1. Desafío inicial Cálculo de dosis, concentraciones y disoluciones Conceptos previos: Actividades... 9

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Desafío inicial Cálculo de dosis, concentraciones y disoluciones Conceptos previos: Actividades... 9"

Transcripción

1 Índice 1. Desfío inicil Qué es un rzón? Ejemplos Ts: un rzón especil usd en el áre de l slud Qué es un proporción? Propiedd fundmentl en un proporción Otrs propieddes de ls proporciones Proporción direct (vriciones directmente proporcionles) Proporción indirect (vriciones inversmente proporcionles) Proporcionlidd compuest Ejemplo Ejercicios Porcentjes(=Tnto por ciento) Qué es? Frcciones y porcentjes Cálculo de porcentjes Porcentje de un número Incrementr/disminuir un número en un porcentje Qué porcentje represent un número de otro Cálculo de dosis, concentrciones y disoluciones Conceptos previos: Actividdes Bibliogrfi (dicionl l del curso) 10 1

2 1. Desfío inicil En un ciert poblción el 40 % de los hombres están csdos y el 30 % de ls mujeres están csds. Qué porcentje de l poblción dult está csd? Qué es un rzón? Un rzón entre dos cntiddes es un comprción por cuociente. Asi, l rzón entre los números y b, correspponde b o bien : b lo que se lee: es b Not: En l rzón, se llm ntecedente y b consecuente. b 2.2. Ejemplos Se el número de hombres presentes y b el de mujeres, entonces es l rzón entre ls cntiddes b indicds. Qué represent? 40 uniddes de un medicmento se deben se deben reprtir en dos hbitciones en l rzón 3 : 7. Cuántos medicmentos se llevn cd hbitción? En hospitl con 380 enfermos y 95 enfermers, l rzón serí: rzón de enfermos enfermers = = 4 1 = 4 : 1 lo que indic que hy 4 enfermos por cd enfermer, o bien rzón de enfermers enfermos = = 1 4 = 1 : 4 lo que indic que hy un enfermer por cd enfermo Ts: un rzón especil usd en el áre de l slud El concepto de ts es similr l de un rzón, con l diferenci de que ls tss llevn incorpordo el concepto de tiempo. Tomn todos los csos de un evento (enfermedd o muerte) por un cus, pertenecientes un poblción totl, en un lugr y período determindo. Ejemplos, En nuestro pís: Ts de mortlidd por ccidentes de tránsito (2009): Ncimiento de niños con bjo peso (2009): 5, ,

3 Mtemátic (2015-1) Médicos por hbitntes (2009): Enfermers (trbjndo en el sector público) por hbitntes (2009): Relción del número de enfermers por médico (2009): 1 2 Tss de ntlidd Qué es un proporción? Un proporción es l iguldd entre dos rzones. Asi entonces, 4 números, b, c y d conformn un proporción, siempre y cundo, se cumpl que: b = c d Propiedd fundmentl en un proporción b = c d d = bc Otrs propieddes de ls proporciones Si 4 números, b, c y d conformn un proporción, es decir, entonces tmbien constituyen un proporción: 1) + b b 2) b b = c + d d = c d d b = c d, 1 Número de ncidos vivos ocurridos en un territorio por cd mil hbitntes del mismo, en un período ddo. 3

4 Mtemátic (2015-1) 3) + b 4) b = c + d c = c d c 5) + b b = c + d c d 6) Si b = c d = e f entonces b = c d = e f = + c + d b + d + f 2.5. Proporción direct (vriciones directmente proporcionles) Dos mgnitudes son directmente proporcionles (DP) cundo l umentr un de ells, l otr tmbién ument en l mism proporción; y si un disminuye, l otr tmbién disminuye en l mism proporción Dos cntiddes A y B se dicen DP cundo su cuociente es constnte, es decir A B = k, o bien A = kb donde k es l constnte, que usulmente recibe el nombre de constnte de proporcionlidd. Por ejemplo, l longitud de un circunferenci es DP (o, simplemente proporcionl) l rdio. En efecto L r = k donde k, en este cso, es igul 2π Proporcionr otros ejemplos Proporción indirect (vriciones inversmente proporcionles) Dos mgnitudes son inversmente proporcionles (IP) cundo l umentr (disminuir) un de ells, l otr disminuye (ument) en l mism proporción. Dos cntiddes A y G se dicen IP cundo su producto es constnte, es decir donde k es constnte. AB = k, o bien A = k B Por ejemplo, pr el recorrido en uto de un mism distnci, l velocidd y el tiempo son cntiddes IP. En efecto: vt = k donde k, en este cso, es igul igul l distnci (constnte). Proporcionr otros ejemplos. 4

5 2.7. Proporcionlidd compuest En l proporcionlidd compuest hy vribles que se relcionn medinte proporcionlidd direct y otrs trvés de proporcionlidd invers. Pr resolver los ejercicios de este tem, en primer lugr se debe revisr qué tipo de proporcionlidd existe entre cd pr de vribles. Posteriormente, se debe determinr l constnte de proporcionlidd Ejemplo Se necesitn 20 persons pr pvimentr 2 km de cmino en 5 dís. Cuánts persons se necesitn pr pvimentr 5 km en 10 dís? Metodo 1 En primer lugr, determinremos qué tipo de proporcionlidd existe entre ls vribles: Persons (P) longitud del cmino (L): están en proporcionlidd direct (entre más persons, más km de cmino se pvimentrán) Persons (P) tiempo (T) están en proporcionlidd invers (entre más persons, menos tiempo se demorrán en pvimentr el cmino) Luego, P fijo T fijo T fijo P L T respuest Metodo 2 Se prte de un tbl como l siguiente: P L T x 5 10 Se estudin si ls vribles son direct o inversmente proporcionles. Si son DP, si combinn con un flech oblicu, en cso contrrio, con un flech horizontl. Hciéndolo, l tbl nterior qued: P L T x

6 Mtemátic (2015-1) Luego, se formn e iguln los productos que siguen ls flechs con los otros, en este cso, qued: = x 2 10 se donde, x = 25, que y hbímos obtenido con el método 1. Not: Es clro que pr situciones de más de 3 vribles, el método 2 es mucho más práctico Ejercicios Siguiendo los 2 métodos nteriores, resolver: 1) Pr clentr 2 litros de gu desde 0 o C 20 o C se hn necesitdo 1000 clorís. Si de quieren clentr 3 litros de gu de 10 o C 60 o C Cuánts clorís son necesris? 2) Seis fotocopidors trdn 5 minutos en hcer 600 fotocopis. Si se ponen en funcionmiento 2 fotocopidors y se quieren hcer 1800 fotocopis, cuánto minutos trdrán? 3. Porcentjes(=Tnto por ciento) Not. El PIB en nuestro pís el ño 2010 fue de millones de euros Qué es? Comentr l informción 2 : 2 6

7 Lo destcble es que myor riquez los píses gstn proporcionlmente más en slud. Así, USA gst el 17,6 % de su PIB en slud, mientrs que los píses europeos más desrrolldos gstn cerc del 12 % del PIB. Chile gst el 8 % de su PIB en el rubro y el promedio en l OECD es de un 9,5 %. Cómo se clcul el por ciento de b?. Qué represent? 3.2. Frcciones y porcentjes 1) Porcentje frcción: 20 %=??? 2) Frcción porcentje: 1=??? % 2 3) Porcentje deciml: 58 %=??? 4) Deciml porcentje: 2.16=??? % 3.3. Cálculo de porcentjes Porcentje de un número Clculr el 15 % de 85. 1) Solución 1: 15 % de 85 = = 12, ) Solución 2: % x 15 % x = = 12,75 por tnto, el 15 % de 85 es 12, Incrementr/disminuir un número en un porcentje Un pciente tom un 50mg de un medicmento l 8 de l mñn, si el pciente elimin un 10 % del medicmento presente en su cuerpo, por cd hor trnscurrid. Qué prte del medicmento tendrá el pciente l 1 de l trde? 7

8 Qué porcentje represent un número de otro qué porcentje represent 24 de 1200? 1) Solución 1: 2) Solución 2: x % de 1200 = 24 x 1200 = 24 x = por tnto, 24 represent el 2 % de 1, % 24 x % x = = 2 4. Cálculo de dosis, concentrciones y disoluciones 4.1. Conceptos previos: Dosis 3 : es l cntidd de medicmento que se debe dministrr pr producir el efecto terpéutico desedo. L dosis hce referenci l cntidd de medicmento dministrr de un sol vez. En cso contrrio es necesrio especificr l put de dosificción: dosis/dí, dosis/ciclo. Cntidd totl de medicmento: Indic l cntidd totl de medicmento que hy que dministrr durnte un trtmiento completo. Disolución: es l mezcl homogéne resultnte trs disolver culquier sustnci en un líquido. En un disolución, es posible distinguir entre el soluto (l sustnci que se disuelve en l mezcl y que suele precer en menor cntidd) y el disolvente o solvente (l sustnci donde se disuelve el soluto). Concentrción de l disolución: es l relción entre l cntidd de soluto y l cntidd de disolvente. A myor proporción de soluto disuelto, myor concentrción, y vicevers. 1) Porcentje peso en peso: es cundo tnto l cntidd de soluto como l de l disolución se expres en peso. Se represent por p/p. Ejemplo: Glucos 5 % p/p = 5 g de glucos en 100 g de solución. 2) Porcentje peso en volumen: es cundo l cntidd de soluto se expres en peso y l disolución en volumen. Se represent por p/v. Ejemplo: Glucos 5 % p/v = 5 g de glucos en 100 ml de solución. 3) Porcentje volumen en volumen: es cundo l cntidd de soluto y l disolución se expresn en volumen. Se represent por v/v. Ejemplo: Glicerin 5 % v/v = 5 ml de glicerin en 100 ml de disolución. Dilución de medicmentos: Es el procedimiento medinte el cul se obtienen, concentrciones y dosis requerids de medicmentos trvés de fórmuls mtemátics. 3 Est sección h seguido el punte: Cálculo básicos en frmci hospitlri uxilires/re5.pdf 8

9 4.2. Actividdes 1) Cntidd de medicmento que hy en un cntidd determind de solución Se hn dministrdo un niño 7,5ml de un solución de digoxin que tiene un concentrción del 0,25mg / 5ml. Qué cntidd de digoxin se le h ddo l niño? Respuest: 0,375mg de digoxin 2) Cntidd de solución que se debe tomr de modo que ell conteng l cntidd de medicmento que se requiere. Es necesrio dministrr un niño 375mg de mpicilin. El vil de mpicilin contiene 2ml de solución con 500mg de mpicilin. Qué volumen de solución de mpicilin se debe tomr pr dministrr los 375mg de mpicilin? Respuest: 1,5ml de solución. 3) Cntidd de medicmento y de disolvente que se tiene que mezclr pr preprr un determind solución. Hy que dministrr un pciente 375mg de ácido cetilslicílico (AAS). Si un comprimido de 3gr de AAS tiene un concentrción de 500mg/2g. Qué cntidd de comprimido hy que dministrr? Respuest: 1 comprimido y medio 4) Conversión de un concentrción expresd en form de rzón en porcentje y vicivers Un vil de mpicilin contiene un solución del fármco l concentrción de 250mg/ml. Cuál es l concentrción de mpicilin expresd en porcentje? Not: El porcentje de concentrción se expres en g/100ml. Respuest: 25 % 5) Cntidd de un solución determind que se debe tomr pr preprr otr solución con distint concentrción Cómo se preprn 500ml de un solución de lidocín l 2 %, si se dispone de un solución de este fármco l 5 %? Respuest: 200ml de l solución l 5 % más 300ml de gu destild. 6) Cálculo de un dosis según el peso del pciente Se precis dministrr gentmicin un pciente de 65kg de peso. L dosis hbitul de gentmicin es de 1,5 mg/kg cd 8 hors. Qué dosis hy que dministrr l pciente? Respuest: 97,5mg 7) Clculo de dosis según l edd En este cso, usulmente se estblecen dosis por grupos de edd. Por ejemplo: 9

10 Rngo edd entre 2 y 6 ños entre 6 y 12 ños entre 6 y 15 ños Sobre 15 ños dosis 1/2 comprimido/di (ó 250mg/d) 1 comprimido/di (ó 500mg/d) 1,5 comprimido/di (ó 750mg/d) 2 comp/d (ó 1g/d) Not: Tmbién se estblecen dosis en función del áre superficil del pciente. 5. Bibliogrfi (dicionl l del curso) Cálculo de dosis. tller %20c %C3 %A1lculo %20de %20dosis.pdf. %20 %5B1 %5D9mte.pdf Números y proporcionlidd. %C3 %BAmeros %20y % 20Proporcionlidd %20Modulo %201.pdf Tss. Pnorm de Slud 2011 Informe sobre Chile y comprción con píses miembros. generl/elementos/oecdchl2011.pdf Indicdores de l slud en Chile y su cpcidd pr evlur l clidd de l gestión públic en slud. DEPESEX/BCN/SERIE ESTUDIOS AÑO XIV, No 303 pdf estudios/nro303.pdf Cálculo básicos en frmci hospitlri 10

PROPORCIONALIDAD DIRECTA E INVERSA

PROPORCIONALIDAD DIRECTA E INVERSA PROPORCIONALIDAD DIRECTA E INVERSA Rzón entre dos números Siempre que hblemos de Rzón entre dos números nos estremos refiriendo l cociente (el resultdo de dividirlos) entre ellos. Entonces: Rzón entre

Más detalles

a b y se lee a es a b ; a se denomina antecedente y b consecuente.

a b y se lee a es a b ; a se denomina antecedente y b consecuente. 1 Centro Educcionl Sn Crlos de Argón. Dpto. de Mtemátic. Prof.: Ximen Gllegos H. Guí Nº 5 PSU NM 4: Proporcionlidd Nombre: Curso: Fech: Aprendizje Esperdo: Plnte y resuelve problems que requieren plicr

Más detalles

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad

Tutorial MT-b12. Matemática Tutorial Nivel Básico. Proporcionalidad 12345678901234567890 M te m átic Tutoril MT-b12 Mtemátic 2006 Tutoril Nivel Básico Proporcionlidd Mtemátic 2006 Tutoril Proporcionlidd Mrco Teórico 1. Rzón: Cuociente entre 2 cntiddes homogénes. b = k

Más detalles

Una magnitud es cualquier propiedad que se puede medir numéricamente.

Una magnitud es cualquier propiedad que se puede medir numéricamente. Etueri Clses Prticulres Online Tem 4. Proporcionlidd Mgnitudes Un mgnitud es culquier propiedd que se puede medir numéricmente. Ejemplos: longitud, cpcidd de un recipiente, peso, Rzón L rzón es el cociente

Más detalles

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES.

TEMA 3: PROPORCIONALIDAD Y PORCENTAJES. TEM : PROPORCIONLIDD Y PORCENTJES.. Conceptos de Rzón y Proporción. Se define l RZÓN entre dos números como l frcción que se form con ellos. Es decir l rzón entre y es:, con 0. De quí que ls frcciones

Más detalles

Magnitudes proporcionales I

Magnitudes proporcionales I Mgnitudes proporcionles I Mgnitud: Es todo quello que puede ser medido. Mgnitudes proporcionles: Dos mgnitudes son proporcionles si son dependientes entre sí, es decir, si un de ells vrí, l otr tmbién

Más detalles

ENCUENTRO # 5 TEMA: Resolución de problemas de razones y proporciones. DESARROLLO

ENCUENTRO # 5 TEMA: Resolución de problemas de razones y proporciones. DESARROLLO ENCUENTRO # 5 TEMA: Resolución de problems de rzones y proporciones. CONTENIDOS:. Mgnitudes proporcionles (direct e invers). 2. Regl de tres simple. DESARROLLO Ejercicio Reto Cntiddes proporcionles cntiddes

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES

UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES C u r s o : Mtemátic Mteril N GUÍA TEÓRICO PRÁCTICA Nº 8 UNIDAD: ÁLGEBRA Y FUNCIONES FUNCIONES DEFINICIÓN Sen A B conjuntos no vcíos. Un función de A en B es un relción que sign cd elemento del conjunto

Más detalles

open green road Guía Matemática RAZONES Y PROPORCIONES tutora: Jacky Moreno .co

open green road Guía Matemática RAZONES Y PROPORCIONES tutora: Jacky Moreno .co Guí Mtemátic RAZONES Y PROPORCIONES tutor: Jcky Moreno.co 1. Rzones Al resolver distintos problems mtemáticos nos costumbrmos relcionr dos o más cntiddes medinte ls operciones básics de dición, sustrcción,

Más detalles

PROPORCIÓN AÚREA. NÚMERO AÚREO. PROPORCIONALIDAD 2º E.S.O. a = 2 b = 5 1. b 2

PROPORCIÓN AÚREA. NÚMERO AÚREO. PROPORCIONALIDAD 2º E.S.O. a = 2 b = 5 1. b 2 PROPORCIÓN AÚREA. NÚMERO AÚREO. PROPORCIONALIDAD 1 1 1 5 1 1 1 1 5 1 2º E.S.O. = 2 = 5 1 1+ 5 Φ = = = 1,6180339887... 2 PROPORCIÓN AÚREA PROPORCIÓN AÚREA PROPORCIÓN AÚREA RAZONES Y PROPORCIONES L rzón

Más detalles

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b)

a) Decimales finitos: Corresponden a los cuocientes exactos entre el numerador y el denominador. Ejemplo: : 8 = (b) Clse-06 Números rcionles expresdos en form deciml: Todo número rcionl con b 0 se puede trnsformr form deciml l dividir b el numerdor por su denomindor. En form deciml los siguientes rcionles quedn escritos

Más detalles

RAZONES Y PROPORCIONES I)

RAZONES Y PROPORCIONES I) Aritmétic de Secundri: III Trimestre XVI: RAZONES Y PROPORCIONES I) Rzón o Relción.- ) Hllndo en cunto excede un cntidd respecto de otr (rest). Ejem: 6- = 4 ) Hllndo en cunto contiene un cntidd otr (división).

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 9 EJERCICIOS Ls relciones de proporcionlidd 1 Indic, entre los siguientes pres de mgnitudes, los que son directmente proporcionles, los que son inversmente proporcionles y los que no gurdn

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág Págin 56 PRACTICA Escribe los seis primeros términos de ls siguientes sucesiones: ) Cd término se obtiene sumndo l nterior El primero es 8 b) El primer término es 6 Los demás se obtienen multiplicndo

Más detalles

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS

MATEMÁTICAS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 25 AÑOS LOGARITMOS PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS LOGARITMOS Unidd 4 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES 5 AÑOS UNIDAD DIDÁCTICA 4: LOGARITMOS. ÍNDICE. Introducción. Potencis funciones eponenciles.

Más detalles

UNIDAD DIDÁCTICA 4: LOGARITMOS

UNIDAD DIDÁCTICA 4: LOGARITMOS Tem 4 UNIDAD DIDÁCTICA 4: LOGARITMOS 1. ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función rítmic ritmos 4. Ecuciones eponenciles rítmics 2. INTRODUCCIÓN GENERAL A LA UNIDAD Y ORIENTACIONES

Más detalles

VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN

VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN Químic Anlític VOLUMETRIA ACIDO-BASE ó DE NEUTRALIZACIÓN Medinte l volumetrí ácido-bse se pueden vlorr sustncis que ctúen como ácidos o como bses y ls recciones que trnscurren según los csos pueden formulrse

Más detalles

EJERCICIOS DE VERANO DE MATEMÁTICAS

EJERCICIOS DE VERANO DE MATEMÁTICAS EJERCICIOS DE VERANO DE MATEMÁTICAS º E.S.O. ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN DE FORMA CLARA Y CONCISA NÚMEROS. Reliz ls siguientes operciones

Más detalles

Matemáticas Empresariales I. Integral Definida

Matemáticas Empresariales I. Integral Definida Mtemátics Empresriles I Lección 8 Integrl Definid Mnuel León Nvrro Colegio Universitrio Crdenl Cisneros M. León Mtemátics Empresriles I 1 / 31 Construcción de l integrl definid Se f un función definid

Más detalles

Ecuación de la circunferencia de centro el origen C(0, 0) y de

Ecuación de la circunferencia de centro el origen C(0, 0) y de CÓNICAS EN EL PLANO. CIRCUNFERENCIA, ELIPSE, HIPÉRBOLA Y PARÁBOLA centrds en el origen CIRCUNFERENCIA Aunque segurmente se sep, recordmos que l circunferenci es el conjunto de puntos que distn un cntidd

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .0. Problems de plicciones de máximos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores extremos en los llmdos: problems de plicciones o problems

Más detalles

TEMA 1 EL NÚMERO REAL

TEMA 1 EL NÚMERO REAL Tem El número rel Ejercicios resueltos Mtemátics B º ESO TEMA EL NÚMERO REAL CLASIFICACIÓN Y REPRESENTACIÓN DE NÚMEROS REALES EJERCICIO : Clsific los siguientes números como 0 ; ;,...; 7; ; ; ; 7, = 0,8

Más detalles

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9

Números reales. 1. Números y expresiones decimales. página El conjunto de los números reales página La recta real. Intervalos página 9 Números reles E S Q U E M A D E L A U N I D A D.. Los números rcionles págin.. Los números irrcionles págin. Números y expresiones decimles págin. El conjunto de los números reles págin 8 4.. Orden y desiguldd

Más detalles

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0,

Logaritmos y exponenciales de otras bases. La función. Tipo III: Si u y v son funciones diferenciables en x y u > 0, Logritmos y eponenciles de otrs ses L función Leer con cuiddo el [S, 8] o ien [S, 4] y = Pr >, ln = e Definición: (Tp474) Pr R y > se define ln = e d AL- Deducir l fórmul de ( ) d d v AL- Si u y v son

Más detalles

1 VECTORES 1. MAGNITUDES ESCALARES Y VECTORIALES. Un mgnitud es un concepto bstrcto. Se trt de l ide de lgo útil que es necesrio medir. Ncen sí mgnitudes como l longitud, que represent l distnci entre

Más detalles

CONTENIDO PROGRAMÁTICO

CONTENIDO PROGRAMÁTICO CONTENIDO PROGRAMÁTICO Fech Emisión: 2011/09/15 Revisión No. 1 AC-DO-F-8 Págin 1 de 6 MATEMÁTICAS CÓDIGO 1724101 PROGRAMA Tecnologí en Atención Prehospitlri ÁREA DE FORMACIÓN Fundmentos de Biomédics -

Más detalles

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos)

TEOREMA 1 (Criterio de la segunda derivada para extremos relativos) .. Problems de plicciones de máimos y mínimos En est sección se muestr como usr l primer y segund derivd de un función en l búsqued de vlores etremos en los llmdos: problems de plicciones o problems de

Más detalles

IES. SIERRA DE LAS VILLAS Departamento de Matemáticas

IES. SIERRA DE LAS VILLAS Departamento de Matemáticas Informe pr lumnos pendientes de Mtemátics º de E.S.O. IES. SIERRA DE LAS VILLAS Deprtmento de Mtemátics Nombre:.. Alumno/ de º de E.S.O. tendrá que relizr l prueb extrordinri de Mtemátics, en el mes de

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 8: FUNCIONES.LÍMITES º BACHILLERATO FUNCIONES.Límites y continuidd ÍNDICE. LíMITES Y CONTINUIDAD DE FUNCIONES...3. Definición límite de un función en un punto...4 3. Definición

Más detalles

Razones y Proporciones

Razones y Proporciones Instituto Ncionl de Chile Deprtmento de Mtemátic Prof. Luis Arncibi Año 2008 Rzones y Proporciones Definición Rzón: Cociente entre dos cntiddes; : b como rzón debe leerse es b, y l rzón es el cociente;

Más detalles

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul

Bloque II: Equilibrios Químicos. Profesor: Mª del Carmen Clemente Jul Bloque II: Equilibrios Químicos Profesor: Mª del Carmen Clemente Jul LEY DE EQUILIBRIO QUÍMICO. CONSTNTE DE EQUILIBRIO, EQ L LEY DE EQUILIBRIO QUÍMICO ES L EXPRESIÓN MTEMÁTIC DE L LEY DE CCIÓN DE MSS QUE

Más detalles

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una

DESIGUALDADES < d < En el campo de los números reales tenemos una. Un momento de reflexión muestra que una DESIGUALDADES 7 60 < d < 7 70 En el cmpo de los números reles tenemos un propiedd de orden que se costumbr designr con el símbolo (

Más detalles

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =...

Nombre y apellidos:... Curso:... Fecha:... PROPORCIONALIDAD. Una proporción es la igualdad de... a. b c a. = c. d 21 EJEMPLO: EJERCICIO: = 8 x =... 4 Proporcionlidd y porcentjes Esquem de l unidd Curso:... Fech:... PROPORCIONALIDAD PROPORCIÓN Un proporción es l iguldd de...... b = Los términos y d se llmn... Los términos b y c se llmn... c d EJEMPLO:

Más detalles

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE

INSTITUTO VALLADOLID PREPARATORIA Página 105 ELIPSE INSTITUTO VALLADOLID PREPARATORIA Págin 05 6 LA ELIPSE 6. DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6.,

Más detalles

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante.

La elipse es el lugar geométrico de todos los puntos cuya suma de distancias a dos puntos fijos, llamados focos, es constante. LA ELIPSE DEFINICIONES L elipse es el lugr geométrico de todos los puntos cuy sum de distncis dos puntos fijos, llmdos focos, es constnte. En l figur 6., los focos están representdos por los puntos y f.

Más detalles

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS.

FUNDAMENTOS DE ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN DE PROBLEMAS. EPARTAMENTO E QUÍMICA ANALÍTICA Y TECNOLOGÍA E ALIMENTOS FUNAMENTOS E ANÁLISIS INSTRUMENTAL. 6ª RELACIÓN E PROBLEMAS..- Considerndo que un determindo compuesto AB present un vlor de 0 pr un sistem prticulr

Más detalles

Los números racionales:

Los números racionales: El número rel MATEMÁTICAS I 1 1. EL CONJUNTO DE LOS NÚMEROS REALES. LA RECTA REAL 1.1. El conjunto de los números reles. Como y sbes los números nturles surgen de l necesidd de contr, expresr medids, pr

Más detalles

A modo de repaso. Preliminares

A modo de repaso. Preliminares UNIDAD I A modo de repso. Preliminres Conjuntos numéricos. Operciones. Intervlos. Conjuntos numéricos Los números se clsificn de cuerdo con los siguientes conjuntos: Números nturles.- Son los elementos

Más detalles

Cuál es su valor de CRF? Es normal? Qué enfermedad le sugiere esta valor de CRF?

Cuál es su valor de CRF? Es normal? Qué enfermedad le sugiere esta valor de CRF? 1 Bloque 1 Problem 1. Un niño es conectdo, después de un espirción norml, un bols conteniendo 2 litros de 8% He, 92% O 2. Respir de l bols hst que l mezcl es complet, y en ese momento l concentrción de

Más detalles

Desarrollos para planteamientos de ecuaciones de primer grado

Desarrollos para planteamientos de ecuaciones de primer grado 1) Hllr un número tl que su triple menos 5 se igul su doble más 2. 5= 2 + 2 2= 2+ 5 = 7 2) El triple de un número es igul l quíntuplo del mismo menos 20. Cuál es este número? = 5 20 20 = 5 20 = 2 = 10

Más detalles

INTEGRACIÓN. CÁLCULO DE

INTEGRACIÓN. CÁLCULO DE Cpítulo INTEGRACIÓN. CÁLCULO DE ÁREAS.. Introducción Si el problem del cálculo de l rect tngente llevó los mtemáticos del siglo XVII l desrrollo de ls técnics de l derivción, otro problem, el del cálculo

Más detalles

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES

SECCIÓN 3 DESCRIPCIÓN DE LOS NÚMEROS REALES SEMANA I I I Números Positivos y Negtivos Representción gráfic: SECCIÓN DESCRIPCIÓN DE LOS NÚMEROS REALES -5-4 - - - 0 4 5 Sentido izquierdo Sentido derecho El cero represent l usenci de l cntidd, y es

Más detalles

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas:

DETERMINANTES. Determinante es la expresión numérica de una matriz. Según el orden de la matriz el determinante se resuelve de distintas formas: ÁLGEBR Educgui.com DETERMINNTES Determinnte es l expresión numéric de un mtriz. Según el orden de l mtriz el determinnte se resuelve de distints forms: DETERMINNTE DE SEGUNDO ORDEN Pr poder solucionr un

Más detalles

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN KINESIOLOGÍA Y FISIATRÍA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic LICECIATURA E KIESIOLOGÍA Y ISIATRÍA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA

Más detalles

Relación entre el cálculo integral y el cálculo diferencial.

Relación entre el cálculo integral y el cálculo diferencial. Relción entre el cálculo integrl y el cálculo diferencil. Por: Miguel Solís Esquinc Profesor de tiempo completo Universidd Autónom de Chips En est sección presentmos l relción que gurdn l función derivd

Más detalles

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES

71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 71 BAC CNyS VECTORES 1. PRESENTACIÓN DEL TEMA 2. VECTORES Y OPERACIONES 3. COORDENADAS DE UN VECTOR 4. PRODUCTO ESCALAR DE VECTORES 5. APLICACIONES (EN UNA BASE ORTONORMAL) 6. EJERCICIOS Y PROBLEMAS Vectores

Más detalles

Respuesta: Con este resultado Anahí decide contratar a estos pintores.

Respuesta: Con este resultado Anahí decide contratar a estos pintores. Universidd de Concepción Fcultd de Ciencis Veterinris Nivelción de Mtemátics(0) Unidd-I: Conjunto de los Números Rcionles Introducción: Al plnter l necesidd de dividir números enteros, surge un problem:

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 70 EJERCICIOS Áres y perímetros de figurs sencills Hll el áre y el perímetro de ls figurs coloreds de los siguientes ejercicios: 1 ) b) 3 m 3 m 1,8 m 4 m 6 m ) S3 m3 m9 m b) S 6m 1,8 m 5,4

Más detalles

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS

TABLA DE DISTRIBUCIÓN DE FRECUENCIAS TABLA DE DISTRIBUCIÓN DE FRECUENCIAS L.C. y Mtro. Frncisco Jvier Cruz Ariz L.C. y Mtro. Frncisco Jvier Cruz Ariz TABLA DE DISTRIBUCIÓN DE FRECUENCIAS Un mner de simplificr los dtos es usr un tbl de frecuenci

Más detalles

El conjunto de los números naturales tiene las siguientes características

El conjunto de los números naturales tiene las siguientes características CAPÍTULO Números Podemos decir que l noción de número nció con el homre. El homre primitivo tení l ide de número nturl y prtir de llí, lo lrgo de muchos siglos e intenso trjo, se h llegdo l desrrollo que

Más detalles

PROPORCIONALIDAD. PROPORCIÓN: Es una igualdad entre dos PORCENTAJES. Relación entre porcentajes y: o Proporciones o Fracciones o Números decimales

PROPORCIONALIDAD. PROPORCIÓN: Es una igualdad entre dos PORCENTAJES. Relación entre porcentajes y: o Proporciones o Fracciones o Números decimales PROPORCIONALIDAD RAZÓN entre dos números y b: Es el cociente b PROPORCIÓN: Es un iguldd entre dos c rzones: b d RELACIÓN DE PROPORCIONALIDAD entre mgnitudes: o Mgnitudes directmente proporcionles o Mgnitudes

Más detalles

Es una función exponencial con base 2. Veamos con la rapidez que crece:

Es una función exponencial con base 2. Veamos con la rapidez que crece: Funciones eponenciles y ritmics Doc. Luis Hernndo Crmon R Funciones Eponenciles Ejemplos: f ( ) Es un función eponencil con bse. Vemos con l rpidez que crece: f () 8 f (0) 0 04 f (0) 0,07,74,84 Funciones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 016 QUÍMICA TEMA 6: EQUILIBRIOS ÁCIDO-BASE Junio, Ejercicio 4, Opción A Reserv 1, Ejercicio 4, Opción B Reserv, Ejercicio 6, Opción A Reserv, Ejercicio 4, Opción

Más detalles

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m

3. El logaritmo de una potencia cuya base es igual a la base del logaritmo es igual al exponente de la potencia: Log a a m = m, ya que a m =a m LOGARITMOS Ddo un número rel positivo, no nulo y distinto de 1, ( > 0; 0; 1), y un número n positivo y no nulo (n > 0;n 0), se llm ritmo en bse de n l exponente x l que hy que elevr dich bse pr obtener

Más detalles

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z):

Álgebra Lineal. 1) (Junio-96) Considérese el sistema de ecuaciones lineales (a, b y c son datos; las incógnitas son x, y, z): Mtemátics II Álgebr Linel (Junio-96 Considérese el sistem de ecuciones lineles ( b c son dtos; ls incógnits son : b c c b b c Si b c son no nulos el sistem tiene solución únic. Hllr dich solución. (Sol:

Más detalles

TEMA VI: ACIDOS Y BASES

TEMA VI: ACIDOS Y BASES www.selectividd-cgrnd.com TEMA VI: ACIDOS Y BASES 1.- El ácido clorocético (ClCH COOH) en concentrción 0,01M y 5 C se encuentr disocido en 1%. Clculr: ) L constnte de disocición de dicho ácido. b) El ph

Más detalles

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por.

Números Reales. Los números naturales son {1; 2; 3; }, el conjunto de todos ellos se representa por. Se distinguen distints clses de números: Números Reles Los números nturles son {1; 2; 3; }, el conjunto de todos ellos se represent por. El primer elemento es el 1 y no tiene último elemento Todo número

Más detalles

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción.

Números racionales son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresar en forma de fracción. MATEMÁTICAS ºACT TEMA. EL NÚMERO REAL. NÚMEROS RACIONALES. Números rcionles son los que se pueden poner como cociente de dos números enteros. Es decir, se pueden expresr en form de frcción. Los números

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 4: Lunes 1 - Viernes 5 de Abril. Contenidos Coordinción de Mtemátic I (MAT01) 1 er Semestre de 013 Semn 4: Lunes 1 - Viernes 5 de Abril Complementos Contenidos Clse 1: Funciones trigonométrics. Clse : Funciones sinusoidles y ecuciones trigonométrics.

Más detalles

a Y = X donde a 1 siendo Lg el logaritmo y

a Y = X donde a 1 siendo Lg el logaritmo y Mteri: Mtemátics de 4to ño Tem: Función logrítmic Mrco Teórico L función exponencil de l form f ( ) tiene un función invers, que llmmos función logrítmic y se escribe de l form: Un función > 0 g( ) Lg

Más detalles

1.- Cálculo del coeficiente de autoinducción.

1.- Cálculo del coeficiente de autoinducción. Trbjo Práctico 8 1.- Cálculo del coeficiente de utoinducción. Describ el fenómeno de utoinducción en un bobin. Encuentre l expresión del coeficiente de utoinducción en un solenoide lrgo de N s = 1 espirs

Más detalles

Optimización de funciones

Optimización de funciones Tem 5 Optimizción de funciones 5.1. Extremos de funciones de vris vribles Definición 5.1.1. Sen f : D R n R, x 0 D y el problem de optimizción: mximizr / minimizr f(x 1, x,, x n ), (x 1, x,, x n ) D en

Más detalles

5. Integral y Aplicaciones

5. Integral y Aplicaciones Métodos Mtemáticos (Curso 203 204) Grdo en Óptic y Optometrí 29 5. Integrl y Aplicciones Primitiv de un función Un función F es un primitiv de f, en un intervlo I, si F (x) = f(x) pr todo x en I. Observción

Más detalles

Capítulo 5. Medición de la Distancia por Medio de Triangulación

Capítulo 5. Medición de la Distancia por Medio de Triangulación Cpítulo 5. Medición de l Distnci por Medio de Tringulción 5.1 Introducción Hemos visto cómo medir l distnci de un objeto un cámr cundo dicho objeto es cptdo por un sol cámr; sin embrgo, cundo el objeto

Más detalles

MATEMÁTICAS-FACSÍMIL N 9

MATEMÁTICAS-FACSÍMIL N 9 MTEMÁTIS-FSÍMIL N 9. b b b ) - b ) b - ) b D) E) 6 cm ( b) =. El triángulo está inscrito en l mitd de l circunferenci. Si h c = cm y el ldo = 5cm. El rdio de l circunferenci es: ) cm ) 6 cm ) 6 cm O D)

Más detalles

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3

60º L = 5 cm. q 1. q 2. b = 6 cm. q 4. q 3 UNIVERSIDAD NACIONAL EXERIMENTAL FRANCISCO DE MIRANDA COMLEJO DOCENTE EL SABINO DEARTAMENTO DE MATEMÁTICA Y FÍSICA UNIDAD CURRICULAR: FÍSICA II ROFESORA CARMEN ADRIANA CONCECIÓN 1 Considere tres crgs en

Más detalles

SOLUCIONARIO Poliedros

SOLUCIONARIO Poliedros SOLUCIONARIO Poliedros SGUICES06MT-A16V1 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA Poliedros Ítem Alterntiv 1 D A Comprensión E B 5 D 6 C 7 D 8 B 9 D 10 C 11 E 1 D 1 A 1 C 15 E Comprensión 16 B Comprensión 17

Más detalles

Teorema fundamental del Cálculo.

Teorema fundamental del Cálculo. Sesión Teorem fundmentl del Cálculo (TFC) Tems Teorem fundmentl del Cálculo. Cpciddes Conocer y comprender el TFC. Aplicr el TFC en el cálculo de derivds e integrles definids.. Introducción I. Brrow Inglés.

Más detalles

Clase 2: Expresiones algebraicas

Clase 2: Expresiones algebraicas Clse 2: Expresiones lgebrics Operr expresiones lgebrics usndo ls propieddes lgebrics de ls operciones sum y producto, propieddes de ls potencis, regls de signos y préntesis. Evlur expresiones lgebrics

Más detalles

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS

accés a la universitat dels majors de 25 anys MATEMÀTIQUES UNIDAD DIDÁCTICA 4: LOGARITMOS Unitt d ccés ccés l universitt dels mjors de 25 ns Unidd de cceso cceso l universidd de los mores de 25 ños UNIDAD DIDÁCTICA 4: LOGARITMOS ÍNDICE 1. Introducción 2. Potencis funciones eponenciles 3. Función

Más detalles

(2132) Repuestos de maquinaria 80.000

(2132) Repuestos de maquinaria 80.000 3. Norms prticulres sobre el inmovilizdo mteril 80.000 25.000 800 (2131) Mquinri. Motores (75.000 + 5.000) (28132) Amortizción cumuld. Repuestos de mquinri (motores) (100.000/8) x 2 (472) Hciend Públic,

Más detalles

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA 7: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. POTENCIAS L epresión n se llm potenci de bse y eponente n: Si n es un número nturl: n =, n veces. 0 =, = n m n n m = y = n Ejercicios: º)

Más detalles

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es

5 2 B) C) o 16 1 C) 2 D) 16 E)-2. Sesión Si una progresión geométrica tiene primer término 243 y el quinto término es Sesión.- Si un progresión geométric tiene primer término y el quinto término es entonces l rzón r es igul : Unidd I Progresiones y series. D. Progresión geométric..- L poblción de un ciudd h umentdo de

Más detalles

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1

TEMA 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Matemáticas CCSSII 2º Bachillerato 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Mtemátics CCSSII 2º Bchillerto 1 TEMA RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.1 DETERMINANTES DE ORDEN 2.1.1 DEFINICIÓN: El determinnte de un mtriz

Más detalles

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS

XII.- TRANSMISIÓN DE CALOR POR CONVECCIÓN FLUJO EN CONDUCTOS XII.- TANSMISIÓN DE CALO PO CONVECCIÓN FLUJO EN CONDUCTOS XII.1.- FLUJO ISOTÉMICO EN CONDUCTOS CICULAES; ECUACIÓN DE POISEUI- LLE En un flujo lminr l corriente es reltivmente lent y no es perturbd por

Más detalles

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS TEMA8: FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS. LA FUNCIÓN EXPONENCIAL Ejercicio: º) Resuelve ls siguientes ecuciones plicndo ls propieddes de ls potencis:. = 8 + 6 9. 5. = = 0. + = 6 8

Más detalles

Geodesia Física y Geofísica

Geodesia Física y Geofísica Geodesi Físic y Geofísic I semestre, 016 Ing. José Frncisco Vlverde Clderón Emil: jose.vlverde.clderon@un.cr Sitio web: www.jfvc.wordpress.com Prof: José Fco Vlverde Clderón Geodesi Físic y Geofísic I

Más detalles

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales

Aplicación del Cálculo Integral para la Solución de. Problemáticas Reales Aplicción del Cálculo Integrl pr l Solución de Problemátics Reles Jun S. Fierro Rmírez Universidd Pontifici Bolivrin, Medellín, Antioqui, 050031 En este rtículo se muestr el proceso de solución numéric

Más detalles

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1.

a n =b Si a es múltiplo de b, entonces b es divisor de a. Números primos: son números cuyos únicos divisores son ellos mismos y el 1. 1) NÚMEROS NATURALES Son números que sirven pr contr. Descomposición polinómic de un número. Ej : 1.34.567 1: Uniddes de millón : Centens de millr 3: Decens de millr 4: Uniddes de millr 5: Centens 6: Decens

Más detalles

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos

UNI DAD 2 TRIGONOMETRÍA ANALÍTICA. Objetivos UNI DAD 2 TRIGONOMETRÍA ANALÍTICA Objetivos Geometrí nlític Introducción funciones trigonométrics Vribles: dependientes independientes Constnte: numéric bsolut rbitrri, y z., b, c, Funciones: función

Más detalles

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor :

RESUMEN 01 NÚMEROS. Nombre : Curso. Profesor : RESUMEN 01 NÚMEROS Nomre : Curso : Profesor : PÁGINA 1 Números Los elementos del conjunto N = {1, 2, 3, 4, 5, } se denominn Números Nturles. Los Números Crdinles corresponden l unión del conjunto de los

Más detalles

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD

TEMA 1: FUNCIONES. LÍMITES Y CONTINUIDAD Conceptos preinres TEMA : FUNCIONES. LÍMITES Y CONTINUIDAD Un función es un relción entre dos mgnitudes, de tl mner que cd vlor de l primer le sign un único vlor de l segund. Si A y B son dos conjuntos,

Más detalles

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto

UNGS - Elementos de Matemática Práctica 7 Matriz insumo producto UNGS - Elementos de Mtemátic Práctic 7 Mtriz insumo producto El economist W. Leontief es el utor del modelo o l tbl de insumo producto. Est tbl refle l interrelción entre distintos sectores de l economí

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidd 1: Números reles. 1 Unidd 1: Números reles. 1.- Números rcionles e irrcionles Números rcionles: Son quellos que se pueden escriir como un frcción. 1. Números enteros 2. Números decimles exctos y

Más detalles

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO

XI. LA HIPÉRBOLA LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO XI. LA HIPÉRBOLA 11.1. LA HIPÉRBOLA COMO LUGAR GEOMÉTRICO Definición L hipérol es el lugr geométrico descrito por un punto P que se mueve en el plno de tl modo que el vlor soluto de l diferenci de sus

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO Curso / MATERIA MATEMATICAS II INSTRUCCIONES GENERALES Y VALORACIÓN El lumno

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES FUNCIONES ELEMENTALES.- FUNCIONES POLINÓMICAS.- Funciones Lineles Son funciones cu le es un polinomio de primer grdo, es decir, f() m + n Sus gráfics son rects pr representrls bst con obtener dos puntos

Más detalles

LÍMITES DE FUNCIONES

LÍMITES DE FUNCIONES LÍMITES DE FUNCIONES Se dice que un función y f() tiene límite "L" cundo l tiende "" y lo representmos por: f() L cundo pr tod sucesión de números reles que se proime "" tnto como quermos, los vlores correspondientes

Más detalles

MOVIMIENTO DE RODADURA

MOVIMIENTO DE RODADURA E.T.S.. Agrónomos. U.P.. OVENTO DE ODADUA Cuerpos rodntes. Considermos el moimiento de cuerpos que, debido su geometrí, tienen l cpcidd de rodr: eser, ro, disco, supericie eséric, cilindro poydo sobre

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio NUMEROS IRRACIONALES Conocemos hst hor distintos conjuntos numéricos: - Los n nturles: (, 8,.978), representdos por l letr N - Los n enteros: ( -, -, 8, 68), representdos por l letr Z - Los n rcionles

Más detalles

3 Sistemas de ecuaciones lineales

3 Sistemas de ecuaciones lineales Solucionrio Sistems de ecuciones lineles CTIVIDDES INICILES.I. Resuelve los siguientes sistems de ecuciones. ) c) 6 ), λ, λλ R, c) Sistem incomptible,.ii. En cd cso, escribe un sistem de ecuciones cu solución

Más detalles

MATRICES DE NÚMEROS REALES

MATRICES DE NÚMEROS REALES MTRICES. MTURITS Luis Gil Guerr.- DEFINICIÓN MTRICES DE NÚMEROS RELES Llmmos mtriz de números reles de orden m x n un conjunto ordendo de m. n números reles dispuestos en m fils y en n columns i m i m

Más detalles

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO.

3. Resuelve y simplifica: 6. Resuelve y simplifica: Nombre y apellidos : Materia: MATEMATICAS (PENDIENTES) Curso: 2º ESO. Nombre y pellidos : Mteri: MATEMATICAS PENDIENTES) Curso: º ESO ª entreg Fech: INSTRUCCIONES: Pr est primer entreg deberás trbjr losejercicios del l que quí te djuntmos pr ello debes yudrte de tu cuderno

Más detalles

DINÁMICA Y LAS LEYES DE NEWTON

DINÁMICA Y LAS LEYES DE NEWTON DINÁMICA Y LAS LEYES DE NEWTON EXPERIENCIA N 7 Un propiedd de los cuerpos mteriles es su ms inercil. L fuerz es otro concepto nuevo, útil cundo se trt de describir ls intercciones entre cuerpos mteriles.

Más detalles

Taller de Matemáticas I

Taller de Matemáticas I Tller de Mtemátics I Semn y Tller de Mtemátics I Universidd CNCI de México Tller de Mtemátics I Semn y Temrio. Los números positivos.. Representción de números positivos... Frcciones... Decimles... Porcentjes..4.

Más detalles

RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL

RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL 2º ESPA! I.E.S Slmedin (Chipion) RESOLUCIÓN DE PROBLEMAS DE CRECIMIENTO DE UNA POBLACIÓN BACTERIAS Y VIRUS QUE SIGUEN UN PATRÓN DE CRECIMIENTO SEGÚN UNA FUNCIÓN EXPONENCIAL N=No t/tr tiempo trnscurrido/tiempo

Más detalles

recta numérica U Figura 1.1

recta numérica U Figura 1.1 Cpítulo 1 Rect numéric L rect numéric es un objeto mtemático que formliz l cint de medir o ls regls. En un rect ilimitd se elige un punto que se llm origen y un unidd, es decir decimos que el segmento

Más detalles

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL

3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL 3. FUNCIONES VECTORIALES DE UNA VARIABLE REAL INDICE 3.1. Definición de función vectoril de un vrile rel, dominio y grficción.2 3.2. Límites y continuidd..3 3.3. Derivción de funciones vectoriles y sus

Más detalles

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida»

73 ESO. E = m c 2. «El que pregunta lo que no sabe es ignorante un. día. El que no lo pregunta será ignorante toda la vida» 73 ESO dí. «El que pregunt lo que no se es ignornte un El que no lo pregunt será ignornte tod l vid» E = m c ÍNDICE: MENSAJES OCULTOS 1. EXPRESIONES ALGEBRAICAS. VALOR NUMÉRICO DE UNA EXPRESIÓN ALGEBRAICA

Más detalles

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica

LICENCIATURA EN OBSTETRICIA FÍSICA BIOLÓGICA. TRABAJO PRACTICO Nº 2 Dinámica LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic LICECIATURA E OBSTETRICIA TRABAJO PRACTICO º Dinámic Ing. ROIO GUAYCOCHEA Ing. MARCO DE ARDI Ing. ESTEBA LEDROZ Ing. THELMA AURORA ZAO AÑO 014 Ing.

Más detalles