Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS"

Transcripción

1 Red ibérica de evaluación de eficacia y efectos secundarios de tratamientos para el control de plagas en el olivar (RIESPO) 2ª Reunión, Madrid 10-11/06/2010 Grupo 4: BUENAS PRÁCTICAS ESTADÍSTICAS

2 ESTADÍSTICA UNIVARIANTE 1. COMPARACIÓN DE MEDIAS 2. COMPARACIÓN DE FRECUENCIAS

3 ESTADÍSTICA UNIVARIANTE 1. COMPARACIÓN DE MEDIAS 2. COMPARACIÓN DE FRECUENCIAS

4 COMPARACIÓN DE MEDIAS Métodos análisis VENTAJAS Mayor potencia de paramétricos Estima interacciones entre efectos No se efectúan supuestos acerca de la distribución de los Métodos no paramétricos datos Gran robustez INCONVENIENTES Se efectúan supuestos acerca de la distribución de los datos Robustez variable a las violaciones de los supuestos Menor potencia de análisis No estima interacciones Funcionan mal con n pequeños

5 COMPARACIÓN DE MEDIAS Métodos paramétricos Métodos no paramétricos

6 MÉTODOS PARÁMETRICOS SUPUESTOS NORMALIDAD DE LOS DATOS HOMOGENEIDAD DE VARIANZAS

7 SUPUESTOS NORMALIDAD DE LOS DATOS Contraste 2 de Pearson Prueba de Kolmogorov-Smirnov (n>30) Prueba de Shapiro-Wilks (n<30) Es la prueba más recomendada en la actualidad por su mayor potencia p>0,05 p<0,05 HOMOGENEIDAD DE VARIANZAS Normalidad No normalidad Hartley Levene p>0,05 Cochran p<0,05 Barlett Homogeneidad No Homogeneidad

8 SUPUESTOS PROBLEMAS CON EL USO DE PRUEBAS ESTADÍSTICAS PARA LA COMPROBACIÓN DE ESTOS SUPUESTOS DEPENDENCIA DEL TAMAÑO MUESTRAL La potencia estadística de estas pruebas aumenta a mayores tamaños muestrales y es muy pequeña con tamaños muestrales pequeños. Como consecuencia, a mayor tamaño muestral, mayor probabilidad de rechazar la hipótesis nula porque las pruebas son muy exigentes y a menor tamaño muestral, mayor probabilidad de aceptar la hipótesis nula por la menor potencia de la prueba. LOS RESULTADOS DE DIFERENTES PRUEBAS PUEDEN SER DISTINTOS ENTRE SÍ La elección de una prueba en particular puede tener un gran impacto en las conclusiones que se obtengan de nuestros experimentos dando cabida a la subjetividad

9 ALTERNATIVA: MÉTODOS GRÁFICOS NORMALIDAD Normal probability plot ( Gráfico de probabilidad normal ): para cada valor observado en nuestros datos, se representa en el eje x la función de probabilidad acumulada observada, y en el eje y la prevista por el modelo de distribución normal. Si el ajuste es bueno, los puntos se deben distribuir aproximadamente según una recta a 45º.

10 ALTERNATIVA: MÉTODOS GRÁFICOS NORMALIDAD Box and Whisker plot ( Diagrama de caja y bigotes ): permite observar si la mediana coincide con la media y se observa fácilmente la dispersión de los datos.

11 ALTERNATIVA: MÉTODOS GRÁFICOS NORMALIDAD Histogramas de frecuencias

12 ALTERNATIVA: MÉTODOS GRÁFICOS HOMOGENEIDAD DE VARIANZAS Representación de la dispersión de los residuos respecto a las medias de los grupos

13 TRANSFORMACIONES Si los datos no se ajustan a una distribución normal o las varianzas no son homogéneas TRANSFORMACIONES Consiste en trabajar con otras escalas para conseguir los requisitos de los métodos paramétricos Transformación logarítmica ln (x) ln(x+1), si hay valores = 0 Transformación raíz cuadrada x (x+1), si hay valores = 0 Transformación recíproca 1/x 1/(x+1), si hay valores = 0 Comprimen los valores altos de los datos y expanden los bajos Transformación cuadrática x 2 Comprime la escala para valores pequeños y la expande para valores altos Transformación angular arcsen p Apropiada cuando los datos son proporciones o porcentajes

