Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid 2013"

Transcripción

1 Tema 2: Aálisis gráfico esadísico de relacioes Uiversidad Compluese de Madrid 2013

2 Aálisis gráfico descripivo de ua variable (I) Daos de series emporales: Evolució aual de la rea el Cosumo per cápia e EEUU Rea per cápia EEUU Cosumo per cápia EEUU c Los dos gráficos muesra ua clara edecia creciee comú durae los años 1959 hasa

3 Aálisis gráfico descripivo de ua variable (II) Rea per cápia e EEUU () Esadísicos pricipales, usado las observacioes para la variable '' (37 observacioes válidas) 0, , ,0001 8e-005 Esadísico para el corase de ormalidad: Chi-cuadrado(2) = 4,095 [0,1291] N( ,8) Media 13940, Mediaa 14099, Míimo 8604,3 Máximo 18803, Desviació ípica 3209,8 C.V. 0,23025 Asimería -0,17109 Exc. de curosis -1,1960 Desidad 6e-005 4e-005 2e Cuao más parecidas so la media la mediaa, más homogéea es la muesra. Como medidas de dispersió, además de la Desviació ípica (DT), se calcula el Coeficiee de Variació (C.V) como el raio ere la DT la 3 media (e valor absoluo). Ese coeficiee es adimesioal.

4 Aálisis gráfico descripivo de ua variable (III) Cosumo per cápia e EEUU (c) Esadísicos pricipales, usado las observacioes para la variable 'c' (37 observacioes válidas) 0, , , ,0001 Esadísico para el corase de ormalidad: Chi-cuadrado(2) = 3,725 [0,1553] c N( ,2) Media 11329, Mediaa 11481, Míimo 7274,9 Máximo 15203, Desviació ípica 2505,2 C.V. 0,22114 Asimería -0, Exc. de curosis -1,2195 Desidad 8e-005 6e-005 4e-005 2e c Los momeos de ercer cuaro orde so la asimería el exceso de curosis, sabiedo que la curosis de ua Normal es res. E esos daos, ha defeco de curosis. Se dibuja el hisograma de los daos free a la ormal se 4 calcula u esadísico para corasar ormalidad.

5 wage Aálisis gráfico descripivo de dos variables (IV) Daos de secció cruzada: Salario (wage) e dólares por hora e fució del ivel de educació del idividuo Y = 6,19 + 1,44X wage co respeco a educ (co ajuse míimo-cuadráico) Se represea el salario (wage) de 1472 idividuos co respeco a su educació (medida e 5 iveles). El ivel 1 es el de más baja educació el 5 el más alo. Obsérvese que para u mismo ivel de educació, ha varios idividuos co salarios mu diferees ,5 2 2,5 3 3,5 4 4,5 5 educ Se aprecia ua clara asociació posiiva ere salario educació, pero o esá clara ua relació lieal ere ambas variables 5

6 Aálisis gráfico descripivo de dos variables (V) Salario e dólares por hora Esadísicos pricipales, usado las observacioes para la variable 'wage' (1472 observacioes válidas) Media 11,051 Mediaa 10,127 Míimo 2,1910 Máximo 47,576 Desviació ípica 4,4505 C.V. 0,40274 Asimería 1,9534 Exc. de curosis 7,3180 Desidad 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Esadísico para el corase de ormalidad: Chi-cuadrado(2) = 713,391 [0,0000] wage wage N(11,051 4,4505) El hisograma de los daos de salarios muesra u elevado exceso de curosis (7,318), es decir, ua disribució mucho más apuada que la disribució ormal. El corase rechaza la hipóesis de ormalidad co oal coudecia. Aveces,ua variable e ivel o es ormal, pero sí e logarimos. El logarimo corae los valores uméricos grades expade los valores pequeños. Por ello, 6 esa rasformació iduce ormalidad.

7 Aálisis gráfico descripivo de dos variables (VI) Tablas cruzadas: oro isrumeo descripivo para seccioes cruzadas Tabulació cruzada de educ (filas) cora male (columas) [ 0][ 1] TOT. [ 1] [ 2] [ 3] [ 4] [ 5] TOTAL Supoga que además de la variable deeducació, se iclue iformació sobre el sexo del idividuo (male: 1 si es hombre, 0 si es mujer) La abla cruzada de la izquierda iforma que de u oal de 1472 idividuos 579 so mujeres 893 so hombres. Además iforma de cuáas mujeres hombres iee cada ivel de educació cosiderado (del 1 al 5) 7

