= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) =

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= 134, 5 Tercer cuartil: Q 3 = Pueden considerarse normales. =2 P 10 = 118 horas. f(x) ="

Transcripción

1 SOLUCIONES AL EXAMEN DE MÉTODOS ESTADÍSTICOS 2 0 ITIE. 19 /01/ X = 132, 25 Mediana: M e = = 134, 5 Tercer cuartil: Q 3 = = 140, Pueden considerarse normales c) Percentil diez 10 N 100 = =2 P 10 = 118 horas 2. 0 si x<0 0 si x<0 F (x) = x 2 9 si 0 x<3 1 si x 3 f(x) = 2x 9 si 0 x<3 0 si x 3 μ = 3 0 x 2x 9 dx =2 P (X <0, 3) = F (0, 3) = 0, 01 Otra forma : P (X <0, 3) = 0,3 0 2x 9 dx =0, P (secuelas) = 0, 06 n = 200 peces X : número de peces, entre los 200, con secuelas X B(200; 0, 06). Como np = 200 0, 06 = 12 > 5, aproximamos por la normal X N(12; 3, 36) P (X B > 10) = P (X N > 10, 5) = 0, 6736 P (X B = 13) = P (12, 5 X N 13, 5) = 0, 1140

2 4. y = ae bx ln(y) =ln(+bx x x 2 y ln(y) x ln(y) , 099 1, , 386 2, , 398 9, , , , , 820 =24 = 170 =12, 484 =79, , 484 = 5 ln(+24b 79, 816 = 24 ln( b } a =2, 126 b =0, 639 y =2, 126 e 0,363 x x =0, 5 y =2, 126 e 0,363 0,5 =2, B i : el microcircuito procede de la planta i. D : el microcircuito está defectuoso. P (D) = 3 P (B i )P (D B i )=0, 5 0, , 25 0, 1+0, 25 0, 11 = 0, 0925 i=1 P (B 2 D) = P (B 2)P (D B 2 ) P (D) = 0, 25 0, 9 1 0, 0925 =0, Maquina A Maquina B d i = x B y A D = 1, 25 s d =2, 49 H 0 : μ 1 = μ 2 H 1 : μ 1 μ 2 } t = D s d / n 1, 25 = 2, 49/ = 1, 42 α =0, 01 8 t 0,005;7 =3, 499 Región de aceptación: 3, 499 <t<3, 499. Como t pertenece a dicha región, se acepta la hipótesis nula de que no hay diferencias significativas entre las medias de las medidas de las dos máquinas. p-valor = 2 P (t 7 < 1, 42) = 2 0, 0993 = 0, 1986

3 2 0 ITIE MÉTODOS ESTADÍSTICOS 19 ENERO DE 2009 APELLIDOS:... NOMBRE: (1 p) El test de Cooper es una prueba aeróbica, que consiste en recorrer en el tiempo de 12 minutos las mayor distancia posible mediante la carrera continua. Se sabe, por estudios previos, que las puntuaciones obtenidas en dicho test por cierta población de alumnos de cuarto de ESO se distribuyen de forma aproximadamente normal, con una media de 2357 metros y una desviación típica de 484 metros. Cuál es la probabilidad de que un alumno de dicha población elegido al azar recorra más de 3 kilómetros en el test? P (X >3000) = 0, Cuál es el porcentaje de alumnos cuya puntuación es, al menos, de 1904 m? Porcentaje: P (X > 1904) = 0, , 54% Justificación: se calcula la probabilidad de que un alumno elegido al azar cumpla la condición y se expresa en tanto por ciento. c) Si se selecciona un alumno al azar cuál será la puntuación mínima que debe conseguir para estar dentro del 15% de los que han sacado mayor puntuación? Puntuación mínima: P (X >=0, 15 P (X <=0, 85 a = 2858, 63 Justificación: Se pide el percentil 85. CDF inverso y se introduce el valor 0,85 d) Si se eligen muestras aleatorias de 16 alumnos, qué distribución tiene la puntuación media muestral, X? Distribución de X : N ( ) ( σ μ, X N 2357, 484 ) = 121 n 16 e) Para una muestra aleatoria de 16 alumnos, cuál es la probabilidad de que la puntuación media muestral esté comprendida entre 2000 y 2120 m? Probabilidad: P ( 2000 < X<2120 ) =0, Justificación: P ( 2000 < X<2120 ) = P ( X<2120 ) P ( X<2000 ) =0, , = 0,

