Cálculo de Campo Eléctrico Crítico de Rompimiento con Electrodo Flotado

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo de Campo Eléctrico Crítico de Rompimiento con Electrodo Flotado"

Transcripción

1 Cálculo de Campo Eléctrico Crítico de Rompimiento con Electrodo Flotado Pedro J. Elizarraraz Rivera Instituto Tecnológico Superior de Irapuato PJER

2 INTRODUCCIÓN Campo Eléctrico: Relación entre la Fuerza que ejercen dos partículas con carga eléctrica y dicha carga. Cantidad Vectorial Electrodo: Superficie conductora que se somete a un potencial eléctrico Rompimiento Trayectoria de corriente eléctrica que ocurre cuando el aislante entre dos electrodos se rompe. p.e. Un rayo. PJER

3 CONTENIDO MOTIVACIÓN MODELACIÓN FÍSICA 1 NODAL SOLUTION STEP=1 SUB =1 TIME=1 /EXPANDED EFSUM (AVG) RSYS=0 SMN =.183E-09 SMX =.958E+07 A= SIMULACIÓN MX C=.266E+07 E=.479E+07 G=.692E+07 I=.905E+07 B=.160E+07 D=.373E+07 F=.585E+07 H=.798E+07 NOV :10:32 RESULTADOS MODELACIÓN MATEMÁTICA CONCLUSIONES ε 2 v = ρ PJER

4 MOTIVACIÓN Líneas de Transmisión de Alta Capacidad: Líneas con Múltiples Circuitos que Transportan Grandes Cantidades de Energía, Surgen ante la Explosión de la Demanda de Energía Eléctrica Trabajo en Línea Viva: Todo Trabajo de Mantenimiento en Las Líneas de Alta Capacidad se debe Hacer sin la Desconexión de estas del Sistema de Potencia Trabajo de Alto Riesgo! PJER

5 MOTIVACIÓN Distancias de Seguridad Es Necesario Conocer Las Zonas en que el Personal Puede Laborar de Manera Segura PJER

6 MODELACIÓN FÍSICA Objetos Flotados : En el Trabajo en Línea Viva se Introducen Objetos Extraños en las Proximidades de Conductores Energizados Por Seguridad se Consideran las Peores Situaciones Posibles Durante el Trabajo en Línea Viva! PJER

7 MODELACIÓN FÍSICA Situaciones Críticas : Se Han Estudiado Las Condiciones Críticas que se Pueden Presentar Durante el Trabajo en Línea Viva [1]: Presencia de Sobretensiones de Maniobra La Tensión de CA Presente no es Significativa El Objeto Extraño es de Gran Tamaño y esta Alineado con la Línea que presenta la Sobretensión de Maniobra El Objeto es un Conductor Las Sobretensiones de Maniobra se Presentan Cuando se Opera un Interruptor de Potencia en Alguna Parte del Sistema de Potencia, Esto se Hace de Manera Remota por Necesidades de Energía! [1] B. Hutzler. Switching impulse strength of air gaps containing a metallic body at floating potential. 5ª ISH, Braunschweig, PJER

8 MODELACIÓN FÍSICA Modelo Físico Tensión de Impulso Descarga Referencia Se Inyectan Tensiones de Impulso al Electrodo Hasta Lograr el Rompimiento, se Guarda la Tensión de Rompimiento y la Distancia PJER

9 MODELACIÓN FÍSICA Dependencia del Medio Las Tensiones de Ruptura Varían con el Medio Tensión de Ruptura [kv] Condiciones Normalizadas 400 Gran Altitud (1710 msnm) Calculados 200 Altitud! d1[m] La Variación se Toma en Cuenta Mediante Modelos de Corrección para la Tensión de Ruptura, Obtenidos Experimentalmente V = f ( V Condiciones Atmosféricas) 0, PJER

10 MODELACIÓN FÍSICA Mecanismo de Rompimiento Líder Ionización Avalanchas Streamer Chispa a) Cátodo Ánodo ph ph ph - ph ph ph ph ph - + b) + c) d) Arco a) Los Electrones Libres son Absorbidos por el Anodo, Se Producen Fotones por los Choques, estos son Absorbidos por los Atomos del Gas b) Los Fotones Produces una Segunda Generación de Avalanchas c) El Campo se Distorsiona por los Efectos Locales de las Avalanchas y se Forman Avalanchas en Diferentes Rutas d) La Propagación Continúa hasta Lograr la Descarga Completa El Mecanismo es el Mismo Tanto Para Campos Uniformes y Aquellos Producidos por Tensiones de Impulso! PJER

11 MODELACIÓN MATEMÁTICA Aproximación Electrostática Dado que el Mecanismo de Rompimiento es el Mismo, es Preferible Trabajar el Campo Eléctrico Estático Modelo Matemático Primera Ecuación de Maxwell ( ε V ) + V = ρv Solución Numérica Método del Elemento Finito Método del Elemento en la Frontera de Carga PJER

12 MODELACIÓN MATEMÁTICA Solución Numérica ( ε V ) + V = ρv Método del Elemento Finito Campo de Potencial V E = V PJER

13 MODELACIÓN MATEMÁTICA Variación con la Altitud Se Puede Escribir: ( ε E) + V = ρv Si al Inicio del Experimento se Descarga todo el Equipo El Único Parámetro es la Permitividad Relativa del Aire! PJER

14 Problema de Dominio Abierto Se Requiere de una Frontera Virtual Condiciones de Frontera Tensión Conocida, de Ruptura Experimental El Campo Eléctrico no Esta Confinado SIMULACIÓN Tensión Conocida, de Referencia = 0 Campo Normal Densidad de Carga = 0 PJER

15 SIMULACIÓN Mallado 1 ELEMENTS /EXPANDED TYPE NUM NOV :59:55 Mallado Libre con Plane110 Refinamiento Local Y Z X Elemento de Superficie Infinita Infini110 Mallado Mapeado PJER

16 SIMULACIÓN Solución Típica 1 NODAL SOLUTION STEP=1 SUB =1 TIME=1 /EXPANDED EFSUM (AVG) RSYS=0 SMN =.183E-09 SMX =.958E+07 NOV :10:32 A= MX NODAL SOLUTION STEP=1 SUB =1 TIME=1 /EXPANDED EFSUM (AVG) RSYS=0 SMN =.114E-08 SMX =.917E+07 B=.160E+07 C=.266E+07 D=.373E+07 E=.479E+07 F=.585E+07 G=.692E+07 H=.798E+07 I=.905E+07 NOV :29:46 Magnitud de Campo Eléctrico A= B=.153E+07 C=.255E+07 D=.356E+07 E=.458E+07 F=.560E+07 G=.662E+07 H=.764E+07 I=.866E+07 PJER

17 SIMULACIÓN Solución Típica 1 VECTOR NOV :35:25 STEP=1 SUB =1 TIME=1 /EXPANDED EF ELEM=3794 MIN=.640E-09 MAX=.722E+07 A= C=.241E+07 B=.160E+07 E=.401E+07 D=.321E+07 Vectores de Campo Eléctrico G=.561E+07 F=.481E+07 I=.722E+07 H=.641E+07 PJER

18 RESULTADOS Casos de Rompimiento Tensión de Ruptura [kv] Condiciones Normalizadas Gran Altitud (1710 msnm) Calculados d1[m] El Campo Es el Mismo Para Todos los Casos de Rompimiento? PJER

19 RESULTADOS Cortes a la Solución de Campo 0.45 m 0.5 m 0.1 m 2.0 m d1 5.0 m 0.45 m 0.5 m 0.1 m 0.01 m 0.25 m 0.5 m 2.0 m 4.0 m PJER

20 RESULTADOS 5.00E+03 Campo Eléctrico en el Eje del Electrodo 4.50E kv y 0.5 m Magnitud de Campo [kv/m] 4.00E E E E E E E kv y 1.0 m 984 kv y 1.5 m 1135 kv y 2.0 m 1216 kv y 2.5 m 5.00E E E E E E E E E+01 Distancia desde el plano de referencia [m] PJER

21 RESULTADOS 1.60E+03 Campo Eléctrico a 0.25 m del eje del electrodo Magnitud de Campo [kv/m] 1.40E E E E E E kv y 0.5 m 1135 kv y 1.0 m 984 kv y 1.5 m 1135 kv y 2.0 m 1216 kv y 2.5 m 2.00E E E E E E E E E+01 Distancia desde el plano de referencis [m] PJER

22 RESULTADOS 8.00E+04 Campo Eléctrico a 0.5 m del eje del electrodo Magnitud de Campo eléctrico [kv/m] 7.00E E E E E E kv y 0.5 m 1135 kv y 1.0 m 984 kv y 1.5 m 1135 kv y 2.0 m 1216 kv y 2.5 m 1.00E E E E E E E E E+01 Distancia desde el plano de referencia [m] PJER

23 RESULTADOS 1.60E+02 Campo Eléctrico a 2.0 m del eje del electrodo Magnitud de Campo Eléctrico [kv/m] 1.40E E E E E E kv y 0.5 m 1135 kv y 1.0 m 984 kv y 1.5 m 1135 kv y 2.0 m 1216 kv y 2.5 m 2.00E E E E E E E E E+01 Distancia desde el plano de referencia [m] PJER

24 RESULTADOS 1.80E+03 Campo Eléctrico a 4.0 m del eje del electrodo Magnitud de Campo [kv/m] 1.60E E E E E E E kv y 0.5 m 1135 kv y 1.0 m 984 kv y 1.5 m 1135 kv y 2.0 m 1216 kv y 2.5 m 2.00E E E E E E E E E+01 Distancia desde el plano de referencia [m] PJER

25 RESULTADOS Mismo Campo Se Encontró Evidencia Numérica de que Existe un Campo Único de Rompimiento Variación con la Altitud Simular Rompimiento en Condiciones de Gran Altitud: Variando Permitividad Relativa Hasta Lograr el Mismo Campo que se Obtuvo en Condiciones Normalizadas PJER

26 RESULTADOS Determinación Experimental de la Permitividad 5000 Campo Eléctrico en el Eje del Electrodo Magnitud de Campo Eléctrico [kv/m] Condiciones Normalizadas Cond. No Normalizadas, Permitividad Relativa = Cond. No Normalizadas, Permitividad Relativa = Cond. No Normalizadas, Permitividad Relativa = Cond. No Normalizadas, Permitividad Relativa = Cond. No Normalizadas, Permitividad Relativa = Distancia Desde el Plano de Referencia PJER