8 Regresió lieal simple (I) U paso adicioal al aálisis gráfico /o descripivo de los daos es cosruir u modelo lieal que relacioe dos variables. El más secillo es el llamado modelo de regresió lieal simple, e dode ua variable de ierés (edógea) viee explicada por la evolució de ora llamada variable explicaiva (exógea). Ejemplo: la fució de Cosumo Keesiaa dode la variable edógea es el Cosumo (C) la variable explicaiva es la Rea (R). 8

9 Regresió lieal simple (II) Y = 463, + 0,779X Cosumo co respeco a Rea EEUU Se quiere esimar la fució de cosumo C R 0 1 Cosumo Cˆ ˆ ˆ R Rea dode b 0 b 1 so los parámeros de la regresió, ierpreados como el cosumo auóomo la propesió margial a cosumir, respecivamee. El error e es aleaorio cualquier variable diferee a la Rea que explique el Cosumo e ese momeo esará recogido e él. Si el modelo es lieal, ua esimació posible es ua reca llamada RECTA DE AJUSTE. La disacia ere cada puo de la ube lareca de ajuse es el residuo Se dibuja e el plao el par de valores de Cosumo Rea observados e cada año (NUBE DE PUNTOS REAL).

10 Regresió lieal simple (III) El residuo es medible, iee sigo la misma uidad de medida que el cosumo. Se calcula para cada isae de iempo, como la disacia ere el valor del cosumo observado C el valor de cosumo geerado o ajusado por el modelo C. Es decir: Los residuos se puede dibujar (e ese caso, a lo largo del iempo). Nóese que mieras que el error es o observable, el residuo se calcula. ˆ Cˆ ˆ C 10

11 Regresió lieal simple (IV) Gráfico emporal de los residuos de la regresió lieal simple del Cosumo co respeco a la Rea e érmios per cápia para EEUU residuo Residuos de la regresió (= c observada - esimada) El gráfico de la izquierda muesra la evolució emporal de los residuos resulaes (e alguos años posiivos, e oros cero e oros egaivos). Si el residuo es posiivo e ese año el Cosumo observado supera al esimado por la reca, luego el modelo ifraesima el verdadero valor del Cosumo. Si el residuo es cero, e ese año la reca ajusa perfecamee si es egaivo, el modelo sobresima el verdadero dao del Cosumo. 11

12 Regresió lieal simple (V) c esimada observada c observada esimada El gráfico de la izquierda muesra la evolució cojua del Cosumo observado del Cosumo ajusado ( o esimado) por el modelo (reca de ajuse). La disacia e cada año de la muesra es el residuo MCO El residuo iee la misma escala que el Cosumo Ese gráfico el de los residuos resulaes, ofrece la misma iformació. 12

13 Regresió lieal simple (VI) Objeivo: Esimar los parámeros de ua regresió simple de forma que se cumpla algú crierio de opimalidad. Si el crierio es miimizar la suma de los cuadrados de los residuos: 2 2 ˆ ˆ ˆ ˆ C C C 0 1R mi mi mi 2 Esimació por MCO (Míimos Cuadrados Ordiarios) 13

14 Regresió lieal simple (VII) 2 2 ˆ ˆ ˆ C 0 1R 1 1 mi mi ( ) Codicioes de primer orde: 1 ˆ 1 ˆ ˆ 0 ˆ ( C ˆ ˆ R ) ( C ˆ ˆ R ) R

15 Regresió lieal simple (VIII) Ese es u sisema de dos ecuacioes co dos icógias Resolviedo: C ˆ ˆ R 0 ˆ C ˆ R ˆb 0 ˆb 1 CR CR ( C C)( R R) ˆ R R ( R R) 1 1 dode C R so las medias muesrales de Cosumo Rea 15

16 Regresió lieal simple (IX) Recapiulado, dado siguiee el modelo lieal simple C = b + br + e 0 1 ua muesra de amaño de las variables C R la esimació puual por MCO de los dos parámeros se lleva a cabo esimado primero la pediee luego, la cosae: ˆ 1 1 ( C C)( R R) 1 ( R R) 2 ˆ C ˆ R

17 Regresió lieal simple (X) Relació de la esimació de la pediee co el coeficiee muesral de correlació lieal ere las dos variables: CR cov[ ˆ CR] var[ ˆ C ] var[ ˆ R ] ˆ 1 cov[ ˆ CR] var[ ˆ R ] 17

18 Regresió lieal simple (XI) Por ao: CR cov[ ˆ CR] var[ ˆ R ] var[ ˆ C ] var[ ˆ R ] var[ ˆ R ] ˆ var[ ˆ R ] ˆ se[ R ] CR 1 1 var[ ˆ C ] se[ C ] dode s e [ ] deoa la desviació ípica muesral de la variable. No so iguales, sio direcamee proporcioales iee el mismo sigo. El coeficiee de correlació es adimesioal esá acoado ere