4 8.- (1 p) Se ensayan a compresión 20 probetas cúbicas de un determinado hormigón y se obtienen los siguientes resultados, en kg/cm 2 : Cree la variable resistencia con los datos anteriores y escriba los valores de los parámetros estadísticos reflejados en la tabla siguiente: Primer cuartil 138 Tercer cuartil 150, 5 Rango intercuartílico 12, 5 Coeficiente de variación 5, 36979% Divida el conjunto de datos en 5 intervalos de clase. Exprese el extremo inferior y el extremo superior de cada intervalo: Intervalo 1 Intervalo 2 Intervalo 3 Intervalo 4 Intervalo c) Diga si el histograma indica que la distribución de datos es simétrica. Es simétrica la distribución? Por qué? Hay una ligerísima asimetría a la izquierda. d) Calcule los percentiles de orden 20 y 75. Interprete estos valores. P 20 : 137,5 P 75 : 150,5 Interpretación: el P 20 es el valor de la resistencia a la compresión que no es superado por el 20% de las probetas. El P 75 = Q 3 es el valor no superado por el 75% de las probetas. e) Halle la media aritmética y la desviación típica de la variable resistencianorm, dada por la expresión resistencianorm = resistencia -143, 55 7, Media: 0 Desviación típica: 1 Podría justificar los resultados que se obtienen? Se ha tipificado la variable resistencia.

5 9.- (1 p) El serbal es un árbol que crece en zonas de diferentes alturas. Con objeto de estudiar la adaptación de estos árboles a distintos hábitat, se recogen ramas de brotes de 11 árboles que crecen a diversas alturas en una ciudad de Escocia. Se llevaron los brotes al laboratorio y se anotó la tasa de respiración nocturna de cada uno de ellos. En la siguiente tabla se muestra la altitud del origen (en metros) y la tasa de respiración nocturna (expresado en μl de oxígeno por hora/mg de peso en seco de tejido). X: Altitud Y: Tasa de respiración 0,11 0,20 0,13 0,15 0,18 0,16 0,23 0,18 0,23 0,26 0,32 Escriba la ecuación del modelo lineal. Cuál es el coeficiente de correlación? Ecuación del modelo lineal: y =0, , x Coeficiente de correlación: r = 0, Escriba la ecuación del modelo exponencial. Cuál es el coeficiente de correlación? Ecuación del modelo exponencial: y = e ( 2, , x) =0, e 0, x Coeficiente de correlación: r = 0, c) Escriba la ecuación del modelo multiplicativo. Cuál es el coeficiente de correlación? Ecuación del modelo multiplicativo: y =0, x 0, Coeficiente de correlación: r = 0, d) Indique cuál de los modelos (entre los estudiados en clase) es el mejor y utilícelo para predecir la tasa de respiración, para un brote cogido a 500 m de altitud. Ecuación del mejor modelo: modelo exponencial y =0, e 0, x Tasa de respiración: x = 500 y =0,

6 10.- (1 p) Cierto tipo de dieléctrico es sometido a un nuevo proceso de fabricación en el que se combina con un nuevo tipo de material, con el objeto de aumentar su tensión de ruptura. Los fabricantes desean estimar la diferencia entre las tensiones de ruptura de los dieléctricos producidos antes y después de los cambios en el proceso de fabricación. Para ello, se seleccionan 12 prototipos iguales de cada uno de ellos y se someten a una tensión progresiva hasta ocasionar la ruptura de los mismos. La siguiente tabla recoge los datos correspondientes a las tensiones de ruptura (en mv) requeridas para cada uno de los 12 elementos en ambos casos. Antes 4,28 4,19 4,58 4,39 4,41 4,56 4,63 4,29 4,38 4,45 4,41 4,63 Después 4,62 4,48 4,35 4,65 4,29 4,72 4,53 4,59 4,27 4,68 4,52 4,47 Suponiendo que las tensiones de ruptura se distribuyen normalmente: Halle un intervalo de confianza del 99% para la diferencia entre las tensiones de ruptura medias de los dieléctricos producidos antes y después de los cambios en el proceso de fabricación. Intervalo de confianza: I μ1 μ 2 =( 0, ; 0, ) Observando el intervalo obtenido en el apartado anterior, se podría concluir que el nuevo proceso de fabricación aumenta la tensión de ruptura? No, al 99% de confianza, porque el intervalo incluye al cero. c) Indique los pasos seguidos en Statgraphics para la obtención de los valores del apartado. Primero, debemos determinar si las varianzas poblacionales, que son desconocidas, son iguales o distintas. Para ello, calculamos el intervalo de confianza para el cociente de varianzas: I σ 2 1 /σ 2 2 =(0, ; 4, 85973) Como el intervalo contiene al 1 asumimos varianzas poblacionales iguales y calculamos el intervalo de confianza I μ1 μ 2 con esta condición.

