Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos"

Transcripción

1 DE S L U S RE S I V I C LES

2 Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen una solució gràfica i aquells altres el resultat dels quals ja és el desenvolupament mateix de l exercici.

3 UNI. SISEMES D EQUCIONS. MÈODE DE GUSS Pàgina Equacions i incògnites. Sistemes d equacions. Es tracta de la mateixa recta. x + y = x + y =. Solució gràfica. 7x y =. Solució gràfica. Solució gràfica. Pàgina. a) Hem substituït la segona equació pel resultat de sumar les dues que teníem. b) Hem substituït la primera equació pel resultat de restar de la segona equació la primera. c) En el primer sistema, la tercera equació s obté sumant les dues primeres. La resta és igual que a b). d) Hem substituït la segona equació pel resultat de restar de la segona equació la primera. Pàgina 5. a) x =, y = 5. Són tres rectes que es tallen en el punt (, 5). b) x = 5 λ, y = + λ λ. Són tres plans que es tallen en una recta. c) Incompatible. Els dos primers plans són paral lels i el tercer els talla. d) x =, y =. Són tres plans que es tallen en el punt (,, ).. a) x =, y = b) Per exemple: x + y = 7 c) Per exemple: x + y = 9. d) En a) Són dues rectes que es tallen en (, ). En b) La nova recta també passa per (, ). En c) La nova recta no passa per (, ). No existeix cap punt comú en les tres rectes. Es tallen dues a dues. Pàgina 6 7. a) x =, y = b) x =, y = 9 c) x = + λ, y = 9 9λ + 6λ, t = λ 6 d) x =, y = 9 5. a) Sí. x = 0, y = 0 b) Sí. x = + λ, y = 5 λ λ c) Sí. x = + λ, y = λ λ µ, t = µ d) Sí. x =, y = 5, t = Pàgina 7 6. a) x =, y = 5; b) x =, y = 7. a) x =, y = λ 5 λ b) x =, y = 0, w = 0 Pàgina 0 8. a) x =, y = b) Incompatible. c) x = + λ, y = λ + λ a) x = 7λ, y = λ λ b) x = 0, y = 0 0, w = c) x =, y =, w = Pàgina 0. a) Si k = compatible indeterminat 5 x = λ, y = λ + λ Si k compatible determinat k k x =, y = + + b) Si k = incompatible Si k compatible determinat k x =, y = k + k 8 k 5k + 8 k k 6 k 6. a) Si k = incompatible Si k compatible determinat x = 8 + k, y = k k + 8 k k 6 k + (k + ) k + b) Si k = incompatible Si k compatible determinat Unitat. Sistemes d equacions. Mètode de Gauss

4 x = + k k k, y = k + k + k + k + k Pàgina 6 Exercicis i problemes proposats. a) El sistema representa quatre rectes que es tallen en el punt (, ). x =, y = b) Incompatible. El sistema representa tres rectes que es tallen dues a dues, però no hi ha cap punt comú a les tres.. La a i la a equació representen dues rectes paral leles; la a les talla.. Són tres rectes que es tallen en el punt (, ). x =, y = a) Incompatible. Són dos plans parallels. b) Incompatible. Són dos plans paral lels a) x =, y = 7 b) x =, y = 9 9 c) x = 5 + λ, y = λ λ, t = + λ 7 d) x =, y = a) x =, y = 6 b) x =, y = 8. a) x =, y = 6 b) x =, y = 9. a) x = λ, y = + λ λ b) x =, y = 0. a) x =, y = 8 7 b) x = λ, y = λ 5λ 5 5 c) Incompatible. d) x = λ, y = λ 7λ. a) Compatible indeterminat. b) Compatible determinat.. a) Compatible determinat. x =, y = b) Compatible indeterminat. x = λ, y = λ 7λ. a) Compatible determinat. Unitat. Sistemes d equacions. Mètode de Gauss x =, y = 0 b) Compatible indeterminat. x = λ, y = λ λ c) Compatible determinat. x =, y = d) Compatible indeterminat. x = λ, y = λ 0, t = 0 Pàgina 7. a) Si k =, sistema compatible indeterminat. x = λ, y = λ Si k, sistema compatible determinat. x =, y = 0 b) Si m = 0, sistema compatible indeterminat. x = + λ, y = + λ 5λ Si m 0, incompatible. 5. a) Sistema compatible determinat per a tot k. b) Si a = 0; sistema compatible indeterminat Si a 0; sistema compatible determinat c) Compatible determinat per a tot m. d) Si a = ; sistema incompatible Si a ; sistema compatible determinat 6. a) Si m = 7, sistema compatible determinat. x =, y = b) Si m =, sistema compatible indeterminat. x = λ, y = 7λ λ 7. a) Si m = ; sistema compatible indeterminat. x = λ, y = λ λ Si m ; sistema compatible determinat. x =, y = 0 b) Si a = ; sistema incompatible. Si a ; sistema compatible determinat. a 6 a x =, y = a a a Per resoldre 8. a) x =, y = 6 7 b) x =, y =, t = c) x = λ, y = λ 0 d) x = λ, y = λ λ 9. a) Si α, sistema compatible indeterminat. Són dues rectes coincidents. Si α =, sistema incompatible. Són dues rectes paral leles.