14 MÉTODOS PARAMÉTRICOS t-student Anova one way Comparar medias para dos muestras independientes Comparar medias para tres o más muestras independientes con un solo factor Anova factorial Anova encajado Análisis de dos o más factores Análisis de dos o más factores en los que uno de ellos está jerarquizado por lo que existen muestras no independientes dentro de los niveles de ese factor Ancova Análisis de dos o más factores de los que al menos uno es una covariable (la covariable siempre será una variable continua) Si existen diferencias significativas Test post-hoc paramétricos (comparación múltiple de medias) Fisher LSD -> comparación de reducido número de grupos <4 Tukey -> robusto a desvios de la normalidad y la homogeneidad de varianzas Scheffe-> + conservativo. Apenas distingue diferencias elevadas entre grupos Bonferroni -> robusto para muestras pequeñas Dunnet -> se emplea para comparar tratamientos frente a un grupo control Webster, R. (2007). Eur. J. Soil Sci. 58:74-82

15 ANOVA FACTORIAL vs ANOVA ENCAJADO ANOVA factorial: todos los niveles de los factores considerados están cruzados. Si tenemos dos factores, A y B, con dos niveles cada uno, A1 y A2, y B1 y B2 tendremos muestras para cada una de las combinaciones de los niveles de los factores. Ejemplo: sexo (machos y hembras) y edad (adultos e inmaduros): Machos Adultos X X Inmaduros X X Hembras Donde la cruz representa la presencia de datos para cada combinación.

16 ANOVA FACTORIAL vs ANOVA ENCAJADO ANOVA encajado: cada nivel del segundo factor está representado en UNO SOLO de los niveles del primer factor. A1 A2 B1 B2 B1 B2 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Este tipo de diseño y análisis permite aumentar el tamaño muestral al considerar y controlar las pseudorréplicas de cada uno de los niveles del factor encajado

17 ANOVA FACTORIAL vs ANOVA ENCAJADO Ejemplo: efecto de un regulador del crecimiento de insectos (RCI) sobre el periodo de desarrollo del escarabajo de la patata. Tenemos un grupo tratado y un grupo control. Por razones de espacio por no poder individualizar los sujetos muestrales, disponemos 5 larvas de primer estadio por caja, empleando 2 cajas para cada tratamiento. Factor principal (A): Tratamiento, siendo A1, los tratados con el RCI y A2, el grupo control. Factor encajado (B): Factor Caja. Cada caja tendrá 5 datos no independientes entre sí. Habrá tantos niveles del factor caja como réplicas hayamos dispuesto, en este caso 2: B1 y B2.

18 ANOVA FACTORIAL vs ANOVA ENCAJADO ANOVA encajado: cada nivel del segundo factor está representado en UNO SOLO de los niveles del primer factor. A1 Tratados A2 Control B1 Caja A11 B2 Caja A11 B1 Caja A21 B2 Caja A11 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

19 MÉTODOS PARAMÉTRICOS Determinación del efecto de distintos tratamientos cuando se realizan muestreos sobre los mismos sujetos o parcelas de ensayo a lo largo del tiempo Se emplea cuando se realizan varias estimas de la misma variable efectuadas en situaciones distintas en los mismos sujetos muestrales Test de esfericidad de Mauchly s (estadístico W) Determina la independencia de los niveles del factor repetido p>0,05 (niveles independientes) p<0,05 (niveles dependientes) Anova de medidas repetidas MANOVA: Estadístico F generado por la traza de Pillai Comparaciones entre tratamientos Tukey -> Si no hay diferencias entre las varianzas Tamhane-> Si hay diferencias entre las varianzas

20 COMPARACIÓN DE MEDIAS Métodos paramétricos Métodos no paramétricos

21 MÉTODOS NO PARAMÉTRICOS Comparar medias para dos muestras independientes Comparar medias para tres o más muestras independientes Mann-Whitney Kruskal-Wallis Si existen diferencias significativas Tests post-hoc no paramétricos Least Significant Difference between mean ranks Ejemplo: Test de Dunn

22 COMPARACIÓN DE MEDIAS Análisis univariante La muestra es una distribución normal? Test de Kolmogorov-Smirnov -> n>30 Test de Shapiro-Wilks -> n<30 Sí No Las varianzas son homogéneas? No TRANSFORMACIÓN Test de homogeneidad de varianzas: Hartley, Cochran, Barlett o Levene Sí Sí Test paramétricos No Test NO paramétricos

23 ESTADÍSTICA UNIVARIANTE 1. COMPARACIÓN DE MEDIAS 2. COMPARACIÓN DE FRECUENCIAS

24 COMPARACIÓN DE FRECUENCIAS Comparación de frecuencias <20% de frecuencias esperadas <5 >20% de frecuencias esperadas <5 (1) Test 2 Si g.l. = 1, se aplica la corrección de Yates Test exacto de Fisher (1) (1) Cuando el tamaño muestral es reducido, la utilización de la distribución 2 para aproximar las frecuencias introduce sesgos en los cálculos, de modo que el valor del estadístico tiende a ser mayor

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos

Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos Inferencia Estadística. Pruebas paramétricas y no paramétricas. Análisis de datos VDC Prof. Mª JOSÉ PRIETO CASTELLÓ ANÁLISIS ESTADÍSTICO DE DATOS Estadística Descriptiva: -Cualitativas: frecuencias, porcentajes

Más detalles

Supuestos y comparaciones múltiples

Supuestos y comparaciones múltiples Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución

Más detalles

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery)

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery) Ejemplo Diseño Completamente aleatorizado (Pág. 47 Montgomery) ) Representación gráfica de los datos mediante diagramas de caja Resumen del procesamiento de los casos Tension del papel (psi) Casos Válidos

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

CONTRASTES DE HIPÓTESES

CONTRASTES DE HIPÓTESES CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles

ANÁLISIS DE EXPERIMENTOS

ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

BIOSESTADÍSTICA AMIGABLE

BIOSESTADÍSTICA AMIGABLE BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN

Más detalles

Pruebas para evaluar diferencias

Pruebas para evaluar diferencias Pruebas para evaluar diferencias Métodos paramétricos vs no paramétricos Mayoría se basaban en el conocimiento de las distribuciones muestrales (t- student, Normal, F): EsFman los parámetros de las poblaciones

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS SUBDIRECCIÓN DE POSGRADO CONTENIDO DE CARTA DESCRIPTIVA 1.- IDENTIFICACIÓN Curso: Bioestadística Programa: Doctorado en Inmunobiología

Más detalles

Diseño de Experimentos

Diseño de Experimentos Diseño de Experimentos Tema 6. Validación de Supuestos JAIME MOSQUERA RESTREPO VERIFICACIÓN DE LA ADECUACIÓN DEL MODELO Los procedimientos estudiados son validos únicamente bajo el cumplimiento de 4 supuestos

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

4 Análisis de Varianza

4 Análisis de Varianza 4 Análisis de Varianza 4. Análisis de Varianza e.4.1. Quiénes obtienen mejores resultados en Matemáticas, los estudiantes que viven en zonas rurales, en pequeñas ciudades, en ciudades medias o en grandes

Más detalles

14 horas. 20 horas

14 horas. 20 horas EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado

Más detalles

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre

Más detalles

Estadísticos Aplicados en el SPSS 2008

Estadísticos Aplicados en el SPSS 2008 PRUEBAS ESTADISTICAS QUE SE APLICAN (SPSS 10.0) PARAMÉTRICAS:... 2 Prueba t de Student para una muestra... 2 Prueba t par muestras independientes... 2 ANOVA de una vía (multigrupo)... 2 ANOVA de dos vías

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

Información general. Fundamentos de Análisis de datos. Obligatoria básica o de fundamentación X. Obligatoria profesional

Información general. Fundamentos de Análisis de datos. Obligatoria básica o de fundamentación X. Obligatoria profesional Guía de asignatura Formato institucional Rev. Abril 2013 Información general Asignatura Fundamentos de Análisis de datos Código Tipo de asignatura Obligatoria X Electiva Tipo de saber Número de créditos

Más detalles

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste.

Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Conceptos básicos de inferencia estadística (III): Inferencia no paramétrica: Contrastes de bondad de ajuste. Tema 1 (III) Estadística 2 Curso 08/09 Tema 1 (III) (Estadística 2) Contrastes de bondad de

Más detalles

9.- Análisis estadísticos con R Commander

9.- Análisis estadísticos con R Commander Tipos de datos - Cuantitativos: se expresan numéricamente. - Discretos: Toman valores numéricos aislados - Continuos: Toman cualquier valor dentro de unos límites dados - Categóricos o Cualitativos: No

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN

ÍNDICE CAPÍTULO 1. INTRODUCCIÓN ÍNDICE CAPÍTULO 1. INTRODUCCIÓN 1.1. OBJETO DE LA ESTADÍSTICA... 17 1.2. POBLACIONES... 18 1.3. VARIABLES ALEATORIAS... 19 1.3.1. Concepto... 19 1.3.2. Variables discretas y variables continuas... 20 1.3.3.

Más detalles

TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS

TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS TEMA II EL ANÁLISIS PRELIMINAR DE LOS DATOS LECTURA OBLIGATORIA Capítulo 2: Preparación del Archivo de datos. En Rial, A. y Varela, J. (2008). Estadística Práctica para la Investigación en Ciencias de

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

Análisis descriptivo y exploratorio de datos

Análisis descriptivo y exploratorio de datos TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Análisis descriptivo y exploratorio de datos Francisco M. Ocaña Peinado @ocanapaco http://www.ugr.es/local/fmocan Departamento de Estadística e Investigación

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ

PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ PROGRAMA DEL CURSO SOBRE PSICOLOGÍA EXPERIMENTAL MANUEL MIGUEL RAMOS ÁLVAREZ Resumen de Psicología Experimental 1 PSICOLOGÍA EXPERIMENTAL Manuel Miguel Ramos Alvarez. I. FUNDAMENTOS METODOLÓGICOS DE LA

Más detalles

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos?

Pero qué hacemos cuando no se cumple la normalidad o tenemos muy pocos datos? Capítulo : Métodos no paramétricos Los métodos presentados en los capítulos anteriores, se basaban en el conocimiento de las distribuciones muestrales de las diferencias de porcentajes o promedios, cuando

Más detalles

Comparación de variables continuas. Ventajas. Desventajas. Ventajas

Comparación de variables continuas. Ventajas. Desventajas. Ventajas Comparación de variables continuas Familias param. y no-param. Familias paramétricas: Funciones de distribución caracterizadas por pocos parámetros Familias no paramétricas: Funciones de distribución que

Más detalles

Estadística. Análisis de la varianza de un factor (ANOVA) Tests a posteriori. Prof, Dr. Jose Jacobo Zubcoff

Estadística. Análisis de la varianza de un factor (ANOVA) Tests a posteriori. Prof, Dr. Jose Jacobo Zubcoff Análisis de la varianza de un factor () Tests a posteriori Prof, Dr. Jose Jacobo Zubcoff Departamento de Ciencias del Mar y Biología Aplicada Ejemplo de problema a resolver: Uno de los focos de contaminación

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS

ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS ALTERNATIVAS NO PARAMÉTRICAS A LOS CONTRASTES DE MEDIAS 1.- Introducción... 2 2.- Prueba U de Mann Whitney para muestras independientes... 3 3.- Prueba t de Wicoxon para muestras apareadas... 8 1.- Introducción

Más detalles

Para poder analizar los diferentes objetivos e hipótesis planteados, se llevaron a. Correlaciones entre las distintas Variables objeto de estudio.