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales

Teoría de muestras. Distribución de variables aleatorias en el muestreo. 1. Distribución de medias muestrales Teoría de muestras Distribución de variables aleatorias en el muestreo 1. Distribución de medias muestrales Dada una variable estadística observada en una población, se puede calcular se media y su desviación

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO CURSO 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico

Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más

Más detalles

Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Dispone de 1 hora para resolver las siguientes cuestiones planteadas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE ECONOMÍA Y NEGOCIOS EXAMEN TEÓRICO DE ESTADÍSTICA COMPUTARIZADA NOMBRE: PARALELO: Dispone de 1 hora para resolver las siguientes cuestiones planteadas.

Más detalles

La distribución de Probabilidad normal, dada por la ecuación:

La distribución de Probabilidad normal, dada por la ecuación: La distribución de Probabilidad normal, dada por la ecuación: Donde: x = X -, la distancia entre X y en el eje de las X. = la media de la población o universo ( de las X ) fx= La altura de la ordenada

Más detalles

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES

Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión

Más detalles

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad

Más detalles

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez

Libro de ejercicios de refuerzo de matemáticas. María de la Rosa Sánchez Libro de ejercicios de refuerzo de matemáticas María de la Rosa Sánchez Estadística bidimensional Tema 0 2 Índice general 1. Estadística unidimensional 5 2. Estadística bidimensional 11 3 Tema 1 Estadística

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

conocida comúnmente, como la Campana de Gauss ".

conocida comúnmente, como la Campana de Gauss . CURSO DE ESTADÍSTICA INFERENCIAL EJERCICIOS Y PROBLEMAS RESUELTOS DE DISTRIBUCIÓN NORMAL Prof.:MSc. Julio R. Vargas A. La Distribución Normal: La distribución normal N (μ, σ): es un modelo matemático que

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A Prueba de Acceso a la Universidad JUNIO Bachillerato de Ciencias Sociales El alumno debe responder a una de las dos opciones propuestas, A o B En cada pregunta se señala la puntuación máima OPCIÓN A Una

Más detalles

Tema 6. Variables aleatorias continuas

Tema 6. Variables aleatorias continuas Tema 6. Variables aleatorias continuas Resumen del tema 6.1. Definición de variable aleatoria continua Identificación de una variable aleatoria continua X: es preciso conocer su función de densidad, f(x),

Más detalles

RELACIÓN DE EJERCICIOS TEMA 2

RELACIÓN DE EJERCICIOS TEMA 2 1. Sea una distribución estadística que viene dada por la siguiente tabla: Calcular: x i 61 64 67 70 73 f i 5 18 42 27 8 a) La moda, mediana y media. b) El rango, desviación media, varianza y desviación

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7)

INTRODUCCIÓN AL ANÁLISIS DE DATOS ORIENTACIONES (TEMA Nº 7) TEMA Nº 7 DISTRIBUCIONES CONTINUAS DE PROBABILIDAD OBJETIVOS DE APRENDIZAJE: Conocer las características de la distribución normal como distribución de probabilidad de una variable y la aproximación de

Más detalles

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2

PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 PREGUNTAS TIPO EXAMEN- ESTADÍSTICA DESCRIPTIVA 2 Preg. 1. Para comparar la variabilidad relativa de la tensión arterial diastólica y el nivel de colesterol en sangre de una serie de individuos, utilizamos

Más detalles

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2

Pendientes de Matemáticas Aplicadas a las Ciencias Sociales I b) 5-2 . ARITMÉTICA OPERACIONES CON FRACCIONES. Realiza las siguientes operaciones teniendo en cuenta el orden de prioridades: 8-5 ( 5. Opera y simplifica: 5 5 5+ + ( ) 5 5 5 : c) 7-4 -(5-5- + PROPIEDADES DE

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E CURSO 00-.003 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumno debe elegir sólo una de las pruebas (A o B) y, dentro de ella, sólo

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS VERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS Grupo

Más detalles

Muestreo de variables aleatorias

Muestreo de variables aleatorias Estadística II Universidad de Salamanca Curso 2011/2012 Outline 1 Introducción 2 Distribución de la muestra 3 4 5 Distribuciones de la media y la varianza en poblaciones normales Introducción Tiene como

Más detalles

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2.