5 Si α y α ; sistema compatible determinat. Són dues rectes secants. b) Si α 0, sistema compatible determinat. Són tres plans que es tallen en un punt. Si α = 0, sistema incompatible. Els plans es tallen dos a dos, però no hi ha cap punt comú a tots tres. 0. a) a = ; b) cap; c) x = λ, y = = λ. a) x =, y = 0 b) x = + λ, y = λ λ + c) Són tres plans que es tallen en una recta.... = 0, B = 0, C = 0.. = kg, B = kg, C=,5 kg. Pàgina còpies bitllets de 0, 5 bitllets de 0 i 0 bitllets de monedes a la caixa, a la B i 6 a la C. 8. 9,8 km. 9. a) j + m + d = 8.00 j + km + d = 9.00 j + m + kd =.800 b) No és possible. c) k = : JON MNEL DNIEL SOLUCIÓ SOLUCIÓ SOLUCIÓ a) a + b + c = , a + b = mc, a 00 + b 00 + c 00 = b) Cal que m > 0 per tal que el sistema sigui compatible determinat. c) c = 0.000, b = 0.000, a = a) f = 8 anys, p = 6 anys, a = 6 anys. b) No. c) Incompatible.. El jugador que va perdre primer tenia 9 ; el que va perdre en segon lloc tenia, i el que va perdre en tercer lloc tenia.. Sí.. No. 5. Si a té única solució, x = y = z = 0 Si a = sistema compatible indeterminat. é infinites solucions No pot ser mai incompatible. Pàgina 9 6. No. 7. a) Per exemple, x y + z =. b) Per exemple, y = Quan totes les solucions del r sistema ho són també del n, i a la inversa. No són equivalents. 9. No. Per aprofundir 50. a = o a = 6 5. a) Si a = ; sistema incompatible. Si a =, sistema compatible indeterminat. x = λ, y = 0 λ Si a i a ; sistema compatible determinat. b) Si a = ; sistema incompatible. Si a =, sistema compatible indeterminat. x = λ, y = λ + λ Si a i a ; sistema compatible determinat. 5. Si a = ; sistema incompatible. Els dos primers plans són paral lels, i el tercer els talla. Si a = ; sistema incompatible. Els dos últims plans són paral lels, i el primer els talla. Si a i a ; sistema compatible determinat. Són tres plans que es tallen en un punt. Per pensar una mica més 5. w =, t =, y = 5, x = 5 5. w =, t = 0 8, y = 7, x = a = 0, b = 8, c = 7, d = 6, e =, f = 9 Unitat. Sistemes d equacions. Mètode de Gauss 5

SISTEMES D EQUACIONS. MÈTODE DE GAUSS

SISTEMES D EQUACIONS. MÈTODE DE GAUSS UNITAT SISTEMES D EQUACIONS. MÈTODE DE GAUSS Pàgina Equacions i incògnites. Sistemes d equacions. Podem dir que les dues equacions següents són dues dades diferents? No és cert que la segona diu el mateix

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç

Más detalles

EXERCICIS - SOLUCIONS

EXERCICIS - SOLUCIONS materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( )

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( ) GEOMETRIA EN L ESPAI VECTORS EN L ESPAI OPERACIONS AMB VECTORS Un vector és un segment orientat en l espai que té un mòdul, una direcció i un sentit coneguts: té un extrem i un origen (Exemple: vector

Más detalles

Tema 1: TRIGONOMETRIA

Tema 1: TRIGONOMETRIA Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 SÈRIE 1 Pregunta 1 3 1 lim = 3. Per tant, y = 3 és asímptota horitzontal de f. + 3 1 lim =. Per tant, = - és asímptota horitzontal

Más detalles

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i.

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i. Pàgina 1 5 Proves d accés a la Universitat per a més grans 5 anys Abril 015 Sèrie Exercicis Opció A A1.- Consireu el polinomi 7 6. Justifiqueu que 1 i són dues arrels l polinomi. Determineu la tercera

Más detalles

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.

Más detalles

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta .- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-

Más detalles

Prova de competència matemàtica

Prova de competència matemàtica PROVES DE QUALIFICACIO DE NIVELL 3 Prova de competència matemàtica Nombres naturals: jerarquia d operacions: La jerarquia es: 1. parèntesi 2. multiplicacions i divisions 3. sumes i restes a) 25 : 5 + 3.

Más detalles

Geometria / GE 2. Perpendicularitat S. Xambó

Geometria / GE 2. Perpendicularitat S. Xambó Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització

Más detalles

TEMA 3 : Nombres Racionals. Teoria

TEMA 3 : Nombres Racionals. Teoria .1 Nombres racionals.1.1 Definició TEMA : Nombres Racionals Teoria L'expressió b a on a i b son nombres enters s'anomena fracció. El nombre a rep el nom de numerador, i b de denominador. El conjunt dels

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles

AVALUACIÓ DE QUART D ESO

AVALUACIÓ DE QUART D ESO AVALUACIÓ DE QUART D ESO FULLS DE RESPOSTES I CRITERIS DE CORRECCIÓ Competència matemàtica FULL DE RESPOSTES VERSIÓ AMB RESPOSTES competència matemàtica ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI

Más detalles

8 Geometria analítica

8 Geometria analítica Geometria analítica INTRODUCCIÓ Els vectors s utilitzen en diverses branques de la física que fan servir magnituds vectorials, per això és important que els alumnes en coneguin els elements i les operacions.

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015 Oficina d Accés a la Universitat Pàgina 1 de 12 Sèrie 5 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Matemàtiques 1 - FIB

Matemàtiques 1 - FIB Matemàtiques - FI 7--7 Examen Final F Àlgebra lineal JUSTIFIQUEU TOTES LES RESPOSTES. [ punts] Siguin E i F dos espais vectorials, f : E F una aplicació lineal. (a) Digueu què ha de satisfer f per tal

Más detalles

Equacions polinòmiques

Equacions polinòmiques EQUACIONS de r i n GRAU Hi h de molts tipus d equcions, per exemple: TEMA 7. EQUACIONS DE r I DE n GRAU I SISTEMES D EQUACIONS -Logrítmiques: -Trigonmètriques: -Rdicls: log( x + ) logx sin x cos x tgx

Más detalles

TEMA 3: Polinomis 3.1 DEFINICIONS:

TEMA 3: Polinomis 3.1 DEFINICIONS: TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient

Más detalles

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA

DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA DIBUIX TÈCNIC PER A CICLE SUPERIOR DE PRIMÀRIA Abans de començar cal tenir uns coneixements bàsics que estudiareu a partir d ara. PUNT: No es pot definir, però podem dir que és la marca més petita que

Más detalles

XXXV OLIMPÍADA MATEMÀTICA

XXXV OLIMPÍADA MATEMÀTICA XXXV OLIMPÍADA MATEMÀTICA Primera fase (Catalunya) 10 de desembre de 1999, de 16 a 0h. 1. Amb quadrats i triangles equilàters de costat unitat es poden construir polígons convexos. Per exemple, es poden

Más detalles

Equacions de primer i segon grau

Equacions de primer i segon grau Equacions de primer i segon grau Les equacions de primer i segon grau Equacions de primer grau amb una incògnita Exemple 3x 5 = x + 5 és una equació de primer grau amb una incògnita: és una equació perquè

Más detalles

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC

I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES DIBUIX TÈCNIC DIBUIX TÈCNIC I. SISTEMA DIÈDRIC 3. DISTÀNCIES I ANGLES 1. Dist. d un punt a una recta - Abatiment del pla format per la recta i el punt 2. Dist. d un punt a un pla - Canvi de pla posant el pla de perfil

Más detalles

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1 GEOMETRIA ANALÍTICA DEL PLA. 1. Vectors en el pla.. Equacions de la recta. 3. Posició relativa de dues rectes. 4. Paral lelisme de rectes. 5. Producte escalar de dos vectors. 6. Perpendicularitat de rectes.

Más detalles

MÚLTIPLES I DIVISORS

MÚLTIPLES I DIVISORS MÚLTIPLES I DIVISORS DETERMINACIÓ DE MÚLTIPLES Múltiple d un nombre és el resultat de multiplicar aquest nombre per un altre nombre natural qualsevol. 2 x 0 = 0 2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8

Más detalles

x = graduació del vi blanc y = graduació del vi negre

x = graduació del vi blanc y = graduació del vi negre Problemes ( pàgina 44 del llibre de classe, Editorial Casals ) (21) Barregem 60 L de vi blanc amb 20 L de vi negre i obtenim un vi de 10 graus (10% d alcohol). Si, contràriament, barregem 20 L de blanc

Más detalles

f =. El pendent de la recta tangent

f =. El pendent de la recta tangent Oficina d'organització de Proves d'accés a la Universitat Pàgina 1 de 11 PAU 004 SÈRIE. Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

SOLUCIONARI Unitat 11

SOLUCIONARI Unitat 11 SOLUCIONARI Unitat 11 Comencem Dóna la intepetació geomètica de les solucions dels sistemes següents: a) b) Execicis ì3x + y - z x - y + 5z = - îx + y = 3 Resolem el sistema: ang M = ang M' = 3 i el sistema

Más detalles

4.7. Lleis de Newton (relacionen la força i el moviment)

4.7. Lleis de Newton (relacionen la força i el moviment) D21 4.7. Lleis de ewton (relacionen la força i el moviment) - Primera Llei de ewton o Llei d inèrcia QUÈ ÉS LA IÈRCIA? La inèrcia és la tendència que tenen el cossos a mantenirse en repòs o en MRU. Dit

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 009 SÈRIE 4 QÜESTIONS 1. Considereu el sistema d inequacions següent: x 0, y 0 x+ 5y 10 3x+ 4y 1 a) Dibuixeu la regió de solucions

Más detalles

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere Les Arcades Molló del terme Ermita la Xara Esglèsia Sant Pere Pàg. 2 Monomi Un monomi (mono=uno) és una expressió algebraica de la forma: *+,-=/, 1 on R N., rep el nom d indeterminada o variable del monomi,

Más detalles

MINIGUIA RALC: REGISTRE D UN NOU ALUMNE (Només per a ensenyaments no sostinguts amb fons públics)

MINIGUIA RALC: REGISTRE D UN NOU ALUMNE (Només per a ensenyaments no sostinguts amb fons públics) MINIGUIA RALC: REGISTRE D UN NOU ALUMNE (Només per a ensenyaments no sostinguts amb fons públics) Índex Registre d un nou alumne Introducció de les dades prèvies Introducció de les dades del Registre:

Más detalles

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos:

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos: GEOMETRÍA Junio 98 Deduce razonadamente en que casos los planos y son o no paralelos: a) : x + y + z = y : x + y z = 4 b) : x y + z = 4 y : x y + z = Obtén la distancia entre los planos y cuando sean paralelos.

Más detalles

SOLUCIONARI Unitat 10

SOLUCIONARI Unitat 10 SOLUCIONARI Unitat 1 Comencem Donades dues ectes que tenen la mateixa diecció, quants plans hi ha que siguin pependiculas a les dues ectes a la vegada? Hi ha infinits plans, que són paal lels. Donats un

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: n BATX MA ) Raoneu la certesa o falsedat de les afirmacions següents: a) Si A és la matriu dels coeficients d'un sistema d'equacions lineals i Ampl és la matriu ampliada del mateix sistema. Rang(A) Rang

Más detalles

VECTORS EN EL PLA. EQUACIÓ VECTORIAL DE LA RECTA ESQUEMA 1. VECTORS EN EL PLA 2. OPERACIONS AMB VECTORS 3. EQUACIONS PARAMÈTRIQUES DE LA RECTA

VECTORS EN EL PLA. EQUACIÓ VECTORIAL DE LA RECTA ESQUEMA 1. VECTORS EN EL PLA 2. OPERACIONS AMB VECTORS 3. EQUACIONS PARAMÈTRIQUES DE LA RECTA VECTORS EN EL PL. EQUCIÓ VECTORIL DE L RECT ESQUEM 1. VECTORS EN EL PL 2. OPERCIONS M VECTORS 3. EQUCIONS PRMÈTRIQUES DE L RECT 1. VECTORS EN EL PL En un sistema d eixos cartesians, cada punt es descriu

Más detalles

ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE

ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE ESTUDI D UNA FACTURA PREU PER UNITAT D UN PRODUCTE i 1-Observa la factura 2-Tria un producte 3-Mira quin és l IVA que s aplica en aquest producte i calcula l 4-Mira el descompte que s aplica en aquest

Más detalles

VECTORS EN L ESPAI. Pàgina 130. Pàgina 131. Problema 1. Troba l àrea d aquest paral lelogram en funció de l angle α: Área = 8 5 sen α = 40 sen α cm 2

VECTORS EN L ESPAI. Pàgina 130. Pàgina 131. Problema 1. Troba l àrea d aquest paral lelogram en funció de l angle α: Área = 8 5 sen α = 40 sen α cm 2 VECTORS EN L ESPAI Pàgina 130 Problema 1 Troba l àrea d aquest paral lelogram en funció de l angle α: Área = 8 sen α = 40 sen α cm cm α 8 cm Troba l àrea d aquest triangle en funció de l angle β: β a b

Más detalles

EXERCICIS PROPOSATS. 3 cm

EXERCICIS PROPOSATS. 3 cm EXERCICIS PROPOSATS 1.1 Calcula el perímetre de les figures següents. a), b) cm cm cm a) p,5 8 5 1 b) p 9 cm 1. Calcula el perímetre d aquestes figures. a) Un quadrat de 6 centímetres de costat. b) Un

Más detalles

1. Per disposar d aquí a nou mesos de , quants diners s haurien d ingressar avui en un compte bancari al 2% anual en interès simple vençut?