19 Regresió lieal simple (XII) Coeficiee de correlació ere Cosumo Rea corr(c, ) = 0, Modelo: MCO, usado las observacioes (T = 37) Variable depediee: c Coeficiee Desv. Típica Esadísico Valor p cos 463,177 98,7912 4,688 4,10e-05 *** 0, , ,8 1,99e-046 *** Media de la vble. dep ,65 D.T. de la vble. dep. 2505,241 Suma de cuad. residuos ,4 D.T. de la regresió 133,0920 R-cuadrado 0, R-cuadrado corregido 0, F(1, 35) 12720,51 Valor p (de F) 1,99e-46 Log-verosimiliud -232,4412 Crierio de Akaike 468,8824 Crierio de Schwarz 472,1042 Cri. de Haa-Qui 470,0182 E la regresió lieal simple, el coeficiee de correlació lieal simple al cuadrado coicide co el R-cuadrado ( ) 19

20 Trasformació logarímica semilogarímica Modelo eórico Ierpreació maemáica Ierpreació cocepual x x Cambio esperado e cuado x aumea e ua uidad l l x % % x Elasicidad. Cambio porceual e cuado x aumea e u 1% x l l x % 100 x 100 % x Semielasicidad. Cambio porceual e cuado x aumea e 1 uidad Semielasicidad. Cambio e e uidades cuado x aumea e u 1%

21 Daa Se 1: Daos de Ascombe (I) Usado los daos de Ascombe dispoibles e los archivos de daos de muesra de Grel, se pide esimar por MCO las cuaro regresioes simples siguiees: x x x x

22 Daa Se 1: Daos de Ascombe (II) Y1 8 Y X1 14 X Y3 8 Y X1 X2

23 Tareas a realizar por el alumo (1) Esimar por MCO las cuaro regresioes lieales usado Grel. (2) Especificar esimar oras relacioes ere 2 x1 de forma que el ajuse de los daos mejore. Por ejemplo, pruebe a iroducir como regresores x1 su cuadrado, o bie, susiuir x1 por su logarimo eperiao. (3) Reesime la regresió de 3 sobre x1, elimiado el ercer par de valores de ambas variables. Cómo cambia los resulados? (4) Es posible esimar la regresió de 4 sobre x2, elimiado el ocavo par de valores de ambas variables? Calcule la variaza muesral de x2 la variaza de la pediee de la regresió.

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3

Propuesta A. 3. Se considera la función f(x) = t, si 3 x 3 (x 3) 2 si x>3 Pruebas de Acceso a Eseñazas Uiverarias Oiciales de Grado Maeria: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumo deberá coesar a ua de las dos opcioes propuesas A ób. Se podrá uilizar cualquier

Más detalles

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

03) Rapidez de Cambio. 0301) Cambio

03) Rapidez de Cambio. 0301) Cambio Págia 1 03) Rapidez de Cambio 0301) Cambio Desarrollado por el Profesor Rodrigo Vergara Rojas Págia 2 A) Iroducció Uo de los aspecos más desacables de la auraleza es su carácer variable. La Tierra y odos

Más detalles

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS

PRONÓSTICOS. Tema Nº 2 FACILITADOR LIC. ESP. MIGUEL OLIVEROS UNIVERSIDAD DE LOS ANDES FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES ESCUELA DE ADMINISTRACIÓN Y CONTADURÍA PUBLICA DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS ADMINISTRACIÓN DE LA PRODUCCIÓN Y LAS OPERACIONES

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

SISTEMAS, MATRICES Y DETERMINANTES

SISTEMAS, MATRICES Y DETERMINANTES .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a

Más detalles

Planificación contra stock. Presentación. Introducción

Planificación contra stock. Presentación. Introducción Plaificació cora sock 09.0.07 Preseació Fabricar cora sock? No iee que ser cero el iveario? Se vio e el capíulo de iroducció. Plaificar cora sock Ciclo de pedido y fabricació idepediees. Demada aual coocida.

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica?

Hacia dónde tienden los datos? Se agrupan en torno a un valor? o, se dispersan? Su distribución se parece a alguna distribución teórica? COMPORTAMIENTO DE LAS DISTRIBUCIONES DE FRECUENCIA: Preparadas las TABLAS DE FRECUENCIA de los valores de ua variable resulta iteresate describir su comportamieto. Hacia dóde tiede los datos? Se agrupa

Más detalles

2 Conceptos básicos y planteamiento

2 Conceptos básicos y planteamiento ESTADÍSTICA DESCRIPTIVA: DOS VARIABLES Juliá de la Horra Departameto de Matemáticas U.A.M. 1 Itroducció E muchos casos estaremos iteresados e hacer u estudio cojuto de varias características de ua població.