Para poder analizar los diferentes objetivos e hipótesis planteados, se llevaron a. Correlaciones entre las distintas Variables objeto de estudio. Tesis Doctoral. Juan Ángel Simón Piqueras. Para poder analizar los diferentes objetivos e hipótesis planteados, se llevaron a cabo los siguientes análisis estadísticos: MANCOVA tomando como variables independientes

Más detalles

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA G969 - Métodos Estadísticos en Economía y Empresa Grado en Economía Curso Académico 2015-2016 1. DATOS IDENTIFICATIVOS Título/s Grado en Economía Tipología y Optativa.

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

ANALISIS DE LA VARIANZA PARA MEDIDAS REPETIDAS

ANALISIS DE LA VARIANZA PARA MEDIDAS REPETIDAS ANALISIS DE LA VARIANZA PARA MEDIDAS REPETIDAS 1.- Introducción... 2 2.- Modelo de medidas repetidas para un factor... 2 2.1.- Pruebas post hoc... 7 3. - Modelo de medidas repetidas para dos factores...

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA

Escuela Nacional de Estadística e Informática ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA ESPECIALIZACIÓN EN ESTADÍSTICA APLICADA Lima Perú 2013 DISEÑO COMPLETAMENTE ALEATORIZADO Es el diseño más simple y sencillo de realizar, en el cual los tratamientos

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS

ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS ANÁLISIS ESTADÍSTICO PRUEBA DE HIPOTESIS Jorge Fallas jfallas56@gmail.com 2010 1 Temario Datos experimentales y distribuciones de referencia Una media poblacional Hipótesis nula, alternativa y nivel de

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

Caso 102 : Explorando presiones arteriales en pacientes

Caso 102 : Explorando presiones arteriales en pacientes Caso 102 : Comparando presiones arteriales en pacientes 1 Caso 102 : Explorando presiones arteriales en pacientes (Exploración de datos: Análisis exhaustivo de una matriz )(F.J. Burguillo, USAL) Caso práctico

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

ÍNDICE INTRODUCCIÓN... 21

ÍNDICE INTRODUCCIÓN... 21 INTRODUCCIÓN... 21 CAPÍTULO 1. ORGANIZACIÓN DE LOS DATOS Y REPRESENTACIONES GRÁFICAS... 23 1. ORGANIZACIÓN DE LOS DATOS... 23 1.1. La distribución de frecuencias... 24 1.2. Agrupación en intervalos...

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández

Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández Métodos de Investigación en Psicología (11) Dra. Lucy Reidl Martínez Dra. Corina Cuevas Reynaud Dra. Renata López Hernández El método incluye diferentes elementos Justificación Planteamiento del problema

Más detalles

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA

PROGRAMA DE ESTADÍSTICA DESCRIPTIVA PROGRAMA DE ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS DE ESTADÍSTICA Definición de Estadística Origen del concepto. Evolución histórica de la Estadística Estadística Descriptiva y Estadística Inferencial

Más detalles

Bioestadística y uso de software científico TEMA 8 ANOVA FACTORIAL ANOVA DE MEDIDAS REPETIDAS

Bioestadística y uso de software científico TEMA 8 ANOVA FACTORIAL ANOVA DE MEDIDAS REPETIDAS Bioestadística y uso de software científico TEMA 8 ANOVA FACTORIAL ANOVA DE MEDIDAS REPETIDAS Hasta ahora... Tema Variable dependiente Variable independiente Test Tema 4 Categórica Categórica χ 2, McNemar

Más detalles

TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN

TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN TEMA 6 COMPROBACIÓN DE HIPÓTESIS ESPECÍFICAS DE INVESTIGACIÓN 1 DISEÑO DE INVESTIGACIÓN Y 1 A = a 1 a Y 1 A = 3 a 1 a a Hipótesis específicas de la investigación Cuando la variable independiente tiene

Más detalles

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos

viii CAPÍTULO 2 Métodos de muestreo CAPÍTULO 3 Análisis exploratorio de datos Contenido Acerca de los autores.............................. Prefacio.... xvii CAPÍTULO 1 Introducción... 1 Introducción.............................................. 1 1.1 Ideas de la estadística.........................................

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

ANOVA. Análisis de regresión y modelo lineal

ANOVA. Análisis de regresión y modelo lineal . Análisis de regresión y modelo lineal [0011] DEFAD. Métodos de contraste de hipótesis y diseño de experimentos 2014 15. Análisis de regresión y modelo lineal 1 Comparaciones múltiples 2 3. Análisis de

Más detalles

Principios)de)ANOVA)

Principios)de)ANOVA) Principios)de)ANOVA) Dept. of Marine Science and Applied Biology Jose Jacobo Zubcoff Licencia creative commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) ANOVA Qué es y para que sirve? Compara

Más detalles

LECCIÓN PÚBLICA. Tema 5 Algunas Pruebas de Hipótesis. Profa. María Fátima Dos Santos

LECCIÓN PÚBLICA. Tema 5 Algunas Pruebas de Hipótesis. Profa. María Fátima Dos Santos LECCIÓN PÚBLICA Tema 5 Algunas Pruebas Profa. María Fátima Dos Santos 1 TEMARIO Fundamentos de estadística inferencial Método hipotético deductivo (Juego de hipótesis) Elementos en el contraste de hipótesis

Más detalles

Diplomado en Estadística e Investigación Científica

Diplomado en Estadística e Investigación Científica Sociedad Hispana de Investigadores Científicos Diplomado en Estadística e Investigación Científica Introducción Durante mucho tiempo se consideró a la investigación científica como una actividad de unos

Más detalles

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS 3datos 2011 Variables CUANTITATIVAS Números con unidad de medida (con un instrumento, o procedimiento, de medición formal) Ej.: Tasa cardiaca;

Más detalles

Contenidos IB-Test Matemática NM 2014.

Contenidos IB-Test Matemática NM 2014. REDLAND SCHOOL MATHEMATICS DEPARTMENT 3 MEDIO NM 1.- Estadística y probabilidad. Contenidos IB-Test Matemática NM 2014. 1.1.- Conceptos de población, muestra, muestra aleatoria, y datos discretos y continuos.

Más detalles

El análisis de la varianza de un factor es una extensión del test de t para dos muestras independientes, para comparar K muestras.

El análisis de la varianza de un factor es una extensión del test de t para dos muestras independientes, para comparar K muestras. Anova Dra. Diana elmansky 85 6. ANÁLISIS DE LA VARIANZA DE UN FACTOR El análisis de la varianza de un factor es una extensión del test de t para dos muestras independientes, para comparar muestras. Hemos

Más detalles

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN

CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN CONTRASTES NO PARAMÉTRICOS: ALEATORIEDAD Y LOCALIZACIÓN Antonio Morillas A. Morillas: C. no paramétricos (II) 1 1. Contrastes de aleatoriedad. Contraste de rachas. 2. Contrastes de localización 2.1 Contraste

Más detalles

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina

Universidad Central del Este UCE Facultad de Ciencias de la Salud Escuela de Medicina Universidad Central l Este UCE Facultad Ciencias la Salud Escuela Medicina Programa la asignatura: : MED-052 Bioestadística II Código: Semestre: Asignatura electiva Total créditos 3 Teóricos 3 Prácticos

Más detalles

Análisis de la varianza (ANOVA)

Análisis de la varianza (ANOVA) Análisis de la varianza (ANOVA) Mª Isabel Aguilar, Eugenia Cruces y Bárbara Díaz UNIVERSIDAD DE MÁLAGA Departamento de Economía Aplicada (Estadística y Econometría) Parcialmente financiado a través del

Más detalles

Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad...

Sumario Prólogo Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares Objetivos de la Unidad... ÍNDICE SISTEMÁTICO PÁGINA Sumario... 5 Prólogo... 7 Unidad didáctica 1. Introducción a la estadística. Conceptos preliminares... 9 Objetivos de la Unidad... 11 1. Población y muestra... 12 2. Parámetro

Más detalles

Análisis de Varianza Unidireccional

Análisis de Varianza Unidireccional Unidireccional Análisis de Regresión Múltiple TÉCNICAS DE DEPENDENCIA Variable/s Dependiente/s Variable/s Independiente/s Técnica 1 Nivel de medición Continuo 1 Nivel de medición Continuo REGRESIÓN SIMPLE

Más detalles

ANALISIS EXPLORATORIO DE DATOS LIC. ESPERANZA GARCIA CRIBILLEROS

ANALISIS EXPLORATORIO DE DATOS LIC. ESPERANZA GARCIA CRIBILLEROS ANALISIS EXPLORATORIO DE DATOS LIC. ESPERANZA GARCIA CRIBILLEROS 2006 ENFOQUES DE ANALISIS ESTADISTICO Confirmatorio (Clásico) Exploratorio (Tukey( Tukey,, 1977) COMPARACION DE LOS ENFOQUES DE ANALISIS

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA DE ESTADÍSTICA. Gilbert Brenes Camacho

UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA DE ESTADÍSTICA. Gilbert Brenes Camacho UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ECONÓMICAS ESCUELA DE ESTADÍSTICA Nombre del curso: Profesores: XS-2110 Métodos Estadísticos Gilbert Brenes Camacho gbrenes@ccp.ucr.ac.cr Número de créditos:

Más detalles

Ejercicio Resuelto t-student para dos muestras independientes

Ejercicio Resuelto t-student para dos muestras independientes Ejercicio Resuelto t-student para dos muestras independientes Ing. Roque Castillo Investigación & Salud III La prueba t-student es una prueba paramétrica o sea para datos que presentan distribución normal.

Más detalles

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Correlaciones bivariadas y parciales

ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Correlaciones bivariadas y parciales ANÁLISIS CUANTITATIVO DE DATOS EN CIENCIAS SOCIALES CON EL SPSS (I) Correlaciones bivariadas y parciales Francisca José Serrano Pastor Pedro A. Sánchez Rodríguez - Objetivo: conocer la relación entre variables

Más detalles

Planeación experimental

Planeación experimental Planeación experimental Diseño de Experimentos Diseño de Experimentos Ventajas Identifica uno o más factores influyen dentro de la variable de respuesta. Permite establecer la combinación adecuada de tratamientos

Más detalles

8.2. Los tests de bondad de ajuste: - El objetivo es verificar una hipótesis propia (ajena a nuestros datos) - Ejemplo datos de otros hospitales sugie

8.2. Los tests de bondad de ajuste: - El objetivo es verificar una hipótesis propia (ajena a nuestros datos) - Ejemplo datos de otros hospitales sugie 8.. Los datos de frecuencias: - Muy comunes (ejemplo) - Difíciles de analizar por métodos paramétricos (no recomendable) - Desarrollo de métodos propios: - Aproximación Chi-cuadrado (χ 2 ) - Test G (máxima

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

CUERPO TÉCNICO, OPCION ESTADISTICA

CUERPO TÉCNICO, OPCION ESTADISTICA CUERPO TÉCNICO, OPCION ESTADISTICA ESTADÍSTICA TEÓRICA BÁSICA TEMA 1. Fenómenos aleatorios. Conceptos de probabilidad. Axiomas. Teoremas de probabilidad. Sucesos independientes. Teorema de Bayes. TEMA

Más detalles

Pruebas Paramétricas y No paramétricas. Para la comprobación de hipótesis

Pruebas Paramétricas y No paramétricas. Para la comprobación de hipótesis Pruebas Paramétricas y No paramétricas Para la comprobación de hipótesis Pruebas Paramétricas Se busca estimar los parámetros de una población en base a una muestra. Se conoce el modelo de distribución

Más detalles

Preparación de los datos de entrada

Preparación de los datos de entrada Preparación de los datos de entrada Clase nro. 6 CURSO 2010 Objetivo Modelado de las características estocásticas de los sistemas. Variables aleatorias con su distribución de probabilidad. Por ejemplo:

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

UNIVERSIDAD MARÍA AUXILIADORA UMA

UNIVERSIDAD MARÍA AUXILIADORA UMA CARRERA PROFESIONAL DE ENFERMERIA SÍLABO DE BIOESTADÍSTICA I. DATOS GENERALES: 1.1. Carreras profesionales : Enfermería 1.2. Semestre académico : 2015 - I 1.3. Ciclo : III 1.4. Pre-requisito : Matemática

Más detalles

Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad.

Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Conceptos básicos de inferencia estadística (IV): Inferencia no paramétrica: Contrastes de aleatoriedad. Tema 1 (IV) Estadística 2 Curso 08/09 Tema 1 (IV) (Estadística 2) Contrastes de aleatoriedad Curso

Más detalles

DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas

DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas DISEÑO CON MÁS DE DOS CONDICIONES (A>2) ANOVA unifactorial con A>2 y contraste de hipótesis específicas Hasta ahora hemos ido desarrollando las pruebas parámetricas para contrastar hipótesis de un grupo

Más detalles

INFERENCIA PARAMÉTRICA: RELACIÓN ENTRE VARIABLES CUALITATIVAS Y CUANTITATIVAS

INFERENCIA PARAMÉTRICA: RELACIÓN ENTRE VARIABLES CUALITATIVAS Y CUANTITATIVAS INFERENCIA PARAMÉTRICA: RELACIÓN ENTRE VARIABLES CUALITATIVAS Y CUANTITATIVAS Autor: Clara Laguna 8.1 INTRODUCCIÓN Cuando hablamos de la estimación de una media (intervalos de confianza) en el tema 5,

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

TEMA 1 Introducción 1.1. Concepto y características de la investigación comercial 1.2. La investigación comercial y el proceso de marketing de la

TEMA 1 Introducción 1.1. Concepto y características de la investigación comercial 1.2. La investigación comercial y el proceso de marketing de la TEMA 1 1.1. Concepto y características de la investigación comercial 1.2. La investigación comercial y el proceso de marketing de la empresa 1.2.1. El proceso de marketing en la empresa 1.2.2. La función

Más detalles

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta

Test ANOVA. Prof. Jose Jacobo Zubcoff 1 ANOVA ANOVA. H 0 : No existen diferencias entre los k niveles H 1 : La hipótesis nula no es cierta Test Compara la distribución de una variable continua normal en mas de dos poblaciones (niveles o categorías) H 0 : No existen diferencias entre los k niveles H : La hipótesis nula no es cierta Parte de

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS AGRICOLA, PECUARIAS Y DEL MEDIO AMBIENTE ECAPMA ESPECIALIZACIÓN EN NUTRICIÓN ANIMAL SOSTENIBLE Nombre del Curso: DISEÑO EXPERIMENTAL AVANZADO

Más detalles

Modelos de ANOVA. Distinguir diferentes tipos de ANOVA

Modelos de ANOVA. Distinguir diferentes tipos de ANOVA Modelos de ANOVA Distinguir diferentes tipos de ANOVA Modelos de efectos fijos Modelos de efectos aleatorios (Modelo II) Modelos 2- a multifactoriales Modelos mixtos, anidados. ANOVA Situación básica Variables

Más detalles

Procedimientos paramétricos

Procedimientos paramétricos Medias marginales de preferencia Procedimientos paramétricos MÁS DE DOS MUESTRAS DOS O MÁS FACTORES Tipo de película Acción Hombre Mujer Romance Pruebas de diferencias entre más de dos muestras Análisis

Más detalles

ANALIZAR Comparar medias

ANALIZAR Comparar medias Diseño entre-grupos univariado unifactorial con A>2. Contraste de hipótesis específicas Dolores Frías-Navarro Universidad de Valencia http://www.uv.es/friasnav/ Hasta ahora hemos ido desarrollando las

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

Experimentos Simples

Experimentos Simples Experimentos Simples: Análisis de supuestos del ANOVA 1 Experimentos Simples Análisis de supuestos del ANOVA En cada ocasión que se realice un análisis de varianza (ANOVA), rutinariamente deben examinarse

Más detalles