Pruebas de Hipótesis H0 : μ = 6 H1 : μ 6 α = 0.05 zα/2 = 1.96 (6-1,96 0,4 ; 6+1,96 0,4) = (5,22 ; 6,78) 5,6 Aceptamos la hipótesis nula H 0 2. Pruebas de Hipótesis 1. Se sabe que la desviación típica de las notas de cierto examen de Matemáticas es,4. Para una muestra de 6 estudiantes se obtuvo una nota media de 5,6. Sirven estos datos para confirmar

Más detalles

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II

PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II PROBLEMAS DE DISTRIBUCIÓN NORMAL Y INTERVALOS DE CONFIANZA MATEMÁTICAS APLICADAS A LAS CC.SOCIALES II 1.- Las tallas de una muestra de 1000 personas siguen una distribucióormal de media 1,76 metros y desviación

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

INFERENCIA ESTADÍSTICA

INFERENCIA ESTADÍSTICA INFERENCIA ESTADÍSTICA 1. DEFINICIÓN DE INFERENCIA ESTADÍSTICA Llamamos Inferencia Estadística al proceso de sacar conclusiones generales para toda una población a partir del estudio de una muestra, así

Más detalles

Tema 4: Variables Aleatorias

Tema 4: Variables Aleatorias Tema 4: Variables Aleatorias Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 4: Variables Aleatorias Curso 2009-2010 1 / 10 Índice 1 Concepto

Más detalles

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales

Teoría de muestras 2º curso de Bachillerato Ciencias Sociales TEORÍA DE MUESTRAS Índice: 1. Introducción----------------------------------------------------------------------------------------- 2 2. Muestras y población-------------------------------------------------------------------------------

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A

JUNIO Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: A Bloque A JUNIO 2003 1.- Encuentra, si existen, matrices cuadradas A, de orden 2, distintas de la matriz identidad, tales que: 1 0 A = 1 0 A Cuántas matrices A existen con esa condición? Razona tu respuesta.

Más detalles

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas

Part I. Variables aleatorias unidimensionales. Estadística I. Mario Francisco. Definición de variable aleatoria. Variables aleatorias discretas Part I unidimensionales de s de s Definición Dado un experimento aleatorio, con espacio muestral asociado Ω, una es cualquier función, X, X : Ω R que asocia a cada suceso elemental un número real, verificando

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-)

TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) MÉTODOS ESTADÍSTICOS PARA LA MEJORA DE LA CALIDAD INGENIERIA DE TELECOMUNICACIONES TEMA 4: CONTROL POR VARIABLES Hoja de ejercicios (Entregar el 7 -problema de examen-) 1. Un proceso industrial fabrica

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1

Tema 2: Estadísticos. Bioestadística. U. Málaga. Tema 2: Estadísticos 1 Bioestadística Tema 2: Estadísticos Tema 2: Estadísticos 1 Parámetros y estadísticos Parámetro: Es una cantidad numérica calculada sobre una población La altura media de los individuos de un país La idea

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

Departamento de Estadística y Econometría. Curso EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2

Departamento de Estadística y Econometría. Curso EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2 Departamento de Estadística y Econometría. Curso 2002-2003 EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2 1.- Una empresa de elaboración de materiales pone en práctica un nuevo método

Más detalles

8 Resolución de algunos ejemplos y ejercicios del tema 8.

8 Resolución de algunos ejemplos y ejercicios del tema 8. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 29 8 Resolución de algunos ejemplos y ejercicios del tema 8. 8.1 Ejemplos. Ejemplo 49 Supongamos que el tiempo que tarda en dar respuesta a un enfermo el personal

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Síntesis Numérica de una Variable

Síntesis Numérica de una Variable Relación de problemas 2 Síntesis Numérica de una Variable Estadística 1. En siete momentos del día se observa el número de clientes que hay en un negocio, anotando: 2, 5, 2, 7, 3, 4, 9. Calcular e interpretar