Más detalles

MS-1 Modelos de supervivencia Página 1 de 20

MS-1 Modelos de supervivencia Página 1 de 20 CURSO: - TEMA : Pricipales modelos de moralidad. Modelizació esocásica. Ley de De Moivre. Leyes de Dormoy y de Sag. Leyes de Gomperz y de Makeham. Oros modelos de moralidad. Esudiaremos aquí disios modelos

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

Patrones de datos y elección de técnica de pronóstico

Patrones de datos y elección de técnica de pronóstico Curso de Ecoomería de Series de Tiempo Faculad de Ecoomía Uiversidad Nacioal Auóoma de México Paroes de daos y elecció de écica de proósico * Maerial de apoyo para desarrollar el capíulo 3 de Hae, e. al.

Más detalles

6. Intervalos de confianza

6. Intervalos de confianza 6. Iervalos de cofiaa Curso 0-0 Esadísica Coceo de iervalo de cofiaa Se ha realiado ua ecuesa a 400 ersoas elegidas al aar ara esimar la roorció de voaes de u arido olíico.? Resulado Ecuesa Sí 0 ooros

Más detalles

REPASO DE ESTADÍSTICA

REPASO DE ESTADÍSTICA Aputes IN 56B; Profesor: Viviaa Ferádez I. Coceptos de Probabilidad A. Variables Discretas REPASO DE ESADÍSICA. E el mudo existe estados posibles (evetos), e algua fecha futura. Ejemplo: u eveto es el

Más detalles

SERIES DE TIEMPO AJUSTADAS CON MODELOS DE ESPACIO DE ESTADO. Errores de proyección. Adriana Fátima Panico de Bruguera.

SERIES DE TIEMPO AJUSTADAS CON MODELOS DE ESPACIO DE ESTADO. Errores de proyección. Adriana Fátima Panico de Bruguera. Ruig head: PROPAGACIÓN DE LOS ERRORES DE PROYECCIÓN DE LAS SERIES DE TIEMPO AJUSTADAS CON MODELOS DE ESPACIO DE ESTADO Errores de proecció Adriaa Fáima Paico de Bruguera apaico@herrera.u.edu.ar María Agélica

Más detalles

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y

CAPÍTULO 3 MARCO TEÓRICO. A lo largo de este capítulo se explican los conceptos básicos que se debieron tener y Capíulo 3 Marco eórico CAPÍTULO 3 MARCO TEÓRICO A lo largo de ese capíulo se explica los cocepos básicos que se debiero eer y cosiderar para la elaboració de la clasificació de maerias primas, los modelos

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad Ciéica Química Objeivos Esudiar la velocidad de las reaccioes químicas los facores de los cuales depede la velocidad los mecaismos a ravés de los cuales ocurre las reaccioes que se esudia plicacioes Síesis

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

UNIDAD IV. Qué es predicción en el modelo lineal?

UNIDAD IV. Qué es predicción en el modelo lineal? UNIDAD IV Qué es predicció e el modelo lieal? UNIDAD IV Qué es la predicció e el modelo lieal? La ecoomía es el esudio del modo e que la sociedad gesioa sus recursos escasos Gregory Makiw Qué es predicció

Más detalles

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN

SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN SESIÓN 8 DESCRIPCIONES DE UNA RELACIÓN I. CONTENIDOS: 1. Regresió lieal simple.. Iterpretació de gráficas de regresió. 3. Cálculo de coeficiete de correlació. 4. Iterpretació del coeficiete de correlació.

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez

Ejercicios de Econometría para el tema 4 Curso Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez Ejercicios de Economería para el ema 4 Curso 2005-06 Profesores Amparo Sancho Amparo Sancho Guadalupe Serrano Pedro Perez 1 1. Considérese el modelo siguiene: Y X + u * = α + β 0 Donde: Y* = gasos deseados

Más detalles

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN

TEMA 5: CAPITALIZACIÓN COMPUESTA 1.- INTRODUCCIÓN TEMA 5: CAPITALIZACIÓN COMPUESTA 1- INTRODUCCIÓN Llamamos capializació compuesa a la ley fiaciera segú la cual los iereses producidos por u capial e cada periodo se agrega al capial para calcular los iereses

Más detalles

CONTROL DE ASISTENCIA A EXAMEN

CONTROL DE ASISTENCIA A EXAMEN Uiversidad de Las Palmas de Gra Caaria Escuela Técica Superior de Igeieros de Telecomuicació Teoría de la Señal - Eame Covocaoria Ordiaria: 3 de febrero de 2009 CONTROL DE ASISTENCIA A EXAMEN La firma

Más detalles

Cómo medir la precisión de los pronósticos?