27 RESULTADOS 1.20E+03 Diferencias de Campo Eléctrico Diferencia Absoluta [kv/m] 1.00E E E E E+02 Entre Cond. Normalizadas y Campo Calculado con Permitividad Relativa = Entre Cond. Normalizadas y Campo Calculado con Permitividad Relativa = Entre Cond. Normalizadas y Campo Calculado con Permitividad Relativa = Entre Cond. Normalizadas y Campo Calculado con Permitividad Relativa = Entre Cond. Normalizadas y Campo Calculado con Permitividad Relativa = E Distancia Desde el Plano de Referencia [m] PJER

28 CONCLUSIONES Aproximación Analítica de la Permitividad Definiendo con ε 1+ χ = r χ e Polarización α: = e = N α ε 0 1 N α γ ε 0 ε ε 0 Nα = ε Para los gases χ << 1 e Electrónica (Orientación de la Nube de Electrones y el Núcleo de un Átomo con E) Iónica (Orientación del Dipolo Eléctrico en el Enlace Molecular con E) 0 Orientacional (Orientación del Conjunto de Moléculas con E ) α = α + α + α = α + α + e i o e i 2 μ 3kT PJER

29 Entonces: α = α( E,T ) En Condiciones Normalizadas χ econd.normalizadas CONCLUSIONES Cond.Normalizadas Bajo el Mismo Campo y a la Misma Temperatura En Condiciones No Normalizadas χ χ e = χ e Cond.No Normalizadas econd.no Normalizadas N N Cond.Normalizadas ε 0 0 Cond.No Normalizadas ε N N α α Cond.No Normalizadas Cond.Normalizadas Analítica: ! PJER

30 CONCLUSIONES Comparación Comparación de Campo Eléctrico en el Eje del Electrodo Magnitud de Campo Eléctrico [kv/m] Campo Crítico Condiciones Normalizadas Campo Crítico Cond. No Normalizadas, Corrigiendo Permitividad Campo Crítico Cond. No Normalizadas, Corrigiendo Tensión de Flameo E E E E E E E+01 Distancia Desde el Plano de Referencia [m] PJER

31 CONCLUSIONES Conclusiones El Estudio del Trabajo en Línea Viva es de Gran Importancia en un País en Vías de Desarrollo como México Debido a la Gran Variedad de Arreglos de Líneas de Transmisión, se Requiere de Modelos Simples para Estudiar el Trabajo en Línea Viva Los Modelos Deben Reflejar las Situaciones Críticas de Trabajo en Línea Viva (Sobretensiones de Maniobra) Las Pruebas a los Modelos, se Pueden Simular con Electrostática (Primera Ecuación de Maxwell) En las Condiciones de Prueba, el Único Parámetro de la Ecuación de Campo es ε r PJER

32 CONCLUSIONES Conclusiones Las Correcciones a la Tensión de Ruptura Antes Realizadas No Son Aplicables al Campo Eléctrico Existe Una Distribución de Campo Eléctrico Única en Condiciones de Descarga, para un Arreglo de Electrodo: el Campo Eléctrico Crítico La Variación de ε con la Altitud es Proporcional a la Variación en la Densidad de Moléculas Se puede Calcular ε r Directamente para un Lugar Siempre que se Conozca para Otro, Sí la Temperatura de Ambos Lugares Coincide. Sí No es Así se Requieren Mediciones de χ Contra T PJER

33 AGRADECIMIENTOS Laboratorio de Pruebas a Equipos y Materiales de la Comisión Federal de Electricidad Centro de Investigación en Matemáticas A. C. Grupo Servicios y Sistemas de Consultoría de México S.A. de C.V. PJER

34 Cálculo de Campo Eléctrico Crítico de Rompimiento con Electrodo Flotado Pedro J. Elizarraraz Rivera Instituto Tecnológico Superior de Irapuato PJER

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

Tema 7: Polarización. Índice

Tema 7: Polarización. Índice Tema 7: Polarización 1 Índice Introducción Vector polarización Vector desplazamiento Leyes constitutivas Energía en presencia de dieléctricos Fuerzas sobre dieléctricos 2 Introducción Conductores: poseen

Más detalles

ANEXO I.- PROCESOS FISICOS FUNDAMENTALES EN LA IONIZACIÓN Y RUPTURA DE GASES

ANEXO I.- PROCESOS FISICOS FUNDAMENTALES EN LA IONIZACIÓN Y RUPTURA DE GASES ANEXO I.- PROCESOS FISICOS FUNDAMENTALES EN LA IONIZACIÓN Y RUPTURA DE GASES En este anexo, se detallan algunos de los principales procesos físicos, que tienen lugar durante las descargas eléctricas en

Más detalles

Efecto del dieléctrico en un capacitor

Efecto del dieléctrico en un capacitor Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

EFECTO CORONA EN FILTROS Y GUÍAS DE ONDA EN SAT-COM

EFECTO CORONA EN FILTROS Y GUÍAS DE ONDA EN SAT-COM Especialidad de Ingeniería en Comunicaciones y Electrónica EFECTO CORONA EN FILTROS Y GUÍAS DE ONDA EN SAT-COM Dr. Primo Alberto Calva Chavarría AI-2012 CONTENIDO I. Introducción II. Ecuación de la descarga

Más detalles

Enlaces Primarios o fuertes Secundarios o débiles

Enlaces Primarios o fuertes Secundarios o débiles Capítulo III MET 2217 Tipos de enlaces atómicos y moleculares Enlaces Primarios o fuertes Secundarios o débiles Enlaces primarios Iónico Actúan fuerzas intermoleculares relativamente grandes, electrostáticas.