1. Per disposar d aquí a nou mesos de , quants diners s haurien d ingressar avui en un compte bancari al 2% anual en interès simple vençut? Règims Financers. Exercicis solucionats RÈGIMS FINANCERS. EXERCICIS SOLUCIONATS. Per disposar d aquí a nou mesos de 0.500, quants diners s haurien d ingressar avui en un compte bancari al 2% anual en interès

Más detalles

CONEIXEMENTS TEÒRICS. 4 Pertinences entre elements 4.1 Punt i recta 4.2 Recta i pla 4.3 Punt i pla 4.4 Rectes notables del pla

CONEIXEMENTS TEÒRICS. 4 Pertinences entre elements 4.1 Punt i recta 4.2 Recta i pla 4.3 Punt i pla 4.4 Rectes notables del pla 3 Sistema dièdric, elements UNITAT CONEIXEMENTS TEÒRICS 1 Delimitació del sistema i notacions a utilitzar 2 Projeccions dièdriques dels elements fonamentals 2.1 Representació del punt 2.2 Representació

Más detalles

Gràfiques del moviment rectilini uniforme (MRU)

Gràfiques del moviment rectilini uniforme (MRU) x = x 0 + v (t-t 0 ) si t 0 = 0 s x = x 0 + vt D4 Gràfiques del moviment rectilini uniforme (MRU) Gràfica posició-temps Indica la posició del cos respecte el sistema de referència a mesura que passa el

Más detalles

j Unitat 6. Rectes en el pla

j Unitat 6. Rectes en el pla MATEMÀTIQUES 9 4. Calcula a a sabent que a b, b b 4 i que l angle que formen els vectors a i b mesura 0º. b b 4 b 4 b a b a b cos a a cos 0º a cos 0º a a a 9. Els punts A(, ), B(, ) i C(, ) són tres vèrtexs

Más detalles

TEMA 1: Trigonometria

TEMA 1: Trigonometria TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES

Más detalles

Aquesta eina es treballa des de la banda de pestanyes Inserció, dins la barra d eines Il lustracions.

Aquesta eina es treballa des de la banda de pestanyes Inserció, dins la barra d eines Il lustracions. UNITAT ART AMB WORD 4 SmartArt Els gràfics SmartArt són elements gràfics que permeten comunicar informació visualment de forma molt clara. Inclouen diferents tipus de diagrames de processos, organigrames,

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a

Más detalles

Semblança. Teorema de Tales

Semblança. Teorema de Tales Semblança. Teorema de Tales Dos polígons són semblants si el angles corresponents són iguals i els costats corresponents són proporcionals. ABCDE A'B'C'D'E' si: Â = Â',Bˆ = Bˆ', Ĉ = Ĉ', Dˆ = Dˆ', Ê = Ê'

Más detalles

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base

Más detalles

TEMA 1: Divisibilitat. Teoria

TEMA 1: Divisibilitat. Teoria TEMA 1: Divisibilitat Teoria 1.0 Repàs de nombres naturals. Jerarquia de les operacions Quan en una expressió apareixen operacions combinades, l ordre en què les hem de fer és el següent: 1. Les operacions

Más detalles

UNITAT DONAR FORMAT A UNA PRESENTACIÓ

UNITAT DONAR FORMAT A UNA PRESENTACIÓ UNITAT DONAR FORMAT A UNA PRESENTACIÓ 4 Plantilles de disseny Una plantilla de disseny és un model de presentació que conté un conjunt d estils. Aquests estils defineixen tota l aparença de la presentació,

Más detalles

ABCÇDEFGHIJKLMNOPQRSTUVWXYZ abcçdefghijklmnopqrstuvwxyz (.,:;?! '-*) àéèïíóòúü

ABCÇDEFGHIJKLMNOPQRSTUVWXYZ abcçdefghijklmnopqrstuvwxyz (.,:;?! '-*) àéèïíóòúü Tipografia La tipografia, en totes les seves variants, és la tipografia corporativa de la Generalitat. Això vol dir que les identificacions de la Generalitat, el conjunt del senyal i del logotip, només

Más detalles

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples:

Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: 2 PROGRESSIONS 9.1 Progressions aritmètiques Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: La successió

Más detalles

PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA

PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA Nom i cognoms DNI / NIE PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA COMPETÈNCIA LOGICOMATEMÀTICA 1. Està prohibit l ús de la calculadora o de qualsevol altre aparell

Más detalles

TEMA 2: Múltiples i Divisors. Activitats. 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per 3 ens doni 25

TEMA 2: Múltiples i Divisors. Activitats. 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per 3 ens doni 25 TEMA 2: Múltiples i Divisors Activitats Concepte de múltiple 6 és múltiple de 2 perquè 2 3 = 6 24 és múltiple de 8 perquè 8 3 = 24 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per

Más detalles

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010

Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Prova d accés a Cicles formatius de grau superior de formació professional, Ensenyaments d esports i Ensenyaments d arts plàstiques i disseny 2010 Matemàtiques Sèrie 1 Dades de la persona aspirant Qualificació

Más detalles

3.1 LA SOLUBILITAT. K ps [ions] reacció desplaçada a l esquerra

3.1 LA SOLUBILITAT. K ps [ions] reacció desplaçada a l esquerra 3.1 LA SOLUBILITAT La solubilitat d una substància és la concentració de la dissolució saturada a una temperatura determinada. Es tracta d una propietat característica que s acostuma a expressar com la

Más detalles

RONDO 3 X 1 AMB RECOLZAMENT (4 JUGADORS)

RONDO 3 X 1 AMB RECOLZAMENT (4 JUGADORS) RONDO 3 X 1 AMB RECOLZAMENT (4 JUGADORS) Es forma un quadre on es juga un 3 x 1. Els posseïdors de la pilota tenen un espai cadascú i poden jugar a 2 tocs. El jugador que té pilota sempre ha de tenir el

Más detalles

TEMA 2: Múltiples i Divisors

TEMA 2: Múltiples i Divisors TEMA 2: Múltiples i Divisors 4tESO CB Concepte de múltiple 6 és múltiple de 2 perquè 2 3 = 6 24 és múltiple de 8 perquè 8 3 = 24 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per 3

Más detalles

CONSULTA DE L ESTAT DE FACTURES

CONSULTA DE L ESTAT DE FACTURES CONSULTA DE L ESTAT DE FACTURES Versió 1 Març 2016 1. Consulta de les factures... 3 2.1. Identificació al sistema... 3 2.2. Tipus de consulta que es poden realitzar... 4 2.2.1. Consulta d una única factura....

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.

Más detalles

avaluació diagnòstica educació secundària obligatòria

avaluació diagnòstica educació secundària obligatòria curs 2011-2012 avaluació diagnòstica educació secundària obligatòria competència matemàtica Nom i cognoms Grup INSTRUCCIONS Llegeix atentament cada pregunta abans de contestar-la. Si t equivoques, ratlla

Más detalles

z 2 4z + 5 = 0, z = x + iy, i 1,

z 2 4z + 5 = 0, z = x + iy, i 1, Àlgebra i Geometria I Tema I NOMBRES COMPLEXOS 1- Necessitat dels nombres complexos i definició (a) Les solucions de les equacions polinòmiques El nombre imaginari i 1 Els enters Z, els racionals Q i els

Más detalles

Prova d accés a la Universitat (2009) Física. Solucions. Model 2 O P C I Ó A. R L + h. 1 kg 1 kg 1 m 2 = 6.7 ä N

Prova d accés a la Universitat (2009) Física. Solucions. Model 2 O P C I Ó A. R L + h. 1 kg 1 kg 1 m 2 = 6.7 ä N Prova d accés a la Universitat (2009) Física Solucions Model 2 O P C I Ó A Pregunta 1 v = 540 km h = 150 m s ; v 2 2 - G M L R L 0 - G M L R L + h Dóna h = 6921 m amb G = 6.7 10-11 N m 2 kg -2 i h = 6952

Más detalles

Foto: El teorema de Tales a la ciutat de París, Autora: Tamara Victoria Fernández

Foto: El teorema de Tales a la ciutat de París, Autora: Tamara Victoria Fernández Foto: El teorema de Tales a la ciutat de París, Autora: Tamara Victoria Fernández Matemàtiques 1r ESO T. tales 1 Matemàtiques 1r ESO T. tales 2 Teorema de Tales A.1 Utilitzant tota la plana apaïsada d

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 2011 Matemàtiques Sèrie 1 Dades de la persona

Más detalles

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES Pàgina 8. Encara que el mètode per a resoldre les preguntes següents se sistematitza a la pàgina següent, pots resoldre-les ara: a) Quants radiants corresponen als

Más detalles

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL

ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX 3 COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT DE CÀLCUL Francesc Sala, primera edició, abril de 1996 última revisió, desembre de 2007 ÍNDEX 1 DEFINICIÓ 2 PER A QUÈ SERVEIX COM ES REPRESENTA 4 PRIMER CONCEPTE 5 ESCALA DE REDUCCIÓ I ESCALA D AMPLIACIÓ 6 PROCEDIMENT

Más detalles

Activitats de repàs DIVISIBILITAT

Activitats de repàs DIVISIBILITAT Autor: Enric Seguró i Capa 1 CRITERIS DE DIVISIBILITAT Un nombre és divisible per 2 si acaba en 0 o parell (2,4,6,8). Ex: 10, 24, 62, 5.256, 90.070,... Un nombre és divisible per 3 si la suma de les seves

Más detalles

Veure que tot nombre cub s obté com a suma de senars consecutius.

Veure que tot nombre cub s obté com a suma de senars consecutius. Mòdul Cubs i nombres senars Edat mínima recomanada A partir de 1er d ESO, tot i que alguns conceptes relacionats amb el mòdul es poden introduir al cicle superior de primària. Descripció del material 15

Más detalles

CARTES DE FRACCIONS. Materials pel Taller de Matemàtiques

CARTES DE FRACCIONS. Materials pel Taller de Matemàtiques CARTES DE FRACCIONS Aquesta proposta és adequada pel primer cicle d ESO perquè permet recordar mitjançant un joc, una sèrie de conceptes que ja s han treballat a l Educació Primària. Per això resulta una

Más detalles

FUNCIONS REALS. MATEMÀTIQUES-1

FUNCIONS REALS. MATEMÀTIQUES-1 FUNCIONS REALS. 1. El concepte de funció. 2. Domini i recorregut d una funció. 3. Característiques generals d una funció. 4. Funcions definides a intervals. 5. Operacions amb funcions. 6. Les successions

Más detalles

= T. Si el període s expressa en segons, s obtindrà la freqüència en hertz (Hz). 2) Fem servir la relació entre el període i la freqüència i resolem:

= T. Si el període s expressa en segons, s obtindrà la freqüència en hertz (Hz). 2) Fem servir la relació entre el període i la freqüència i resolem: Període i freqüència Per resoldre aquests problemes utilitzarem la relació entre el període T (temps necessari perquè l ona realitzi una oscil lació completa) i la freqüència (nombre d oscil lacions completes

Más detalles

Segon principi de la termodinàmica

Segon principi de la termodinàmica Segon principi de la termodinàmica El segon principi de la termodinàmica s introdueix a fi de poder preveure la direccionalitat i espontaneïtat d una reacció química. El segon principi de la termodinàmica

Más detalles

Novetats de la Grossa

Novetats de la Grossa Novetats de la Grossa Octubre 2016 Novetats de la Grossa Després de tres anys, la Grossa s ha consolidat com el sorteig típic de les festes de Nadal a Catalunya i avui ja és una loteria de país, que crea

Más detalles

Oficina d'organització de Proves d'accés a la Universitat Pàgina 1 de 8 PAU 2004

Oficina d'organització de Proves d'accés a la Universitat Pàgina 1 de 8 PAU 2004 Oficina d'organització de Proves d'accés a la Universitat Pàgina de 8 PAU 004 SÈRIE 3 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals (ara bé, dins de cada pregunta podeu utilitzar

Más detalles

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ

GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ 1.2. CLASSIFICACIÓ GEOMETRIA PLANA 1. ELS ANGLES 1.1. DEFINICIÓ Representem un punt A en un pla i tracem dues semirectes amb origen en aquest punt. El punt A serà el vèrtex de l angle i cada semirecta serà el costat. 1..

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 1 SÈRIE 3 1.- Digueu per a quin valor del paràmetre m els plans π 1 : x y +mz = 1, π 2 : x y +z = m, π 3 : my +2z = 3, tenen com a

Más detalles

FITXA 1: Angles rectes, aguts i obtusos

FITXA 1: Angles rectes, aguts i obtusos FITXA 1: Angles rectes, aguts i obtusos A.1. OBSERVA AQUESTA FIGURA I FES EL QUE S INDICA: Pinta n de blau els costats. Assenyala n de vermell el vèrtex. Pinta n de groc l obertura. A.2. DIBUIXA EL QUE

Más detalles

UPF, Curs Trimestre 1 Probabilitat i Estadística, Examen Primer Trimestre, Probabilitat

UPF, Curs Trimestre 1 Probabilitat i Estadística, Examen Primer Trimestre, Probabilitat UPF, Curs 2015-16 Trimestre 1 Probabilitat i Estadística, Examen Primer Trimestre, Probabilitat Professors: Albert Satorra, Christian Brownlees, Mireia Besalú Nom i Cognoms: DNI: Grup: Signeu aquí 1. Ompliu

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 7 PAU 2015 Criteris de correcció Matemàtiques aplicades a les ciències socials

Oficina d Accés a la Universitat Pàgina 1 de 7 PAU 2015 Criteris de correcció Matemàtiques aplicades a les ciències socials Oficina d Accés a la Universitat Pàgina 1 de 7 PAU 015 SÈRIE 1. Un arbre té un volum de 0 m i, per la qualitat de la seva fusta, es ven a 50 per metre cúbic. Cada any l'arbre augmenta el volum en 5 m.

Más detalles

5.2. Si un centre pren aquesta decisió, serà d aplicació a tots els estudiants matriculats a l ensenyament pel qual es pren l acord.

5.2. Si un centre pren aquesta decisió, serà d aplicació a tots els estudiants matriculats a l ensenyament pel qual es pren l acord. MODELS DE MATRÍCULA EN ELS ENSENYAMENTS OFICIALS DE GRAU I MÀSTER UNIVERSITARI (aprovada per la CACG en data 21 de desembre de 2009 i per Consell de Govern de 25 de maig de 2010, i modificada per la CACG

Más detalles

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35

DIVISIBILITAT. Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 5 35 ESO Divisibilitat 1 ESO Divisibilitat 2 A. El significat de les paraules. DIVISIBILITAT Amb els nombres 5, 7 i 35 podem escriure diverses expressions matemàtiques: 5x7= 35 35 = 7 5 35 = 5 7 35 7 0 5 35

Más detalles

ELS EXPERIMENTS I LES LLEIS DE. Noor Benghanou Kouiyed MENDEL

ELS EXPERIMENTS I LES LLEIS DE. Noor Benghanou Kouiyed MENDEL ELS EXPERIMENTS I LES LLEIS DE Noor Benghanou Kouiyed MENDEL L ÈPOCA ANTERIOR A MENDEL Es creia en la teoria genètica de la mescla. En que els descendents presentaven les característiques intermèdies dels

Más detalles

Pronoms febles. Quan va introduït per un article: el, la, els, les, un, una, uns, unes

Pronoms febles. Quan va introduït per un article: el, la, els, les, un, una, uns, unes Pronoms febles El pronom feble és un element gramatical amb què substituïm un complement del verb: complement directe, indirecte, preposicional, predicatiu, atribut o complement circumstancial. Hi ha alguns

Más detalles

2.1 ELS POTENCIALS ESTÀNDARDS DE REDUCCIÓ

2.1 ELS POTENCIALS ESTÀNDARDS DE REDUCCIÓ 2.1 ELS POTENCIALS ESTÀNDARDS DE REDUCCIÓ Es construeix una pila amb els elèctrodes següents: un elèctrode de zinc en una solució de sulfat de zinc i un elèctrode de coure en una solució de sulfat de coure.

Más detalles

2. FUNCIONS MATEMÀTIQUES, TRIGO- NOMÈTRIQUES I ESTADÍSTIQUES

2. FUNCIONS MATEMÀTIQUES, TRIGO- NOMÈTRIQUES I ESTADÍSTIQUES 1 2. FUNCIONS MATEMÀTIQUES, TRIGO- NOMÈTRIQUES I ESTADÍSTIQUES Les funcions matemàtiques permeten realitzar càlculs d aquest tipus sobre cel les i sobre intervals de valors, retornant sempre valors numèrics.

Más detalles

La Lluna, el nostre satèl lit

La Lluna, el nostre satèl lit F I T X A 3 La Lluna, el nostre satèl lit El divendres 20 de març tens l oportunitat d observar un fenomen molt poc freqüent: un eclipsi de Sol. Cap a les nou del matí, veuràs com la Lluna va situant-se

Más detalles

Quadern de matemàtiques Decimals1

Quadern de matemàtiques Decimals1 Quadern de matemàtiques Decimals CENTENES DESENES UNITATS DECIMES CENTÈSIMES 3,5 Busca les vuit diferències que hi ha en aquests dos dibuixos Curs i grup: Data inici quadern Data acabament Seguiment Data

Más detalles

avaluació diagnòstica educació secundària obligatòria

avaluació diagnòstica educació secundària obligatòria curs 2011-2012 avaluació diagnòstica educació secundària obligatòria competència matemàtica * Nom i cognoms Grup INSTRUCCIONS Llegeix atentament cada pregunta abans de contestar-la. Si t equivoques, ratlla

Más detalles