Cómo medir la precisión de los pronósticos? Cómo medir la precisió de los proósicos? Por Tomás Gálvez Maríez Presidee y Direcor de CELOGIS Educaio Parer de ENAE Busiess School A la fecha de la publicació de ese documeo used podrá ecorar, e la mayoría

Más detalles

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier

Series de Fourier. 1. Tratamiento Digital de Señal. Series de Fourier Series de Fourier. Traamieo Digial de Señal. Series de Fourier Series de Fourier. Preámbulo El aálisis de Fourier fue iroducido e 8 e la Théorie aalyiique de la chaleur para raar la solució de problemas

Más detalles

PyE_ EF2_TIPO1_

PyE_ EF2_TIPO1_ UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE PROBABILIDAD Y ESTADÍSTICA SEGUNDO EXAMEN FINAL RESOLUCIÓN

Más detalles

IntroducciónalaInferencia Estadística

IntroducciónalaInferencia Estadística Capítulo 6 ItroduccióalaIferecia Estadística 6.1. Itroducció El pricipal objetivo de la Estadística es iferir o estimar características de ua població que o es completamete observable (o o iteresa observarla

Más detalles

Figura 10. No se satisface el supuesto de linealidad.

Figura 10. No se satisface el supuesto de linealidad. Regresió Lieal Simple Dra. Diaa Kelmasky 04 Figura 8 Figura 9. No se satisface el supuesto de homoscedasticidad Si graficáramos los residuos cotra los valores de X los putos debería estar distribuidos

Más detalles

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 28 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco

EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 28 de Junio de :00 horas. Pregunta 19 A B C En Blanco. Pregunta 18 A B C En Blanco EXAMEN FINAL DE ECONOMETRIA, 3º CURSO (GRADOS EN ECO y ADE) 28 de Junio de 2013 12:00 horas Primer Apellido: Nombre: DNI: Teléfono: Segundo Apellido: Grupo y Grado: Profesor(a): e mail: Preguna 1 A B C

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

Tema 8B El análisis fundamental y la valoración de títulos

Tema 8B El análisis fundamental y la valoración de títulos PARTE III: Decisioes fiacieras y mercado de capiales Tema 8B El aálisis fudameal y la valoració de íulos 8B.1 Iroducció. 8B.2 El aálisis fudameal y la valoració de íulos. 8B.3 Modelos para la valoració

Más detalles

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática

República Bolivariana de Venezuela Universidad Nacional Abierta Vicerrectorado Académico Área de Matemática República Bolivariaa de Veezuela Uiversidad Nacioal Abierta Vicerrectorado Académico Área de Matemática Fórmulas y Tablas Cursos: 738, 745, 746 y 748 Prof. Gilberto Noguera Lista de Formulas N 1) µ = x

Más detalles

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema.

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema. CAPITULO PRONOSTICOS Hacer u proósico, es hacer u proceso de esimació de u acoecimieo fuuro, a parir de ua iformació de ipo hisórica, ormalmee de ipo maemáica, y/o de ipo referecial de apreciacioes, esimacioes

Más detalles

MINITAB y MODELOS DE REGRESIÓN

MINITAB y MODELOS DE REGRESIÓN Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor jpastor@um.es MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias

Más detalles

Qué es la estadística?

Qué es la estadística? Qué es la estadística? La estadística tiee que ver co la recopilació, presetació, aálisis y uso de datos para tomar decisioes y resolver problemas. Qué es la estadística? U agete recibe iformació e forma

Más detalles

Tema 2. Medidas descriptivas de los datos

Tema 2. Medidas descriptivas de los datos Tema 2. Medidas descriptivas de los datos Resume del tema 2.1. Medidas de posició So valores que os sirve para idicar la posició alrededor de la cual se distribuye las observacioes. 2.1.1. Mediaa La mediaa

Más detalles

LECCIÓN 10 DISPOSITIVOS EMISORES DE MICROONDAS (DISPOSITIVOS GUNN)

LECCIÓN 10 DISPOSITIVOS EMISORES DE MICROONDAS (DISPOSITIVOS GUNN) LIÓN 0 ISPOSITIVOS MISOS MIOONAS (ISPOSITIVOS GUNN) )INTOUIÓN Ya hemos viso e la lecció 6 u disposiivo PN (el diodo úel) co ua caracerísica I(V) que iee ua zoa de resisecia diferecial egaiva. icha zoa

Más detalles

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ

R-SQUARED RESID. MEAN SQUARE (MSE) σˆ 2 ADJUSTED R-SQUARED STANDARD DEVIATION σ ˆ 06 5.8 Leyedo la salida de u programa estadístico Cada programa estadístico preseta los resultados de la regresió e forma diferete, pero la mayoría provee la misma iformació básica. La tabla muestra la