Más detalles

1. Ejercicios. 2 a parte

1. Ejercicios. 2 a parte 1. Ejercicios. 2 a parte Ejercicio 1 Calcule 1. P (χ 2 9 3 33) 2. P (χ 2 15 7 26). 3. P (15 51 χ 2 8 22). 4. P (χ 2 70 82). Ejercicio 2 Si X χ 2 26, obtenga un intervalo [a, b] que contenga un 95 % de

Más detalles

Ejercicios resueltos

Ejercicios resueltos UNIDAD TEMÁTICA 7 CONTRASTE DE HIPÓTESIS ENUNCIADO 1 Se ha realizado una encuesta en una población mediante una muestra de 200 personas resultando 72 fumadores. (a Estima la proporción de fumadores así

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2007) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

ENUNCIADO y SOLUCIONES. Problema 1

ENUNCIADO y SOLUCIONES. Problema 1 Ingeniería Industrial Métodos estadísticos de la Ingeniería Examen Junio 007. ENUNCIADO y SOLUCIONES Problema La memoria RAM para un ordenador se puede recibir de dos fabricantes A y B con igual probabilidad.

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

Tema 8. Muestreo. Indice

Tema 8. Muestreo. Indice Tema 8. Muestreo Indice 1. Población y muestra.... 2 2. Tipos de muestreos.... 3 3. Distribución muestral de las medias.... 4 4. Distribución muestral de las proporciones.... 6 Apuntes realizados por José

Más detalles

Ejercicios de la Distribución Normal

Ejercicios de la Distribución Normal 1 Ejercicios de la Distribución Normal 1. Encuentre las siguientes probabilidades, siendo Z una variable aleatoria normal estándar a.p (Z < 1,00) b.p (Z < 0,63) c.p (Z < 1,38) d.p (Z > 1,15) e.p (Z > 2,13)

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN

ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN ESTADISTICA APLICADA A LA EDUCACIÒN CODIGO: HOC220 EJERCICIOS SOBRE MEDIDAS DE TENDENCIA CENTRAL, POSICIONAL Y DE DISPERSIÓN COMPILADOR San Cristóbal, Abril 2011 CODIGO: HOC220 Página 1 1. A un conjunto

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014). Materia: Matemáticas aplicadas a las ciencias sociales PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA MAYORES DE 25 AÑOS (2014. Materia: Matemáticas aplicadas a las ciencias sociales Esta prueba consta de dos bloques (A y B de cuatro preguntas cada uno. El alumno

Más detalles

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2

PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 PROYECTO DE CARRERA: INGENIERÍA INDUSTRIAL ASIGNATURA: ESTADÍSTICAS II GUÍA DE EJERCICIOS N 2 UNIDAD II: DISTRIBUCIONES MUESTRALES OBJ. 2.1 2.2 2.3 2.4 1.- Un plan de muestreo para aceptar un lote, para

Más detalles

Fase 2. Estudio de mercado: ESTADÍSTICA

Fase 2. Estudio de mercado: ESTADÍSTICA 1. CONCEPTO DE ESTADÍSTICA. ESTADÍSTICA DESCRIPTIVA 2. 3. TABLA DE FRECUENCIAS 4. REPRESENTACIONES GRÁFICAS 5. TIPOS DE MEDIDAS: A. MEDIDAS DE POSICIÓN B. MEDIDAS DE DISPERSIÓN C. MEDIDAS DE FORMA 1 1.

Más detalles

Ejercicio 1(10 puntos)

Ejercicio 1(10 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Segundo Parcial Montevideo, 4 de julio de 2015. Nombre: Horario del grupo: C.I.: Profesor: Ejercicio 1(10 puntos) La tasa de desperdicio en una empresa

Más detalles

Estadística para el análisis de los Mercados S2_A1.1_LECV1

Estadística para el análisis de los Mercados S2_A1.1_LECV1 5. Parámetros estadísticos. 5.1. Parámetros de centralización. Estos parámetros nos indican en torno a que puntos se encuentran los valores de la variable cuantitativa en estudio. Es la forma de representar

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *.

2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *. 2. DESCRIPCIÓN ESTADÍSTICA DE UNA VARIABLE. EJEMPLOS Y EJERCICIOS *. 2.1. Ejemplos. Ejemplo 2.1 Se ha medido el grupo sanguíneo de 40 individuos y se han observado las siguientes frecuencias absolutas

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2013) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II Septiembre 2013 Selectividad-Opción A Tiempo: 90 minutos Problema 1 2 puntos Se consideran las matrices A = 3 8. 3 5 0 2 3 0 y B = a Calcúlese la matriz

Más detalles

Práctica 5: Estimación de parámetros. Una población.