Más detalles

Métodos y Terapias 2.2 Interacción Partículas Cargadas

Métodos y Terapias 2.2 Interacción Partículas Cargadas Métodos y Terapias 2.2 Interacción Partículas Cargadas Materia Dr. Willy H. Gerber Instituto de Fisica Universidad Austral de Chile Valdivia, Chile Objetivos: Comprender como interactúan partículas cargadas

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo

Más detalles

El campo eléctrico y la materia

El campo eléctrico y la materia El campo eléctrico y la materia Tema 9 Curso 004-005 Electrostática y dieléctricos El átomo como un dipolo eléctrico Los dieléctricos como distribución de dipolos. El vector polarización P. Susceptibilidad

Más detalles

Materiales. Eléctricos. Materiales. Dielectricos

Materiales. Eléctricos. Materiales. Dielectricos Materiales Eléctricos Materiales Dielectricos Qué es un dieléctrico? Es un material usado para aislar componentes eléctricamente entre si y actuar como elemento capacitivo. Sirve como elemento físico separador

Más detalles

Modelado de Disolvente

Modelado de Disolvente Seminario Fuerzas Intermoleculares Modelado de Disolvente Presentado por: David Ignacio Ramírez Palma Instituto de Química, Universidad Nacional Autónoma de México Noviembre 2014. 1 Contenido - Concepto

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MANTENIMIENTO ÁREA INDUSTRIAL EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA Curso: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: ING. JORGE MONTAÑO PISFIL

Más detalles

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Coordinación de aislamiento I Parte.

Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. Tema: Coordinación de aislamiento I Parte. Tema: Coordinación de aislamiento I Parte. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Determinar y conocer la coordinación de aislamiento,

Más detalles

Las Ondas y la Luz. Las Ondas

Las Ondas y la Luz. Las Ondas Las Ondas Una onda consiste en la propagación de una perturbación física en un medio que puede ser material (aire, agua, tierra, etc) o inmaterial (vacío), según la cual existe transporte de energía, pero

Más detalles

DETERMINACIÓN DEL CAMPO ELECTROMAGNETICO ALREDEDOR DE UNA LÍNEA DE TRANSMISIÓN ÁEREA DE 230 kv

DETERMINACIÓN DEL CAMPO ELECTROMAGNETICO ALREDEDOR DE UNA LÍNEA DE TRANSMISIÓN ÁEREA DE 230 kv DETERMINACIÓN DEL CAMPO ELECTROMAGNETICO ALREDEDOR DE UNA LÍNEA DE TRANSMISIÓN ÁEREA DE 230 kv Ing. Rodmy Miranda Ordoñez RESUMEN: Las líneas aéreas de transmisión en 230 kv instaladas en el Sistema Interconectado

Más detalles

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición

Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición Ecuación de Arrhenius Teoría de las Colisiones Teoría del Estado de Transición Factores que Afectan la Velocidad de las Reacciones Químicas aa + bb Productos velocidad k [A] α [B] β Concentración Temperatura

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6)

ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6) ELECTRICIDAD Y MAGNETISMO FIZ 1300 FIS 1532 (6) Ricardo Ramírez Facultad de Física, Pontificia Universidad Católica, Chile 1er. Semestre 2008 Michael Faraday realizó el siguiente experimento. Construyó

Más detalles

4.3 Almacenamiento de energía eléctrica.

4.3 Almacenamiento de energía eléctrica. CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.

Más detalles

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico

FÍSICA II. PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico FÍSICA II PRÁCTICO 1 Cargas, Ley de Coulomb y Campo Eléctrico 1. Dos esferas conductoras sin carga con sus superficies en contacto están apoyadas sobre una tabla de madera bien aislada. Una barra cargada

Más detalles

ELECTRICIDAD Y MAGNETISMO

ELECTRICIDAD Y MAGNETISMO 26-9-2011 UNAM ELECTRICIDAD Y MAGNETISMO TEMA DOS ING. SANTIAGO GONZÁLEZ LÓPEZ CAPITULO DOS CAPACITORES Un capacitor es un elemento que almacena carga y capacitancia la propiedad que la determina cuanta

Más detalles

Documento No Controlado, Sin Valor

Documento No Controlado, Sin Valor TÉCNICO SUPERIOR UNIVERSITARIO EN ENERGÍAS RENOVABLES ÁREA CALIDAD Y AHORRO DE ENERGÍA EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS INDUSTRIALES ÁREA SISTEMAS DE GESTIÓN DE LA CALIDAD EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar

Más detalles

TEORÍA DE PUESTAS A TIERRA. Johny Montaña

TEORÍA DE PUESTAS A TIERRA. Johny Montaña TEORÍA DE PUESTAS A TIERRA Johny Montaña Barranquilla - Bogotá Colombia, 2011 CONTENIDO Prólogo... xi 1. Análisis de electrodos de puesta a tierra en baja frecuencia...1 Punto fuente de corriente, 3. Línea

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO

TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO TÉCNICO SUPERIOR UNIVERSITARIO EN MECATRÓNICA ÁREA AUTOMATIZACIÓN EN COMPETENCIAS PROFESIONALES ASIGNATURA DE ELECTRICIDAD Y MAGNETISMO 1. Competencias Plantear y solucionar problemas con base en los principios

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso Electricidad y Electrometría. P. resueltos Tema 3 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso Electricidad y Electrometría. P. resueltos Tema 3 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 3 1/27 Tema 3. Problemas resueltos 4. Un condensador de montaje superficial para placas de circuito impreso

Más detalles

Índice Currículum Universal Curso

Índice Currículum Universal Curso FÍSICA 12-16 años CinemÁtica. FUNDAMENTOS Estudio del movimiento Sistemas de referencia Desplazamiento Trayectoria «Rapidez» Velocidad Aceleración Tipos de movimiento Movimiento rectilíneo uniforme Definición

Más detalles

Instituto de Física Universidad de Guanajuato Agosto 2007

Instituto de Física Universidad de Guanajuato Agosto 2007 Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que

Más detalles

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES

Electrotecnia General Tema 4 TEMA 4 CONDENSADORES TEMA 4 CONDENSADORES 4.1. CONDENSADORES. CAPACIDAD Un sistema binario es el constituido por dos conductores próximos entre los cuales se producen fenómenos de influencia. Si la influencia es total, se

Más detalles

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión

INDICE Capitulo 1. Introducción: La Física y la Medición Capitulo 2. Vectores Capitulo 3. Movimiento de una Dimensión INDICE Capitulo 1. Introducción: La Física y la Medición 1 1.1. Estándares de longitud, masa tiempo 2 1.2. Densidad y masa atómica 5 1.3. Análisis dimensional 6 1.4. Conversión de unidades 8 1.5. Cálculos

Más detalles

Intensidad del campo eléctrico

Intensidad del campo eléctrico Intensidad del campo eléctrico Intensidad del campo eléctrico Para describir la interacción electrostática hay dos posibilidades, podemos describirla directamente, mediante la ley de Coulomb, o través

Más detalles

Hoja de Problemas 6. Moléculas y Sólidos.

Hoja de Problemas 6. Moléculas y Sólidos. Hoja de Problemas 6. Moléculas y Sólidos. Fundamentos de Física III. Grado en Física. Curso 2015/2016. Grupo 516. UAM. 13-04-2016 Problema 1 La separación de equilibrio de los iones de K + y Cl en el KCl

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Introducción a los circuitos eléctricos

Introducción a los circuitos eléctricos Introducción a los circuitos eléctricos La materia está compuesta por moléculas y éstas por átomos. Los átomos, a su vez, están formados por un núcleo y una corteza. El núcleo consta de partículas con

Más detalles

CAMPO MAGNÉTICO SOLENOIDE

CAMPO MAGNÉTICO SOLENOIDE No 7 LABORATORIO DE ELECTROMAGNETISMO MEDICIÓN DEL CAMPO MAGNÉTICO EN UN SOLENOIDE DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Medir el campo magnético

Más detalles

Plasmas e Interacciones Partículas -Superficies. Ingeniería de Superficies Departamento de Química Inorgánica Universidad de Sevilla

Plasmas e Interacciones Partículas -Superficies. Ingeniería de Superficies Departamento de Química Inorgánica Universidad de Sevilla Plasmas e Interacciones Partículas -Superficies Ingeniería de Superficies Departamento de Química Inorgánica Universidad de Sevilla Descargas eléctricas en gases Física de plasmas Estudio de los procesos

Más detalles

Ecuaciones de Maxwell y ondas electromagnéticas. Ondas Electromagnéticas

Ecuaciones de Maxwell y ondas electromagnéticas. Ondas Electromagnéticas Ecuaciones de Maxwell y ondas electromagnéticas Ondas Electromagnéticas Electricidad, Magnetismo y luz Una primera consecuencia fundamental de la corriente de desplazamiento es que los campos eléctricos

Más detalles

ACCIÓN DEL VIENTO EN LA ESTABILIDAD

ACCIÓN DEL VIENTO EN LA ESTABILIDAD ACCIÓN DEL VIENTO EN LA ESTABILIDAD DE LAS PAREDES DE ESTRUCTURAS CILÍNDRICAS DE PARED DELGADA C. Cortés Salas 1 y H. Sánchez Sánchez 2 1 Instituto Mexicano del Petróleo 2 Sección de Estudios de Posgrado

Más detalles

28.1. Los campos. Capítulo 28

28.1. Los campos. Capítulo 28 28 El campo eléctrico El 25 de agosto de 1989, doce años después de su lanzamiento, la nave espacial Voyager 2 pasó cerca del planeta Neptuno, a una distancia de 4.4 10 9 km. de la Tierra. Entre otros

Más detalles

donde n es un vector unitario normal al área a y dirigido según la regla de mano derecha, con respecto a la dirección de flujo de la corriente I.

donde n es un vector unitario normal al área a y dirigido según la regla de mano derecha, con respecto a la dirección de flujo de la corriente I. Magnetización. Antes se habló de un dipolo eléctrico una carga positiva +q y una carga negativa -q de igual magnitud separadas por una distancia d. Un dipolo magnético se forma cuando una corriente I circula

Más detalles

CONTENIDOS. Contenidos. Presentación. xiii

CONTENIDOS. Contenidos. Presentación. xiii CONTENIDOS Contenidos Presentación v xiii 1. Campo eléctrico y propiedades eléctricas de la materia 1 1.1. Introducción histórica............................... 2 1.2. Estructura interna de la materia.........................

Más detalles

La tensión critica disruptiva es aquel valor de voltaje aplicado que iguala la rigidez del aire y se representa por Vc.