Más detalles

Universidad Tecnológica Nacional Facultad Regional Rosario Cátedra de Ing. De las Reacciones

Universidad Tecnológica Nacional Facultad Regional Rosario Cátedra de Ing. De las Reacciones Uiversidad Tecológica Nacioal Faculad Regioal Rosario Cáedra de Ig. e las Reaccioes Trabajo pracico Nº 3: Flujo o ideal: isribució de iempos de residecia e u reacor flujo pisó AÑO 14 Ig. Roque Masciarelli

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 1999-.000 - CONVOCATORIA: SEPTIEMBRE MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de

Más detalles

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN

PLANEACIÓN Y CONTROL DE LA PRODUCCIÓN PLANEACIÓN Y CONTROL E LA PROUCCIÓN GRUPO: 0 M. I. Silvia Herádez García M. I. Susaa Casy Téllez Balleseros TEMARIO: I. Iroducció. II. Programació y corol de la producció. III. Balaceo de líea. IV. Sisemas

Más detalles

Soluciones Hoja de Ejercicios 2. Econometría I

Soluciones Hoja de Ejercicios 2. Econometría I Ecoometría I. Solucioes Hoja 2 Carlos Velasco. MEI UC3M. 2007/08 Solucioes Hoja de Ejercicios 2 Ecoometría I 1. Al pregutar el saldo Z (e miles de euros) de su cueta de ahorro cojuta a u matrimoio madrileño

Más detalles

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i

I.T. INDUSTRIAL METODOS ESTADÍSTICOS. FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a. Media x = n n i x 2 Varianza poblacional σ 2 i I.T. INDUSTRIAL METODOS ESTADÍSTICOS FORMULARIO I. ESTADISTICA DESCRIPTIVA Xv.a k modalidades x 1,x,..., x k ; datos i x i Media x = i x Variaza poblacioal σ i = x i (x i x) Variaza muestral S = 1 (x i

Más detalles

TRABAJO PRACTICO Nº 1

TRABAJO PRACTICO Nº 1 TRABAJO PRACTICO Nº 1 DEMANDA DE TRANSPORTE: ELASTICIDAD OFERTA DE TRANSPORTE: COSTOS AJUSTE DE FUNCIONES ANÁLISIS DE REGRESIÓN Objetivo: Aplicar a u caso práctico utilizado las herramietas básicas de

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

Aproximación FFF del Producto Interior Bruto de España utilizando funciones paramétricas.

Aproximación FFF del Producto Interior Bruto de España utilizando funciones paramétricas. Aproimació FFF del Produco Ierior Bruo de España 97-00 uilizado fucioes paraméricas. Fracisco Parra Rodríguez Docor Ecoomía UNED Jefe de Servicio de Esadísicas Ecoómicas y Sociodemográficas del Isiuo Caabro

Más detalles

Indicador de Confianza Empresarial de las Cámaras de Comercio ICE

Indicador de Confianza Empresarial de las Cámaras de Comercio ICE Indicador de Confianza Empresarial de las Cámaras de Comercio ICE Meodología de cálculo. Iroducción El Indicador de Confianza Empresarial ICE de las Cámaras se consruye a parir de las encuesas de coyuura

Más detalles

TODO ECONOMETRÍA. Autocorrelación

TODO ECONOMETRÍA. Autocorrelación TODO ECONOMETRÍA Auocorrelación Índice Definición Causas Consecuencias Deección Medidas correcivas Definición de la auocorrelación Definición de auocorrelación La perurbación de una observación cualquiera

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

TEMA 1. ESTADÍSTICA DESCRIPTIVA

TEMA 1. ESTADÍSTICA DESCRIPTIVA TEMA. ESTADÍSTICA DESCRIPTIVA. Itroducció: coceptos básicos. Tablas estadísticas y represetacioes gráficas. Características de variables estadísticas uidimesioales.. Características de posició.. Características

Más detalles

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5

c) la raíz cuadrada Primero tienes que teclear la raíz cuadrada y después el número. 25 = 5 Aexo Calculadora La proliferació de las calculadoras e la vida cotidiaa obliga a profesores y padres a replatearse su uso. Los profesores debemos eseñar a los alumos su utilizació. Pero será los profesores

Más detalles

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN

ACELERACIÓN UNIVERSIDAD DE CARABOBO FACULTAS DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA DPTO. DISEÑO MECÁNICO Y AUTOMATIZACIÓN FCULTS DE INGENIERÍ PÁGIN: 5-1 de 16 INTRODUCCIÓN El esudio de las aceleracioes e los mecaismos ariculados coplaares se puede abordar ya sea por méodos aalíicos o por méodos gráficos. Ese capíulo se deermiará

Más detalles

TEMA 8 OPERACIONES FINANCIERAS SIMPLES

TEMA 8 OPERACIONES FINANCIERAS SIMPLES Facula e.ee. Dpo. e Ecoomía Fiaciera I Diaposiiva 1 Maemáica Fiaciera TEMA 8 OPERAIONES FINANIERAS SIMPLES 1. Plaeamieo geeral 2. Operacioes a coro y largo plazo 3. Valor fiaciero e la operació 4. Aplicacioes:

Más detalles

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción

SEÑALES Y SISTEMAS CAPÍTULO UNO. 1.1 Introducción CAPÍTULO UNO SEÑALES Y SISTEMAS. Iroducció Los cocepos de señales y sisemas surge e ua gra variedad de campos y las ideas y écicas asociadas co esos cocepos juega u papel imporae e áreas a diversas de

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Dadas las marices A y B idica, si es posible. A 0 0 4 B 5 0 a) Los elemeos a 4 y b 4 b) La dimesió de cada ua de ellas c) La mariz raspuesa de cada

Más detalles

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

MODELO JUNIO 2005 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II Modelo de eamen Junio MODELO JUNIO MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN. (Punuación máima: punos) Se dice que una mari cuadrada es orogonal si T I: Noa: La noación T significa mari ranspuesa de.

Más detalles

e i y i y i y i 0 1 x 1i 2 x 2i k x ki

e i y i y i y i 0 1 x 1i 2 x 2i k x ki Demostracioes de Rgresió múltiple El modelo que se platea e regresió múltiple es: y i 0 1 x 1i x i k x ki u i dode x 1, x,,x k so las variables idepedietes o explicativas. La variable respuesta depede

Más detalles

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo:

En el tema anterior se estudió que muchas decisiones se toman a partir de resultados muestrales. Por ejemplo: TEMA 6. Estimació putual. E muchos casos o será posible determiar el valor de u parámetro poblacioal descoocido, aalizado todos los valores poblacioales, pues el proceso a seguir puede ser destructivo,

Más detalles

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad

Universidad Carlos III de Madrid. 3.4 Sistemas LIT. SLIT: Sistemas Lineales e Invariantes con el Tiempo Linealidad Uiversidad Carlos III de Madrid 3.4 Sisemas LIT SLIT: Sisemas Lieales e Ivariaes co el Tiempo Liealidad Supogamos que la señal se puede expresar como ua combiació lieal de señales más simples ( x i ()

Más detalles

1 MEDIDAS DE MORTALIDAD GENERAL

1 MEDIDAS DE MORTALIDAD GENERAL MEDIDAS DE MORTALIDAD GENERAL El aálisis de la moralidad aborda el raamieo de la defució como acoecimieo demográfico. ero el úmero de mueres de ua població, la iformació básica que apora las esadísicas

Más detalles

Luis H. Villalpando Venegas,

Luis H. Villalpando Venegas, 2007 Luis H. Villalpando Venegas, [SIMULACIÓN DE PRECIOS DEL PETROLEO BRENT ] En ese rabajo se preende simular el precio del peróleo Bren, a ravés de un proceso esocásico con reversión a la media, con

Más detalles

TEMA 10. La autofinanciación o financiación interna de la empresa

TEMA 10. La autofinanciación o financiación interna de la empresa Iroducció a las Fiazas TEM La auofiaciació o fiaciació iera de la empresa La fiaciació iera y sus compoees La auofiaciació esá formada por los recursos fiacieros que afluye a la empresa desde ella misma

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

INSTRUCCIONES GENERALES Y VALORACIÓN. Ejercicio 1. (Puntuación máxima: 3 puntos) Calcular los valores de a para los cuales la inversa de la matriz INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El eame preseta dos opcioes: A y B. El alumo deberá elegir ua de ellas y cotestar razoadamete a los cuatro ejercicios de que costa dicha opció. Para

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central 1 Medidas de Tedecia Cetral La Media La media (o promedio) de ua muestra x 1, x,, x de tamaño de ua variable o característica x, se defie como la suma de todos los valores observados e la muestra, dividida

Más detalles

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN

ESTUDIO DE MERCADO. MÉTODOS DE PROYECCIÓN ESTUDIO DE MERCADO. MÉTODOS DE PROECCIÓN Qué es una proyección? Es una esimación del comporamieno de una variable en el fuuro. Específicamene, se raa de esimar el valor de una variable en el fuuro a parir

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

Instituto Tecnológico de San Luís Potosí

Instituto Tecnológico de San Luís Potosí Isiuo ecológico de Sa Luís Poosí Cero de elecomuicacioes eleproceso y Redes de Compuadoras Señales Elécricas Fís. Jorge Humbero Olivares Vázquez Cero de elecomuicacioes Eero 7 Isiuo ecológico de Sa Luís

Más detalles

UT-4: Distribuciones fundamentales de muestreo y descripción de datos

UT-4: Distribuciones fundamentales de muestreo y descripción de datos UT-4: Distribucioes fudametales de muestreo y descripció de datos Sub tema: Muestreo aleatorio. Distribucioes muestrales. Distribucioes muestrales de medias. Teorema del límite cetral. Aplicacioes. DF

Más detalles

Pasos básicos para docimar una hipótesis:

Pasos básicos para docimar una hipótesis: Pasos básicos para docimar ua hipótesis:. Defiir cual es la població y el o los parámetro de iterés.. Establecer la hipótesis (ula y alterativa). 3. Establecer el ivel de sigificació α. 4. Recoger los

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición:

Ejercicio 1: Un embalaje contiene 9 cajas de CDs. Las 9 cajas tienen la siguiente composición: Parcial de Probabilidad y Estadística : parte A Ejercicio 1: U embalaje cotiee 9 cajas de CDs. Las 9 cajas tiee la siguiete composició: 6 cajas cotiee 5 discos de música rock y 15 discos de música clásica

Más detalles

Tema 1 Estadística descriptiva: Medidas de centralización y dispersión

Tema 1 Estadística descriptiva: Medidas de centralización y dispersión Tema 1 Estadística descriptiva: Medidas de cetralizació y dispersió Curso 2017/18 Grados e biología saitaria Departameto de Física y Matemáticas Marcos Marvá Ruiz A partir de los valores de ua variable

Más detalles

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza

Prueba A. b) Obtener un intervalo de confianza de la proporción de partos de madres de más de 30 años al 90% de confianza PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO.6-.7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, detro de ella, sólo debe respoder

Más detalles

TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS

TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS www.iova.ued.es/webpages/ilde/web/idex.htm e-mail: imozas@elx.ued.es TEMA 7 DISTRIBUCIONES DE PROBABLIDAD CONTINUAS Distribució uiforme e el itervalo [a, b].-, a x b Fució de desidad: f(x) = b a 0, e el

Más detalles

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente.

La frecuencia relativa acumulada se suele expresar en forma de % y nos indica el % de datos que hay menores o iguales al valor xi correspondiente. º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA.- ESTADÍSTICA DESCRIPTIVA.- TABLAS Y GRÁFICOS ESTADÍSTICOS Estadística : Es la ciecia que estudia cojutos de datos obteidos de la realidad. Estos datos

Más detalles

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce

PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce Economería I. DADE Noas de Clase PROPIEDADES DE LOS ESTIMADORES MCO Profesor Rafael de Arce (rafael.dearce@uam.es) INTRODUCCIÓN Una vez lograda una expresión maricial para la esimación de los parámeros

Más detalles

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija

Mercado de Capitales. Tema 6. Valoración n de bonos. Gestión n de carteras de renta fija Mercado de Capiales Tema 6. Valoració de boos. Gesió de careras de rea fija Liceciaura e Admiisració y Direcció de Empresas Cuaro Curso Liceciaura e Derecho y Admiisració y Direcció de Empresas Sexo Curso

Más detalles

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia

Objetivos. 1. Inferencia Estadística. INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo. M. Iniesta Universidad de Murcia M. Iiesta Uiversidad de Murcia INFERENCIA ESTADÍSTICA Tema 3.1: Muestreo Objetivos Tratar co muestras aleatorias y su distribució muestral e ejemplos de tamaño reducido. Tratar co la distribució de la

Más detalles

Probabilidad y estadística

Probabilidad y estadística Probabilidad y estadística MEDIDAS DE TENDENCIA CENTRAL, MEDIDAS DE DISPERSIÓN, GRÁFICAS, E INTERPRETANDO RESULTADOS Prof. Miguel Hesiquio Garduño. Est. Mirla Beavides Rojas Depto. De Igeiería Química

Más detalles

Precálculo Quinta edición Matemáticas para el cálculo

Precálculo Quinta edición Matemáticas para el cálculo Precálculo Quia edició Maemáicas para el cálculo Límies JAMES STEWART, LOTHAR REDLIN, SALEEMWATSON Pag. 88-94 . Cocepo iuiivo de ie de ua fució. Limies Esquema del capiulo E ese capiulo se esudia la idea

Más detalles

Cuarta práctica de REGRESIÓN.

Cuarta práctica de REGRESIÓN. Cuara prácica de REGRESIÓN. DAOS: fichero pracica regresión 4.sf3 1. Objeivo: El objeivo de esa prácica es deecar el problema de Mulicolinealidad y ajusar modelos de regresión cuando los daos son colineales.

Más detalles