Práctica 5: Estimación de parámetros. Una población. Práctica 5: Estimación de parámetros. Una población. 1. Considere el conjunto f1; 3; 5; 7; 9g (a) Enumere todas las muestras de tamaño 2 que pueden ser seleccionadas con reposición de ese conjunto. Calcule

Más detalles

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso

INDICE Capítulo I: Conceptos Básicos Capitulo II: Estadística Descriptiva del Proceso INDICE Capítulo I: Conceptos Básicos 1.- Introducción 3 2.- Definición de calidad 7 3.- Política de calidad 10 4.- Gestión de la calidad 12 5.- Sistema de calidad 12 6.- Calidad total 13 7.- Aseguramiento

Más detalles

Transformaciones de variables

Transformaciones de variables Transformaciones de variables Introducción La tipificación de variables resulta muy útil para eliminar su dependencia respecto a las unidades de medida empleadas. En realidad, una tipificación equivale

Más detalles

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido:

1. Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: . Los pesos (en Kgs.) de los niños recién nacidos en una clínica maternal durante el último año han sido: Peso [.5,.75) [.75,3) [3,3.5) [3.5,3.5) [3.5,3.75) [3.75,4) [4,4.5) [4.5,4.5] N o de niños 7 36

Más detalles

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros

MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN. Lic. Esperanza García Cribilleros MEDIDAS DE RESUMEN: MEDIDAS DE TENDENCIA CENTRAL Y DISPERSIÓN Lic. Esperanza García Cribilleros ANÁLISIS EXPLORATORIO DE DATOS Diagrama de tallo y hojas Diagrama de caja DESCRIPCIÓN N DE LOS DATOS Tablas

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS

Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS INTRODUCCIÓN A LA ESTADÍSTICA Relación 2: CARACTERÍSTICAS DE UNA DISTRIBUCIÓN DE FRECUENCIAS 1.- Obtener las medias aritmética, geométrica, armónica para la siguiente distribución: SOL: 2,74; 2,544; 2,318

Más detalles

Inferencia con una variable Tema 2

Inferencia con una variable Tema 2 Inferencia con una variable Tema 2 1. Contraste sobre una proporción 2. Bondad de ajuste 3. Contraste de hipótesis sobre una media 3.1. Con σ 2 conocida, prueba Z 3.2. Con σ 2 desconocida, prueba T 4.

Más detalles

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional

FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- BLOQUE ESTADÍSTICA: ESTADÍSTICA VARIABLE UNIDIMENSIONAL. Estadística variable unidimensional FLORIDA Secundaria. 1º BACH MATEMÁTICAS CCSS -1- Estadística variable unidimensional 1. Conceptos de Estadística 2. Distribución de frecuencias 2.1. Tablas de valores con variables continuas 3. Parámetros

Más detalles

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004

SOLUCIÓN EXAMEN IV Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/2004 Nombres: Apellidos: C.I.: Firma: Fecha: 19/11/004 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta (0,5 puntos c/u): 1. (V F) Los contrastes de hipótesis de dos muestras

Más detalles

Anota aquí tus respuestas para esta sección Distribución Z

Anota aquí tus respuestas para esta sección Distribución Z Tarea 2. Estadística Inferencial Cada sección vale 25%. Cada inciso tiene el mismo peso. Hacer la tarea en equipo de dos personas y entregar solo una copia por cada equipo. 1. Cálculo lo siguiente. Ten

Más detalles

x + 3y 3 2x y 4 2x + y 24

x + 3y 3 2x y 4 2x + y 24 UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO Curso 2012-2013 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES

Más detalles

INFERENCIA DE LA PROPORCIÓN

INFERENCIA DE LA PROPORCIÓN ESTADISTICA INFERENCIA DE LA PROPORCIÓN DISTRIBUCIÓN MUESTRAL DE PROPORCIONES En una población la proporción de elementos (personas, animales, cosas o entes) que posee una cierta característica es p. En

Más detalles

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA

ESTADISTICA Y PROBABILIDAD ESTADÍSTICA ESTADÍSTICA La estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comprobaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

2 4. c d. Se verifica: a + 2b = 1

2 4. c d. Se verifica: a + 2b = 1 Pruebas de Acceso a la Universidad. SEPTIEMBRE 0. Bachillerato de Ciencias Sociales. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima.