La tensión critica disruptiva es aquel valor de voltaje aplicado que iguala la rigidez del aire y se representa por Vc. Tema: Efecto corona. Facultad de Ingeniería. Escuela de Eléctrica. Asignatura: Diseño de Líneas de Transmisión. I. OBJETIVOS. Determinar como afectan los parámetros de la línea al voltaje de operación

Más detalles

LÍNEAS DE TRANSMISIÓN

LÍNEAS DE TRANSMISIÓN LÍNEAS DE TRANSMISIÓN CÁLCULO ELÉCTRICO Ing. Carlos Huayllasco Montalva CONSTANTES FÍSICAS RESISTENCIA Los Fabricantes la especifican para corriente continua o frecuencia de 60 Hz En conductores no magnéticos

Más detalles

INDICE. XIII Prefacio. XV Al estudiante

INDICE. XIII Prefacio. XV Al estudiante INDICE Acerca de los autores XIII Prefacio XV Al estudiante XXV Parte 4 Electricidad y magnetismo 641 Capitulo 23 Campos eléctricos 23.1. Propiedades de las cargas eléctricas 642 23.2. Objetos de carga

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER

INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER INGRESO AL PROGRAMA DE DOCTORADO 2001 OBSERVATORIO PIERRE AUGER 1. Dado el circuito: 1 100 V + - 2 3 50 Ω + - 10 H + - a) Inicialmente se pasa el interruptor de la posición 1 a la posición 2 y se deja

Más detalles

Fuerzas Intermoleculares. Materia Condensada.

Fuerzas Intermoleculares. Materia Condensada. Fuerzas Intermoleculares. Materia Condensada. Contenidos Introducción. Tipos de fuerzas intermoleculares. Fuerzas ion-dipolo Fuerzas ion-dipolo inducido Fuerzas de van der Waals Enlace de hidrógeno Tipos

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

Selección y aplicación de motores eléctricos

Selección y aplicación de motores eléctricos Selección y aplicación de motores eléctricos Tomo 1 Motores eléctricos Accionamientos Construcción Potencia, calentamiento y refrigeración Ensayos Medio ambiente Sistema aislante Instalación y mantenimiento

Más detalles

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008

(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 (93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA

Más detalles

Interacciones Eléctricas La Ley de Coulomb

Interacciones Eléctricas La Ley de Coulomb Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos

Más detalles

ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: ÁREA/MÓDULO: CIENCIAS BÁSICAS PRERREQUISITOS/CORREQUISITOS: FÍSICA BÁSICA Y LABORATORIO VERSIÓN: UNO

ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: ÁREA/MÓDULO: CIENCIAS BÁSICAS PRERREQUISITOS/CORREQUISITOS: FÍSICA BÁSICA Y LABORATORIO VERSIÓN: UNO Página 1 de 6 PROGRAMA: INGENIERÍA DE TELECOMUNICACIONES PLAN DE ESTUDIOS: 4 ACTA DE CONSEJO DE FACULTAD/DEPTO./CENTRO: 68 1. DATOS GENERALES ASIGNATURA/MÓDULO/SEMINARIO: ELECTRICIDAD, MAGNETISMO Y LABORATORIO

Más detalles

Ecuación de Estado de un Gas Real

Ecuación de Estado de un Gas Real Clase 4 Ecuación de Estado de un Gas Real Hasta ahora hemos asumido gases ideales compuestos de partículas infinitesimales (p=0), y sin fuerzas de repulsión y atracción entre las partículas (F(r)=0). Bajo

Más detalles

TUTORIAL MATERIALES CONDUCTORES

TUTORIAL MATERIALES CONDUCTORES TUTORIAL MATERIALES CONDUCTORES Un conductor es una región del espacio en la que las cargas son libres de moverse bajo la influencia de un campo eléctrico. Ejemplos hay muchos, pero el ejemplo más clásico

Más detalles

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener

E x de E x y E y, cada una con sus correspondientes amplitud y fase. Cuando estas componentes oscilan sin mantener Física Experimental III 1 1. Objetivos EXPERIMENTO 7 POLARIZACIÓN DE LA LUZ Generar diferentes estados de polarización de un haz de luz, por diferentes métodos, y estudiar experimentalmente el comportamiento

Más detalles

INDICE Parte 4 Electricidad y magnetismo Campos eléctricos Propiedades de las cargas eléctricas Aislantes y conductores 711

INDICE Parte 4 Electricidad y magnetismo Campos eléctricos Propiedades de las cargas eléctricas Aislantes y conductores 711 INDICE Parte 4 Electricidad y magnetismo 707 23 Campos eléctricos 708 23.1. Propiedades de las cargas eléctricas 709 23.2 Aislantes y conductores 711 23.3 La ley de Coulomb 713 23.4. El Campo eléctrico

Más detalles

APUNTES DE FISICA Para Alumnos de las Carreras: Licenciatura en Biología Molecular

APUNTES DE FISICA Para Alumnos de las Carreras: Licenciatura en Biología Molecular http://www.unsl.edu.ar/~cornette APUNTES DE FISICA Para Alumnos de las Carreras: Licenciatura en Biología Molecular 1 Por qué estudiar Física? La Física se ocupa del estudio de las reglas básicas o leyes

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

Fundamentos de óptica fotorrefractiva

Fundamentos de óptica fotorrefractiva Fundamentos de óptica fotorrefractiva Prof. M.L. Calvo 11 y 12 de abril de 2011 ECUACIÓN DE ONDAS EN MEDIOS ANISÓTROPOS Y NO LINEALES El vector desplazamiento eléctrico cumple en estos medios: (, ) = ε

Más detalles

Actividad xx Determinación de resistividades Método de las cuatro puntas o método de Kelvin

Actividad xx Determinación de resistividades Método de las cuatro puntas o método de Kelvin ctividad xx Determinación de resistividades Método de las cuatro puntas o método de Kelvin Objetivo Determinación experimental de la resistividad (o conductividad) de diversas muestras en distintas geometrías.

Más detalles

INDICE 22. La carga eléctrica Resumen, preguntas, problemas 23. El campo eléctrico Resumen, preguntas, problemas Resumen, preguntas, problemas

INDICE 22. La carga eléctrica Resumen, preguntas, problemas 23. El campo eléctrico Resumen, preguntas, problemas Resumen, preguntas, problemas INDICE 22. La carga eléctrica 22-1. las propiedades de la materia con carga 646 22-2. la conservación y cuantización de la carga 652 22-3. la ley de Colulomb 654 22-4. las fuerzas en las que intervienen

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

TEMA 1 Técnicas básicas del análisis de los flujos

TEMA 1 Técnicas básicas del análisis de los flujos TEMA 1 Técnicas básicas del análisis de los flujos 1.1. Introducción: definición y magnitudes características FLUIDO: - no tienen forma definida - líquidos (volumen fijo) - gases (sin volumen definido,

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

FÍSICA Y QUÍMICA 3º de ESO

FÍSICA Y QUÍMICA 3º de ESO FÍSICA Y QUÍMICA 3º de ESO A) Contenidos (conceptos) UNIDAD 1: La medida. El método científico Fenómenos físicos. Física. Fenómenos químicos. Química. Magnitud física. Unidad de medida. Sistema Internacional

Más detalles

Andrés González Ingeniería Electrónica UNIVERSIDA DEL VALLE EXPERIMENTACION FISICA II

Andrés González  Ingeniería Electrónica UNIVERSIDA DEL VALLE EXPERIMENTACION FISICA II (Laboratorio 2) Andrés González http://ingenieros.sitio.net Ingeniería Electrónica UNIVERSIDA DEL VALLE EXPERIMENTACION FISICA II 2005 andresgz@gmail.com 5. ANALISIS Y CALCULOS 5.1 Líneas equipotenciales

Más detalles

INDICE Parte 1. Electricidad y Magnetismo Capítulo 2. Ley de Gauss Capítulo 3. Potencial Eléctrico

INDICE Parte 1. Electricidad y Magnetismo Capítulo 2. Ley de Gauss Capítulo 3. Potencial Eléctrico INDICE Parte 1. Electricidad y Magnetismo 1 Capítulo 1. Campos Eléctricos 2 1.1. Propiedades de las cargas eléctricas 3 1.2. Carga eléctrica de objetos mediante inducción 5 1.3. Ley de Coulomb 7 1.4. El

Más detalles

CONSULTA NACIONAL Distribución de ítems para la prueba nacional Convocatoria 2015 FÍSICA

CONSULTA NACIONAL Distribución de ítems para la prueba nacional Convocatoria 2015 FÍSICA MINISTERIO DE EDUCACIÓN PÚBLICA DIRECCIÓN DE GESTIÓN Y EVALUACIÓN DE LA CALIDAD Departamento de Evaluación Académica y Certificación CONSULTA NACIONAL Distribución de para la prueba nacional Convocatoria

Más detalles

El curso de Física II está proyectado para que, específicamente, los estudiantes puedan:

El curso de Física II está proyectado para que, específicamente, los estudiantes puedan: FISICA III OBJETIVOS: Objetivos generales: El objetivo general del curso es dotar a los alumnos de los aspectos básicos de la electricidad, el magnetismo y la óptica, poniendo énfasis tanto en la comprensión

Más detalles

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente... Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3

Más detalles

Unidad I: Electrostática.

Unidad I: Electrostática. Unidad I: Electrostática. I. Naturaleza eléctrica de la sustancia. En la electrostática se aborda el estudio de las propiedades estáticas de las cargas eléctricas. La palabra electricidad procede del griego

Más detalles

Física Currículum Universal

Física Currículum Universal Física Currículum Universal Índice de contenidos 12-14 años 2013-2014 Índice de contenidos 14-16 años 2013-2014 Física 12-14 años CINEMÁTICA. FUNDAMENTOS Estudio del movimiento Sistemas de referencia Desplazamiento

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si

DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si DETERMINACIÓN DE LA BANDA PROHIBIDA (BAND GAP) EN Si Travizano, Matías, Romano, Sebastián y Kamienkowski, Juan Laboratorio 5, Departamento de física, UBA- 00 Resumen En este trabajo se realizó la medición

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas.

Física Teórica 1 Guia 5 - Ondas 1 cuat Ondas electromagnéticas. Física Teórica 1 Guia 5 - Ondas 1 cuat. 2014 Ondas electromagnéticas. 1. (Análisis de las experiencias de Wiener) En 1890, Wiener realizó tres experiencias para demostrar la existencia de ondas electromagnéticas

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

Electromagnetismo con laboratorio

Electromagnetismo con laboratorio Universidad de Sonora División de Ciencia Exactas y Naturales Departamento de Física Licenciatura en Física Electromagnetismo con laboratorio Eje formativo: Requisitos: Básico Fluidos y fenómenos térmicos

Más detalles

6.3 Condensadores y dieléctricos.

6.3 Condensadores y dieléctricos. 6.3 Condensadores y dieléctricos. 6.3.1 CONCEPTO DE DIPOLO. MATERIALES DIELÉCTRICOS. Un material mal conductor o dieléctrico, no posee cargas libres, al contrario de un material conductor, como por ejemplo

Más detalles

CONTENIDOS MÍNIMOS DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO

CONTENIDOS MÍNIMOS DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO CONTENIDOS MÍNIMOS DEPARTAMENTO DE FÍSICA Y QUÍMICA CURSO 206-207.. CONTENIDOS MÍNIMOS: FÍSICA Y QUÍMICA 2º E.S.O. Según se recoge en la Orden ECD/489/206, de 26 de mayo, por la que se aprueba el currículo

Más detalles

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética.

Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética: fotones y luz. Leyes bá sicas de la Teoría Electromagnética. Teoría electromagnética. El electromagnetismo es una teoría de campos que estudia y unifica los fenómenos eléctricos

Más detalles

Efectos del Disolvente modelos implícitos. Esquer Rodríguez Raymundo Química Computacional

Efectos del Disolvente modelos implícitos. Esquer Rodríguez Raymundo Química Computacional Efectos del Disolvente modelos implícitos Esquer Rodríguez Raymundo Química Computacional 1 S Por qué es Importante? La mayor parte de la química y bioquímica tiene lugar en disolución, y el disolvente

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers.

Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Física II. El campo eléctrico. Presentación basada en el material contenido en: Serway, R. Physics for Scientists and Engineers. Saunders College Pub. 3rd edition. Forma vectiorial de un campo eléctrico

Más detalles

Radiación electromagnética

Radiación electromagnética Page 1 Radiación electromagnética Consideremos una partícula cargada en reposo respecto de un observador inercial, produciendo un campo eléctrico. Al moverse a cierta velocidad se observará un campo electromagnético.

Más detalles

Electrohidrodinámica con carga eléctrica en volumen: conceptos y aplicaciones

Electrohidrodinámica con carga eléctrica en volumen: conceptos y aplicaciones Electrohidrodinámica con carga eléctrica en volumen: conceptos y aplicaciones Avances en Física Aplicada a la Ingeniería Pedro A. Vázquez González Dpto. Física Aplicada III Universidad de Sevilla Índice

Más detalles

Interacción de la radiación con la materia

Interacción de la radiación con la materia Interacción de la radiación con la materia Fernando Mata Colodro Servicio de Radiofísica y Protección Radiológica. Hospital General Universitario Santa Lucía. Cartagena. RADIACION PARTICULAS FOTONES Colisiones

Más detalles

, Ind ice general. 1-1 Descripción general El modelo electromagnético Unidades en el SI y constantes universales 8 Resumen 10

, Ind ice general. 1-1 Descripción general El modelo electromagnético Unidades en el SI y constantes universales 8 Resumen 10 , Ind ice general CAPíTULO1 EL MODELO ELECTROMAGNÉTICO 2 1-1 Descripción general 2 1-2 El modelo electromagnético 4 1-3 Unidades en el SI y constantes universales 8 Resumen 10 CAPíTULO2 ANÁLISIS VECTORIAL

Más detalles

Capítulo 2: Fundamentos de la Bioimpedancia

Capítulo 2: Fundamentos de la Bioimpedancia Capítulo 2: Fundamentos de la Bioimpedancia La bioimpedancia está definida como la oposición de un conductor biológico al paso de una corriente alterna. El análisis de la bioimpedancia estudia el comportamiento

Más detalles

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica.

Anteriores. EL alumno comprende y aplica las leyes y principios fundamentales de la electricidad y el magnetismo y la termodinámica. INSTITUTO TECNOLÓGICO DE SALTILLO 1.- Nombre de la asignatura: Física II Carrera: Ingeniería Industrial Clave de la asignatura: INC - 0402 Horas teoría-horas práctica-créditos 4-2-10 2.- HISTORIA DEL PROGRAMA

Más detalles

Bloque 1. La descripción del movimiento y la fuerza... 14

Bloque 1. La descripción del movimiento y la fuerza... 14 Conoce tu libro 10 Bloque 1. La descripción del movimiento y la fuerza... 14 Entrada de bloque 14 Secuencia 1. El movimiento de los objetos 16 Marco de referencia y trayectoria; diferencia entre desplazamiento

Más detalles

INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas Capitulo 2. Elemento que Constituyen una Instalación Eléctrica

INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas Capitulo 2. Elemento que Constituyen una Instalación Eléctrica INDICE Capitulo 1. Introducción a las Instalaciones Eléctricas 1. Descripción 1 2. Objetivos de una instalación 1 2.1. Seguridad 2.2. Eficiencia 2.3. Economía 2.4. Flexibilidad 2.5. Accesibilidad 3. Clasificación

Más detalles

El campo magnético en los medios materiales. Tema 10 Electromagnetismo Grupo C

El campo magnético en los medios materiales. Tema 10 Electromagnetismo Grupo C El campo magnético en los medios materiales Tema 10 Electromagnetismo Grupo C El campo magnético y la materia El átomo como un dipolo magnético Imanación y corrientes de imanación Teorema de Àmpere para

Más detalles