimiento armónico simple (M.A.S.) Matemáticamente esta fuerza se expresa como 1 F = k x (2) El signo negativo indica que la fuerza es restauradora (se opone al movimiento), x es la posición con respecto al punto de equilibrio y k es la constante de proporcionalidad. Un oscilador armónico es cualquier partícula que describe un M.A.S. 1 Nótese que esta fuerza es igual a la fuerza que obtenemos en la ley de Hooke Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 1

2 2.- Cinemática del M.A.S Posición del M.A.S. En general, la ecuación de un movimiento armónico simple puede escribirse como: x= A cos(ω t+δ) (3) donde x (elongación) es la posición en la que en cada momento se encuentra la partícula. A (amplitud) es la elongación máxima ω (frecuencia o velocidad angular) es el ángulo girado por unidad de tiempo. ω=2π ν= 2π (4) T ω t + δ (fase del movimiento). Puede observarse que cuando termina una oscilación completa (es decir, la fase aumenta en 2π), la posición vuelve a ser la misma, dado que: cos(ω t+δ)=cos(ω t +δ+2 π) (5) δ (desfase o fase inicial) es la fase cuando el tiempo vale cero y nos indica qué diferencia hay entre nuestro movimiento y un movimiento que en el instante inicial se encuentre en el punto de equilibrio. t=0 x 0 = A cos δ cosδ= x 0 A (6) La ecuación de cada M.A.S. va a depender de cuál sea la posición y el sentido inicial del movimiento. Vamos a estudiar los casos en los que la oscilación comienza en los extremos o en la posición de equilibrio. Para ello estudiaremos cómo es el movimiento en algunos tiempos importantes. Cuando es múltiplo entero de T/4 (la cuarta parte del periodo, que es el tiempo que tarda en recorrer la distancia que va desde el punto de equilibrio a cualquier extremo o viceversa), es decir: t = 0; t = T/4; t = T/2; t = 3T/4; t = T Dado que comenzaremos en un extremo o en el punto de equilibrio (y cada t = T/4 recorreremos una distancia A), las posiciones en estos tiempos serán, siempre x = A, x = 0 ó x = -A El movimiento parte desde el extremo derecho (hacia el punto de equilibrio) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cos ω t (7a) o bien, en función del seno x= A sen(ω t+ π 2 ) (7b) Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 2

3 El movimiento parte desde el extremo izquierdo (hacia el punto de equilibrio) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cosω t= A cos(ω t+π) (8a) o bien, en función del seno x= A sen(ω t π 2 ) (8b) El movimiento parte desde el punto de equilibrio hacia la derecha (elongaciones positivas) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cos(ω t π 2 ) (9a) o bien, en función del seno x= A senω t (9b) El movimiento parte desde el punto de equilibrio hacia la izquierda (elongaciones negativas) Elaborando la tabla de valores y representándola, podemos ver que la ecuación del movimiento es: x= A cos(ω t+ π 2 ) (10a) o bien, en función del seno x= A sen ω t=a sen(ω t +π) (10b) Velocidad del M.A.S. Consideremos la fórmula general del M.A.S. dada por (3) x= A cos(ω t+δ) Para calcular la velocidad nos basta con derivar con respecto al tiempo: v= dx dt = A ω sen(ω t+δ) (11) Observamos que la velocidad de un M.A.S. también varía de manera armónica. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 3

4 Vamos a jugar un poco con la expresión (11). Intentaremos poner el seno de la fase en función del coseno. Pare ello usaremos la relación fundamental de la trigonometría: sen 2 (ω t+δ)+cos 2 (ω t +δ)=1 sen(ω t+δ)=± 1 cos 2 (ω t +δ) (12) Si introducimos este valor en la expresión (11) tendremos que: v= A ω sen(ω t+δ)= A ω 1 cos 2 (ω t +δ) = = ±ω A 2 A 2 cos 2 (ω t +δ)=±ω A 2 x 2 (13) Nótese que tengo dos posibles soluciones de velocidad (v) para una misma elongación (x). Una corresponde a la ida (el movimiento va a la derecha, hacia elongaciones positivas) Y la otra a la vuelta (el movimiento va a la izquierda, hacia elongaciones negativas) Aceleración del M.A.S. Dado que la aceleración es la derivada de la velocidad respecto al tiempo, y usando (11): a= dv dt A ω sen(ω t +δ) =d = A ω 2 cos(ω t +δ)= ω 2 x (14) dt Nuevamente concluimos, como con la velocidad, que la aceleración de un M.A.S. también varía de forma armónica Conclusiones Vamos a sacar algunas conclusiones. Estudiemos qué pasa con la velocidad y la aceleración el los extremos y el punto de equilibrio. Velocidad ( v=±ω A 2 x 2 ) Aceleración ( a= ω 2 x ) x = -A v=0 a=+ω 2 A x = 0 v=±ω A 2 a=0 x = +A v=0 a= ω 2 A Es decir: En el punto de equilibrio la velocidad es máxima, mientras que la aceleración será nula. La velocidad puede tener dos signos, dependiendo del sentido que lleve el movimiento: será positivo si va hacia valores de la elongación positivo (hacia la derecha), y será negativo se va hacia valores de la elongación negativos (hacia la izquierda) En los extremos, en cambio, la velocidad será nula mientras que la aceleración será máxima. Y tendrá signo diferente a la velocidad, lo que nos indica que la fuerza es restauradora. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 4

5 2.5.- Representación gráfica de la posición, velocidad y aceleración Vamos a representar la posición, la velocidad y la aceleración, de un M.A.S. para sacar algunas conclusiones. Tomaremos las expresiones de estas magnitudes suponiendo que no existe desfase (δ = 0) y expresando la frecuencia angular en función del período, como vimos en la expresión (4). Volveremos a evaluar nuestra función en tiempos múltiplos de T/4. t = 0 t = T/4 t = T/2 t = 3T/4 t = T x= A cos(ω t +δ) x = A x = 0 x = -A x = 0 x = A v= A ω sen(ω t+δ) v = 0 v = - ω A v = 0 v = ω A v = 0 a= A ω 2 cos(ω t+δ) a = - ω 2 A a = 0 a = ω 2 A a = 0 a = - ω 2 A Como puede observarse: Las tres magnitudes varían de manera armónica. Dado que las tres funciones son cosenos: La posición toma todos los valores comprendidos en el intervalo [-A, A]. La velocidad varía entre [-ω A, ω A]. Y el intervalo en de la aceleración es [-ω 2 A, ω 2 A]. Cada intervalo de t = T/4, la posición varía un valor A, la velocidad un valor ω A y la aceleración ω 2 A π Entre la posición y la velocidad existe un desfase de 2 Entre la posición y la aceleración existe un desfase de π 3.- DINÁMICA DEL M.A.S. Vamos a suponer un oscilador consistente en un cuerpo unido a un muelle horizontal. Cuando apartamos el cuerpo del equilibrio una fuerza restauradora de valor F = k x tenderá a devolverlo a su sitio. Vamos a plantear la ecuación que nos sale y que deberemos resolver 2. Sabemos, por la segunda ley de Newton que la suma de todas las fuerzas que actúan en un sistema será igual a la masa por la aceleración y que la aceleración es la segunda derivada de la posición. F =m a=m d²x (15) dt² 2 La ecuación que obtenemos es una ecuación diferencial. Este tipo de ecuaciones tiene la incógnita derivándose, por lo que su resolución no suele ser fácil. Lógicamente escapa de cualquier objetivo de un curso de Bachillerato. Sin embargo, me parece oportuno ponerla para que los alumnos vayáis comprobando que las herramientas matemáticas de las que se sirve la física van mucho más allá de las simples ecuaciones, relaciones trigonométricas, vectores... Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 5

6 Como la única fuerza que actúa sobre mi sistema es la restauradora (suponemos que no existe rozamiento), obtendremos que: m d²x dt² = k x m d²x dt² +k x=0 d²x dt² + k m x=0 (16) Hasta ahora hemos supuesto que la ecuación de la solución era del tipo x= A cos(ω t+δ). Hacemos la segunda derivada de esta expresión y obtenemos: d²x dt² = A ω ² cos(ω t+δ) (17) Por lo que la expresión (16) queda, sustituyendo el resultado obtenido en (17): A ω ² cos(ω t+δ)+ k m A cos(ω t+δ)=0 (18) Si sacamos factor común A cos(ω t+δ) en la expresión (18): A cos(ω t+δ) [ ω ²+ k m ]=0 (19) Esta ecuación se cumplirá siempre que: A = 0, lo que indica que no hay movimiento. Este resultado no nos es válido. cos(ω t+δ)=0 ω t +δ= (2n+1)π, lo que ocurre solamente para algunos valores de t. 2 Tampoco nos es válido este resultado. ω ²+ k m =0 ω ²= k m (20), condición que sí que se le puede exigir a mi sistema. Por lo tanto, mi ecuación diferencial tiene como solución x= A cos(ω t +δ) con ω ²= k m, donde k es la constante elástica del muelle y m es la masa del cuerpo unido al mismo. Dado que existe una relación entre la frecuencia y el periodo, dada por (4), podemos concluir que: ω ²= k m T =2 π m k (21) Esta expresión nos relaciona el periodo de oscilación del muelle, con su constante restauradora y la masa de la partícula asociada a él. 4.- Consideraciones energéticas del M.A.S. El trabajo para llevar un cuerpo desde el punto x hasta la posición de equilibrio, será pues: W = x 0 F dx= x 0 ( k x) dx= 1 2 k [ x² ] x 0 = 1 2 k x² (22) Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 6

7 Pero, como las fuerzas restauradoras son del tipo de la ley de Hooke, sabemos que serán conservativas. En estos casos W = - ΔE P W = Δ E P =E P ( x) E P (0) (23) En el punto de equilibrio, la energía potencial será nula. Por lo que, igualando (22) y (23) E P (x)= 1 2 k x² =1 2 k A² cos² (ω t+δ) (24) Por lo tanto, la energía potencial de un oscilador armónico varía periódicamente desde un valor mínimo en el punto de equilibrio ( E Pmin =0 ) hasta un valor máximo en los extremos ( E Pmax = 1 2 k A² ) La energía mecánica total será: E=E p +E c = 1 2 k x² m v² (25) Dado que sabemos de (13) que v=±ω A 2 x 2, si sustituimos este valor en (25) E=E p +E c = 1 2 k x² m (ω A² x² )²= 1 2 k x² m ω ² (A² x² ) (26) Además, llegamos a la conclusión de que para que la ecuación diferencial se cumpliese tenía que darse la condición (21), es decir, ω ²= k m ω ²=k, que sustituyendo en (26) m E= 1 2 k x² k ( A² x² )= 1 2 k A² (27) La energía mecánica de un oscilador que realiza un M.A.S. permanece constante, y es directamente proporcional al cuadrado de la amplitud del movimiento y a la constante recuperadora de la fuerza. En los extremos la energía potencial es máxima y la cinética nula; mientras en el punto de equilibrio es al revés; la energía potencial nula y la cinética máxima. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 7

8 5.- Un ejemplo de M.A.S. El péndulo simple Todo cuerpo capaz de oscilar alrededor de un eje horizontal, que no pase por su centro de gravedad, constituye un péndulo. Supongamos un cuerpo de masa m, suspendido de un punto fijo O mediante un hilo de masa despreciable. En reposo, el hilo se encontrará en posición vertical y el cuerpo ocupará la posición A de la figura, punto en el cual la fuerza peso, P = m g, se anula con la tensión del hilo, T Si desviamos el cuerpo un ángulo α respecto a su posición de equilibrio A y lo llevamos a la posición B, el peso P se descompone en una componente normal (F n ) a la trayectoria que describirá la masa en su movimiento y en una componente tangencial (F t ) a dicha trayectoria. La componente normal se anula con la tensión del hilo, mientras que la componente tangencial tiende a devolver el cuerpo a su posición de equilibrio A. Esta fuerza siempre es opuesta a la desviación respecto del equilibrio, por ello viene afectada de un signo negativo, y es la que da origen al movimiento del péndulo. De la figura anterior se deduce F t = m g senα (28) Combinando esta ecuación con la 2ª ley de Newton, se tiene F t = m g sen α=m a (29) Por trigonometría llegamos a que senα= x L (30) donde L es la longitud del péndulo y x es la desviación a la que lo hemos sometido Sustituyendo (30) en (29) obtenemos: F =m a= m g x m g = L L x= k x (25) siendo k = m g L (31) Vemos que (25) es la expresión de una fuerza restauradora que da origen a un M.A.S. Podremos aplicarle todas las fórmulas que hemos encontrado para el M.A.S. En concreto, la expresión (21) T =2π m k =2π m m g =2π L g (32) L Esta expresión nos indica que el periodo de oscilación de un péndulo depende tan sólo de la longitud del mismo y del valor de la aceleración de la gravedad. Es independiente, por ejemplo, del ángulo de desviación (α) respecto a su posición de equilibrio. Si en esta expresión despejamos el valor de la aceleración de la gravedad obtenemos que: g= 4π ² L (28) T² Concluimos que podemos calcular el valor de la aceleración de la gravedad a partir de la medición del periodo de un péndulo simple y la longitud del mismo. Diego Palacios Gómez. IES Nuestra Señora de la Victoria. Departamento de Física y Química 8

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. Bloque 3: Trabajo y Energía. Trabajo y Energía Física y Química 1º Bachillerato LOMCE Bloque 3: Trabajo y Energía Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre un cuerpo que experimenta un desplazamiento,

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE

TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE TEMA 9. MOVIMIENTO ARMÓNICO SIMPLE Un movimiento periódico es aquel que describe una partícula cuando las variables posición, velocidad y aceleración de su movimiento toman los mismos valores después de

Más detalles

FISICA 2º BACHILLERATO

FISICA 2º BACHILLERATO A) Definiciones Se llama movimiento periódico a aquel en que la posición, la velocidad y la aceleración del móvil se repiten a intervalos regulares de tiempo. Se llama movimiento oscilatorio o vibratorio

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3

INDICE. Introducción 1. Movimiento vibratorio armónico simple (MVAS) 1. Velocidad en el MVAS 2. Aceleración en el MVAS 2. Dinámica del MVAS 3 INDICE Introducción 1 Movimiento vibratorio armónico simple (MVAS) 1 Velocidad en el MVAS Aceleración en el MVAS Dinámica del MVAS 3 Aplicación al péndulo simple 4 Energía cinética en el MVAS 6 Energía

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad. Un cuerpo baja por un plano inclinado y sube, a continuación, por otro con igual inclinación, alcanzando en ambos la misma altura al deslizar sin rozamiento. Este movimiento,

Más detalles

Movimiento armónico simple.

Movimiento armónico simple. 1 Movimiento armónico simple. 1.1. Concepto de movimiento armónico simple: Su ecuación. Supongamos un muelle que cuelga verticalmente, y de cuyo extremo libre pende una masa m. Si tiramos de la masa y

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Unidad 12: Oscilaciones

Unidad 12: Oscilaciones Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 12: Oscilaciones Movimiento armónico simple: x(t), v(t) y a(t) 10,0 x(t) a(t) 8,0 6,0

Más detalles

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento.

Problemas de M.A.S. La partícula se encuentra en el extremo opuesto al que estaba al iniciar el movimiento. Problemas de M.A.S. 1.- Una partícula animada de m.a.s. inicia el movimiento en el extremo positivo de su trayectoria y tarda 0'5 s en llegar al centro de la misma. La distancia entre ambas posiciones

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física

Problemas de Movimiento vibratorio. MAS 2º de bachillerato. Física Problemas de Movimiento vibratorio. MAS º de bachillerato. Física 1. Un muelle se deforma 10 cm cuando se cuelga de él una masa de kg. Se separa otros 10 cm de la posición de equilibrio y se deja en libertad.

Más detalles

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS

Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS Física P.A.U. VIBRACIONES Y ONDAS 1 VIBRACIONES Y ONDAS INTRODUCCIÓN MÉTODO 1. En general: a) Se dibujan las fuerzas que actúan sobre el sistema. b) Se calcula cada fuerza. c) Se calcula la resultante

Más detalles

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10

10) Una masa de 1 kg cuelga de un resorte cuya constante elástica es k = 100 N/m, y puede oscilar libremente sin rozamiento. Desplazamos la masa 10 PROBLEMAS M.A.S. 1) Una partícula animada de M.A.S. inicia el movimiento en el extremo positivo de su trayectoria, y tarda 0,25 s en llegar al centro de la misma. La distancia entre ambas posiciones es

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

TEMA 5.- Vibraciones y ondas

TEMA 5.- Vibraciones y ondas TEMA 5.- Vibraciones y ondas CUESTIONES 41.- a) En un movimiento armónico simple, cuánto vale la elongación en el instante en el que la velocidad es la mitad de su valor máximo? Exprese el resultado en

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 25 noviembre 2014 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una pared. Si en el instante inicial

Más detalles

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de

Movimiento armónico simple Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de Movimiento armónico simple 1.- 2015-Modelo A. Pregunta 2.- Un bloque de masa m = 0,2 kg está unido al extremo libre de un muelle horizontal de constante elástica k = 2 N m -1 que se encuentra fijo a una

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012. 2013-Modelo A. Pregunta 2.- Un objeto está unido a un muelle horizontal de constante elástica 2 10 4 Nm -1. Despreciando el rozamiento: a) Qué masa ha de tener el objeto si se desea que oscile con una

Más detalles

Tema 1 Movimiento Armónico Simple

Tema 1 Movimiento Armónico Simple Tema Movimiento Armónico Simple. Conceptos de movimiento oscilatorio: el movimiento armónico simple (MAS).. Ecuación general del MAS..3 Cinemática del MAS..4 Dinámica del MAS..5 Energía del MAS..6 Aplicación

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS

EXAMEN FÍSICA 2º BACHILLERATO TEMA 3: ONDAS INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

Movimiento Oscilatorio

Movimiento Oscilatorio Movimiento Oscilatorio 1. Introducción.. El Movimiento Armónico Simple. a) Estudio cinemático. b) Estudio dinámico. c) Estudio energético. 3. Péndulos. a) Péndulo simple. b) Péndulo físico. 4. Oscilaciones

Más detalles

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1

FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 FÍSICA - 2º BACHILLERATO MOVIMIENTO ARMÓNICO SIMPLE - HOJA 1 1. En un movimiento oscilatorio, Qué se entiende por periodo? Y por frecuencia? Qué relación existe entre ambas magnitudes? 2. Una partícula

Más detalles

Estática y dinámica de un muelle vertical

Estática y dinámica de un muelle vertical Prácticas de laboratorio de Física I Estática y dinámica de un muelle vertical Curso 2010/11 1. Objetivos Determinación de la constante del muelle. Estudio de un muelle oscilante como ejemplo de movimiento

Más detalles

Movimiento armónico simple

Movimiento armónico simple Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

OSCILACIONES ACOPLADAS

OSCILACIONES ACOPLADAS OSCILACIONES ACOPLADAS I. Objetivos: Analizar el movimiento conjunto de dos osciladores armónicos similares (péndulos de varilla), con frecuencia natural f 0, acoplados por medio de un péndulo bifilar.

Más detalles

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica.

Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. 1(9) Ejercicio nº 1 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 4 2 4 6 8 t(s) -4 Ejercicio nº 2 Deducir la ecuación del movimiento asociado a la gráfica. X(m) 3 1 2 3 t(s) -3 Ejercicio

Más detalles

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas

Resolución de problemas aplicando leyes de Newton y consideraciones energéticas UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos

Más detalles

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia

Fuerza de roce. Multiplicación de vectores. Impulso Momentum Torque Trabajo Potencia Multiplicación de vectores Fuerza de roce Impulso Momentum Torque Trabajo Potencia Disipación de energía y roce. Coeficientes de roce estático y dinámico. Magnitud y dirección de la fuerza de roce en cada

Más detalles

Módulo 4: Oscilaciones

Módulo 4: Oscilaciones Módulo 4: Oscilaciones 1 Movimiento armónico simple Las vibraciones son un fenómento que podemos encontrar en muchas situaciones En este caso, en equilibrio, el muelle no ejerce ninguna fuerza sobre el

Más detalles

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c Física 1 Física SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A a) I 1 B B 1 F 1, F, 1 Vemos que la lente divergente desvía los rayos paralelos al eje óptico y que los rayos que

Más detalles

El Péndulo Muelle Nicole Sophie Gómez Adenis. Universidad Autónoma de Madrid Grado en Física 4 de Abril de 2011

El Péndulo Muelle Nicole Sophie Gómez Adenis. Universidad Autónoma de Madrid Grado en Física 4 de Abril de 2011 El Péndulo Muelle Nicole Sophie Gómez Adenis Universidad Autónoma de Madrid Grado en Física 4 de Abril de 2011 1. La Dinámica del Péndulo-Muelle: Básicamente se trata de un muelle con una masa suspendida

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2.

, donde ν 1 y ν 2 son las frecuencias m a las que oscilaría el bloque si se uniera solamente al resorte 1 o al resorte 2. MAS. EJERCICIOS Ejercicio 1.-Un oscilador consta de un bloque de 512 g de masa unido a un resorte. En t = 0, se estira 34,7 cm respecto a la posición de equilibrio y se observa que repite su movimiento

Más detalles

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA

aletos TEMA 15 ENERGÍA POTENCIAL ELÁSTICA aletos 15.1 15.1 Energía potencial elástica Hay cierto tipo de sólidos que no son rígidos, capaces, por tanto, de eperimentar deormaciones. La deormación de un sólido rígido puede ser plástica, o elástica.

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 007/008 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE.

MOVIMIENTO ARMÓNICO SIMPLE. MOVIMIENTO ARMÓNICO SIMPLE. JUNIO 1997. 1.- Un cuerpo de masa m = 10 kg describe un movimiento armónico simple de amplitud A = 30 mm y con un periodo de T = 4 s. Calcula la energía cinética máxima de dicho

Más detalles

(99-R) Un movimiento armónico simple viene descrito por la expresión:

(99-R) Un movimiento armónico simple viene descrito por la expresión: Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

DINÁMICA. Física 1º bachillerato Dinámica 1

DINÁMICA. Física 1º bachillerato Dinámica 1 DINÁMICA 1. Fuerzas. 2. Principios de la dinámica. 3. Momento lineal (o cantidad de movimiento). 4. Impulso mecánico. 5. Interacción gravitatoria. 6. Fuerza centrípeta. 7. Fuerza elástica. 8. Fuerza de

Más detalles

Movimiento armónico simple. Movimiento armónico simple Cuestiones

Movimiento armónico simple. Movimiento armónico simple Cuestiones Movimiento armónico simple Cuestiones (99-R) Una partícula describa un movimiento armónico simple de amplitud A y frecuencia f. a) Represente gráficamente la posición y la velocidad de la partícula en

Más detalles

Solucionario de las actividades propuestas en el libro del alumno

Solucionario de las actividades propuestas en el libro del alumno Solucionario de las actividades propuestas en el libro del alumno 4.. MOVIMIENOS PERIÓDICOS Página 75. Conocido el período de rotación de la Luna en torno a la ierra y sabiendo que la Luna no emite luz

Más detalles

Cinemática del movimiento armónico simple

Cinemática del movimiento armónico simple PROBLEMAS DE OSCILACIONES. Cinemática del movimiento armónico simple Autor: José Antonio Diego Vives Documento bajo licencia CC Attribution-Share Alike 3.0 (BY-SA) Problema 1 Un pequeño objeto de masa

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 26 PENDULO SIMPLE OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS OSCILACIONES DEL PÉNDULO Y DETERMINAR LAS SIMPLIFICACIONES

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Enero de 2015 Problemas (Dos puntos por problema). Examen de Física-, Ingeniería Química Examen final. Enero de 205 Problemas (Dos puntos por problema). Problema : La posición de una partícula móvil en el plano Oxy viene dada por : x(t) = 2 t 2 y(t) =

Más detalles

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía

Física y Química 1º Bachillerato LOMCE. FyQ 1. Tema 10 Trabajo y Energía. Rev 01. Trabajo y Energía Física y Química 1º Bachillerato LOMCE IES de Castuera Tema 10 Trabajo y Energía FyQ 1 2015 2016 Rev 01 Trabajo y Energía 1 El Trabajo Mecánico El trabajo mecánico, realizado por una fuerza que actúa sobre

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General Proyecto PMME - Curso 7 PROYECTO FÍSICA OSCILACIONES JUAN PEDRO BARREIRA ENZO FROGONI MARCELO SANGUINETTI INTRODUCCIÓN En este informe presentamos el estudio de un sistema físico relacionado

Más detalles

DINÁMICA II - Aplicación de las Leyes de Newton

DINÁMICA II - Aplicación de las Leyes de Newton > INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2016

PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA SOLUCIONARIO PROBAK 25 URTETIK Contesta 4 de los 5 ejercicios propuestos (Cada pregunta tiene un valor de 2,5 puntos, de los

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Aceleración n de la gravedad Péndulo simple

Aceleración n de la gravedad Péndulo simple Aceleración n de la gravedad Péndulo simple Experiencia de Laboratorio, Física F experimental I, 2007 A. Biera, G. Huck y P. Palermo Tandil - Octubre de 2007 1 Aceleración n de la gravedad - Péndulo simple

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.)

MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Clase 2-1 Clase 2-2 MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.) Cinemática de la Partícula - 1 Clase 2-3 MOVIMIENTOS PERIÓDICOS En la naturaleza hay ciertos movimientos que se producen con asiduidad. Entre ellos

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Autores Introducción C O N S E R V A C I Ó N D E L M O M E N T O A N G U L A R Juan Andrés Diana, Fernando

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

Problemas Movimiento Armónico Simple

Problemas Movimiento Armónico Simple Problemas Movimiento Armónico Simple 1. Una partícula describe un M.A.S de pulsación w=π rad/s. En un instante dado se activa el cronómetro. En ese momento la elongación que tiene un sentido de recorrido

Más detalles

Examen Dinámica 1º Bach Nombre y Apellidos:

Examen Dinámica 1º Bach Nombre y Apellidos: Examen Dinámica 1º Bach Nombre y Apellidos: 1. Sobre una masa m actúa una fuerza F produciéndole una aceleración a. Dos fuerzas F, formando un ángulo de 90º, actúan sobre la misma masa y le producen una

Más detalles

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL

TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL Capítulo 4 TEOREMAS GENERALES DE LA DINÁMICA DEL PUNTO MATERIAL 4.1 Introducción En el tema anterior hemos estudiado los principios fundamentales de la dinámica. La segunda ley de Newton, que relaciona

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS

INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO 11 PROFESOR: ELVER RIVAS INSTITUCIÓN EDUCATIVA PEDRO ESTRADA FÍSICA GRADO PROFESOR: ELVER RIVAS PRIMER PERIODO MOVIMIENTO ARMÓNICO SIMPLE (M.A.S.).- Movimiento osciatorio..- Cinemática de movimiento armónico simpe. 3.- Dinámica

Más detalles

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico a) Indica en los siguientes casos si se realiza o no trabajo mecánico: Un cuerpo en caída libre (fuerza de gravedad Un cuerpo apoyado en una meda

Más detalles

1. Triángulos semejantes. 2. Las razones trigonométricas. 3. Las leyes de Newton. 4. La ley de la gravitación universal Teorema de Pitágoras

1. Triángulos semejantes. 2. Las razones trigonométricas. 3. Las leyes de Newton. 4. La ley de la gravitación universal Teorema de Pitágoras 1. Triángulos semejantes 1.1. Teorema de Pitágoras 1.2. Semejanza de triángulos 2. Las razones trigonométricas 2.1. Definición 2.2. Relación fundamental de la trigonometría 2.3. Resolución de triángulos

Más detalles

EJERCICIOS DE SELECTIVIDAD ONDAS

EJERCICIOS DE SELECTIVIDAD ONDAS EJERCICIOS DE SELECTIVIDAD ONDAS 1. La ecuación de una onda armónica que se propaga por una cuerda es: y (x, t) = 0,08 cos (16 t - 10 x) (S.I.) a) Determine el sentido de propagación de la onda, su amplitud,

Más detalles

El oscilador armónico (I): Ecuación de oscilador Armónico

El oscilador armónico (I): Ecuación de oscilador Armónico Un movimiento que responde a la ecuación x=asen(ωt+ϕ) X es la elongación A= amplitud de la oscilación; es la elongación Máxima ω=pulsación t=tiempo ϕ=fase inicial. El movimiento vibratorio Armónico simple

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA

PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 6: PÉNDULO FÍSICO Y MOMENTOS DE INERCIA Materiales * Varilla delgada con orificios practicados

Más detalles

Estudio del comportamiento de un muelle ideal

Estudio del comportamiento de un muelle ideal Estudio del comportamiento de un muelle ideal Experiment lesson Created by: Marisa Amieva Rodríguez Introduction Activities Evaluation Conclusion Introduction La ley que explica el comportamiento elástico

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II LABORATORIO DE FÍSICA CICLO: AÑO: Laboratorio: 01 Laboratorio 01: OSCILACIONES MECÁNICAS EN UN SISTEMA MASA-RESORTE I. OBJETIVOS

Más detalles

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2007 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proecto PMME - Curso 007 Instituto de Física Facultad de Ingeniería UdelaR TITULO DINAMICA DEL CARRETEL AUTORES Santiago Duarte, Nicolás Puppo Juan Manuel Del Barrio INTRODUCCIÓN En este

Más detalles

Medición de la aceleración de la gravedad Masa unida a un resorte

Medición de la aceleración de la gravedad Masa unida a un resorte Medición de la aceleración de la gravedad Masa unida a un resorte Física Experimental I Octubre 2010 Fernández, Yohanna (yoko_6_10@hotmail.com) Guariste, Maximiliano (maxi_862@hotmail.com) Correa, Pablo

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre

Más detalles

Física e Química 1º Bach.

Física e Química 1º Bach. Física e Química 1º Bach. Dinámica 15/04/11 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Resuelve dos de los siguientes Problemas 1. Un cuerpo de 2,0 kg de masa reposa sobre un plano inclinado 30º unido por

Más detalles

1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN.

1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN. 1.- CINEMÁTICA DEL M.A.S.: ECUACIONES Y REPRESENTACIONES GRÁFICAS DE POSICIÓN, VELOCIDAD Y ACELERACIÓN. Movimientos oscilatorios: M.A.S. Cuando una partícula material se separa ligeramente de una posición

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2014 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 014 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Un cuerpo de masa 10 g se desliza bajando por un plano inclinado

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. a) Qué criterio puedes aplicar para saber si una fuerza dada es conservativa o no? b) Demuestra que la fuerza elástica F = - kx (Ley de Hooke) es conservativa. Res. a) En general, una fuerza F -> que

Más detalles

Districte universitari de Catalunya

Districte universitari de Catalunya SERIE 3 PAU. Curso 2003-2004 FÍSICA Districte universitari de Catalunya Resuelva el problema P1 y responda a las cuestiones C1 y C2. Escoja una de las opciones (A o B) y resuelva el problema P2 y responda

Más detalles

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna

Física III (sección 1) ( ) Ondas, Óptica y Física Moderna Física III (sección 1) (230006-230010) Ondas, Óptica y Física Moderna Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería

Más detalles

(Lógico si la amplitud disminuyó a la mitad en 2.4 minutos tardará otros 2.4 minutos en reducirse de nuevo a la mitad)

(Lógico si la amplitud disminuyó a la mitad en 2.4 minutos tardará otros 2.4 minutos en reducirse de nuevo a la mitad) M.A.S. AMORTIGUADO Un bloque suspendido de un muelle se pone a oscilar con una amplitud inicial de 120 mm. Después de 2.4 minutos la amplitud ha disminuido hasta 60 mm. a) Cuándo será la amplitud de 30

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

Unidad 13: Ondas armónicas

Unidad 13: Ondas armónicas Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 13: Ondas armónicas Universidad Politécnica de Madrid 22 de marzo de 2010 2 13.1. Planificación

Más detalles

TEMA 2. Dinámica, Trabajo, Energía y Presión

TEMA 2. Dinámica, Trabajo, Energía y Presión TEMA 2. Dinámica, Trabajo, Energía y Presión 1. Objeto de la dinámica Dinámica es la parte de la mecánica que estudia el movimiento atendiendo a las causas que lo producen. Estas causas son las fuerzas.

Más detalles

Dinámica de los sistemas de partículas

Dinámica de los sistemas de partículas Dinámica de los sistemas de partículas Definiciones básicas Supongamos un sistema compuesto por partículas. Para cada una de ellas podemos definir Masa Posición Velocidad Aceleración Fuerza externa Fuerza

Más detalles

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE

PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE INGENIERÍA QUÍMICA 1 er curso FUNDAMENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 3 ESTUDIO DEL PÉNDULO SIMPLE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 III. Péndulo simple

Más detalles

PROBLEMAS RESUELTOS TEMA: 1

PROBLEMAS RESUELTOS TEMA: 1 PROBLEMAS RESUELTOS TEMA: 1 1. Un guardacostas tiene el combustible justo para ir con su lancha desde la costa hasta una isla; éste es un viaje de 4 h en contra de la corriente. Al llegar, resulta que

Más detalles

Física General IV: Óptica

Física General IV: Óptica Facultad de Matemática, Astronomía y Física Universidad Nacional de Córdoba Física General IV: Óptica Práctico de Laboratorio N 1: Ondas en una Cuerda Elástica 1 Objetivo: Estudiar el movimiento oscilatorio

Más detalles

Mediante este programa se persigue desarrollar las siguientes habilidades:

Mediante este programa se persigue desarrollar las siguientes habilidades: PROPÓSITO: El programa de esta asignatura está dirigido a los estudiantes del primer semestre de la Facultad de Ingeniería, con la finalidad de ofrecerles una capacitación teórica práctica en los principios

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

RIZO EN EL PLANO VERTICAL

RIZO EN EL PLANO VERTICAL IZO EN EL PLANO VETICAL Una pequeña masa está colgada de un hilo fino de longitud L. Apartamos dicha masa 90º de su posición de equilibrio de manera que el hilo queda tenso y horizontal, y la soltamos.

Más detalles

Una propuesta didáctica para la enseñanza del M.A.S.

Una propuesta didáctica para la enseñanza del M.A.S. investigación educativa Una propuesta didáctica para la enseñanza del M.A.S. por María Cristina Menikheim y Ema Elena Aveleyra Resumen En este trabajo se analiza cinemática, dinámica y energéticamente

Más detalles