Más detalles

Estadística. Sesión 4: Medidas de dispersión.

Estadística. Sesión 4: Medidas de dispersión. Estadística Sesión 4: Medidas de dispersión. Contextualización En esta sesión aprenderás a calcular las medidas estadísticas de dispersión, tal es el caso del rango, la varianza y la desviación estándar,

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO CENTRO UNIVERSITARIO UAEM ZUMPANGO LICENCIATURA EN TURISMO UNIDAD DE APRENDIZAJE: ESTADISTICA TEMA 1.5 : ESTADISTICA DESCRIPTIVA M. EN C. LUIS ENRIQUE KU MOO FECHA:

Más detalles

Curso: 2º Grupo: B Día: 18 - IV CURSO

Curso: 2º Grupo: B Día: 18 - IV CURSO 3ª EVALUACIÓN Curso: º Grupo: B Día: 18 - IV - 008 CURSO 007-08 EJERCICIO 1 (1.75 puntos) Sea la población {1, 5, 7}. Escriba todas las muestras de tamaño, mediante muestreo aleatorio simple, y calcule

Más detalles

Ejercicios T.5 CONTRASTES PARAMÉTRICOS

Ejercicios T.5 CONTRASTES PARAMÉTRICOS Ejercicios T.5 CONTRASTES PARAMÉTRICOS 1. Un fabricante de perfume asegura que los frascos que produce contienen por término medio 100 ml. distribuyéndose el contenido de dichos frascos según una distribución

Más detalles

9.1. Nociones básicas.

9.1. Nociones básicas. TEMA 9. ESTADÍSTICA 9.1. ociones básicas. Población y muestra. Fases y tareas de un estudio estadístico. Tipos de muestreo. Representatividad de las muestras. 9.2. Variable discreta y continua. Tablas

Más detalles

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES.

INECUACIONES Y SISTEMAS DE INECUACIONES LINEALES. Nombre y apellidos : Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 2ª entrega Fecha: Curso: 1º BACHILLERATO INSTRUCCIONES: Para la realización del primer examen deberás entregar en un cuaderno

Más detalles

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes 010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1_A Sea el recinto del plano

Más detalles

CAPÍTULO 6: VARIABLES ALEATORIAS

CAPÍTULO 6: VARIABLES ALEATORIAS Página 1 de 11 CAPÍTULO 6: VARIABLES ALEATORIAS En el capítulo 4, de estadística descriptiva, se estudiaron las distribuciones de frecuencias de conjuntos de datos y en el capítulo 5 se trataron los fundamentos

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales

ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student

Más detalles

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE

( ) DISTRIBUCIÓN UNIFORME (o rectangular) 1 b a. para x > b DISTRIBUCIÓN DE CAUCHY. x ) DISTRIBUCIÓN EXPONENCIAL. α α 2 DISTRIBUCIÓN DE LAPLACE Estudiamos algunos ejemplos de distribuciones de variables aleatorias continuas. De ellas merecen especial mención las derivadas de la distribución normal (χ, t de Student y F de Snedecor), por su importancia

Más detalles

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS Objetivos Plantear y resolver problemas mediante la técnica de contraste de hipótesis. Asimilar los conceptos relativos a contrastes de hipótesis, tales

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A DE 00 OPCIÓN A a) (.5 puntos) Resuelva el siguiente sistema y clasifíquelo atendiendo al número de soluciones: x + y + z = 0 x + 3y z = 17 4x + 5y + z = 17 b) (0.75 puntos) A la vista del resultado anterior,

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones A y B; el alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que consta dicha opción.

Más detalles

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León

Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Grado en Ingeniería Informática Estadística Tema 5: Teoría Elemental del Muestreo e Inferencia Paramétrica Ángel Serrano Sánchez de León Distribuciones Muestrales 1. Sea una población de 5 números: 2,

Más detalles

Estadística Aplicada

Estadística Aplicada Estadística Aplicada Distribuciones de Probabilidad Variables aleatorias Toman un valor numérico para cada resultado de un espacio muestral Discretas. Sus valores posibles constituyen un conjunto discreto.

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

2.- Tablas de frecuencias

2.- Tablas de frecuencias º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 3.- ESTADÍSTICA DESCRIPTIVA PROFESOR: RAFAEL NÚÑEZ -----------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles