UD11. DISIPACIÓN DE CALOR. RADIADORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UD11. DISIPACIÓN DE CALOR. RADIADORES"

Transcripción

1 UD11. DISIPACIÓN DE CALOR. RADIADORES Centro CFP/ES Disipación de calor 1

2 Disipación de calor La potencia que cada componente disipa en un circuito viene dada por el producto de la corriente eléctrica que circula en su interior por la diferencia de potencial en sus extremos. Pd = V * I Esta potencia se mide en vatios, y su correspondencia con las unidades caloríficas o calorías es: 1 vatio = 0,24 calorías / segundo En todos los circuitos hay componentes que consumen una determinada potencia, la cual es constante una vez en funcionamiento (esto sucede en la mayor parte de los circuitos digitales), pero hay otro gran número cuya potencia depende de las condiciones en las que le hagamos trabajar. En estos casos, el fabricante del componente nos indica la máxima potencia que pueden disipar o la temperatura máxima de trabajo (Hojas de características). Pero se puede conseguir que la potencia disipada aumente si de una manera artificial conseguimos hacer descender la temperatura de trabajo por debajo de su valor máximo. Es aquí donde realizan su papel los disipadores de calor. Disipación de calor Esa resistencia térmica se mide en ºC/W, unidad que determina cuánto resiste al paso de calor una unión o contacto entre cuerpos. Cuanto menor sea esa magnitud, mejor se establecerá el flujo de calor del cuerpo más caliente (componente semiconductor) hacia el ambiente. En radiadores, lo que determina este valor es, principalmente, la unidad de superficie que está en contacto con el aire, el material y el calor. De esta manera, para igual calor y material, cuanto más grande sea un radiador mejor trasladará el calor al ambiente. Qué hacemos para determinar nuestro radiador ideal? Qué resistencia térmica será necesaria para nuestra aplicación en concreto? 2

3 Transmisión de calor Hay tres formas básicas de transmisión de calor desde un cuerpo que se encuentra a una determinada temperatura: Radiación: La radiación de calor es una forma de transmisión a través de ondas electromagnéticas, del mismo tipo de las que se emplean para realizar las emisiones de radiofrecuencia o de luz visible. Esta radiación se realiza a una frecuencia inferior a la del color del rojo visible, y se la denomina radiación infrarroja. La mayor o menor capacidad de radiación está afectada por el color del cuerpo, obteniendose el mejor comportamiento en los cuerpos oscuros, siendo el negro el de mayor poder de radiación. Convección: En convección el cuerpo que tiene mayor temperatura transmite su calor a los cuerpos que le rodea, sobre todo a los líquidos y gases, ya que el efecto consiste en que las partículas calientes del líquido o gas se mueven hacia arriba, al variar la densidad del mismo por aumento de la temperatura de las partículas que están próximas al cuerpo caliente. El espacio dejado por las partículas calientes es ocupado por otras de temperatura menor. Al mismo tiempo, las partículas que han ascendido se enfrían, con lo que vuelven a descender, creando una corriente del fluido, normalmente aire, que rodea al cuerpo caliente que ayuda a disminuir su temperatura. Este proceso se puede efectuar de una manera natural si el cuerpo caliente permanece sumergido en el fluido, o artificial si de alguna manera se obliga a hacerle circular de manera más dinámica, ya sea a través de un ventilador u otro proceso. Transmisión de calor Conducción: Consiste en un movimiento del calor por el interior del cuerpo que lo genera, hacia todos los puntos del mismo. La máxima cantidad de calor que puede transmitirse es aquella para la que se consigue una estabilización de temperatura en todos sus puntos. Un disipador emplea por lo general las tres formas de transmisión de calor simultáneamente, de manera que se produce una conducción desde el componente hasta el radiador y una convección y radiación de este al medio que lo rodea, que, en el caso de equipos electrónicos, será siempre el aire. La cantidad de potencia calorífica que puede evacuarse desde el disipador al ambiente depende de la diferencia de temperatura que exista entre ambos, siendo tanto mayor cuanto más elevada sea esta diferencia. La disipación de potencia será nula si no existe diferencia de temperatura. 3

4 Resistencia térmica Al igual que sucede con el paso de electrones por un cuerpo conductor en el que aparece una cierta resistencia, en el trasvase de calor de un cuerpo a otro (unión semiconductor - superficie componente, componente - disipador y disipador - aire), aparece una cierta resistencia a que se produzca dicho trasvase. A esta resistencia se le denomina Resistencia térmica, se representa por las letras Rth y se expresa en las unidades de ºC/W. De esta manera podemos crear un circuito de circulación de calor semejante a un circuito eléctrico donde cuando el calor atraviesa diferentes medios en su propagación, encuentra diferentes resistencias a su paso desde el punto más caliente al más frio, ya que la transmisión de calor de un medio a otro no es ideal. Las resistencias térmicas de cada zona se suman entre sí formando una resistencia térmica total. Por lo tanto, el circuito térmico está compuesto por tres parámetros: La resistencia térmica de cada medio. La diferencia de temperaturas entre los diferentes medios. La potencia que disipa cada medio. Resistencia térmica 4

5 Radiador Por lo tanto, para poder elegir un tipo concreto de radiador se deben tener en cuenta los siguientes datos: Temperatura máxima de trabajo del disipador. Temperatura del aire que rodea al conjunto radiador - componente. Potencia que se desea evacuar. Forma de montaje del componente. Flujo de calor 5

6 Radiador Por lo tanto, para poder elegir un tipo concreto de radiador se deben tener en cuenta los siguientes datos: Temperatura máxima de trabajo del disipador. Temperatura del aire que rodea al conjunto radiador - componente. Potencia que se desea evacuar. Forma de montaje del componente. Para la determinación del refrigerador o disipador térmico hay que tener en cuenta algunos principios: Qja=Tj-Ta/P Qja = Qjc + Qcr + Qra Calor producido = Calor disipado donde: Tj: Temperatura unión ºC Ta: Temperatura ambiente ºC P: Potencia eléctrica transformada en calor Qja: Resistencia térmica unión-ambiente dada por el fabricante. Qjc: Resistencia térmica unión-cápsula dada por el fabricante. Qcr: Resistencia térmica capsula-radiador Qra: Resistencia térmica radiador-ambiente Radiador 6

7 Radiador Radiador 7

8 Radiador Radiador 8

9 Calculo del Radiador Si observamos los catálogos de radiadores apropiados para cada semiconductor, vemos que la magnitud a la que se atiende para su selección es precisamente su resistencia térmica. Así, en función de la potencia a desarrollar y de la temperatura máxima soportable en la unión, calcularemos el radiador cuya resistencia térmica más nos solucione el problema. Si en los catálogos no disponemos de ese valor en concreto, debemos elegir el de valor menor más cercano disponible. Los cálculos son muy sencillos. Aplicamos una Ley de Ohm particular a nuestro circuito térmico, de modo que diferencias de temperatura (caídas de tensión) serán iguales a las resistencias térmicas por potencia: Tj-Tc = Rth j-c W Tr-Tamb = Rth r-a W Teniendo en cuenta que las diferencias de temperatura entre el radiador y la cápsula suelen fijarse en 2ºC, podemos seguir calculando hasta conseguir la Rth r-a. Ejemplo de cálculo 9

10 Ejemplo de cálculo Radiadores estandar 10

11 Radiadores estandar Cálculo del disipador 11

12 Otros Radiadores Otros Radiadores 12

13 Uso de catálogos Se selecciona el radiador cuya Rth sea inferior a la calculada y se adapte a la cápsula del elemento utilizado. El tamaño del radiador está en función del número de aletas, de modo que a mayor número de éstas menor será el volumen, mientras que, por otra parte, se incrementa el costo del mismo. A continuación se muestran los mecanizados que deben aparecer en los radiadores para algunos tipos de componentes como son TO3 y TO220. Uso de catálogos TORNILLO SEMICONDUCTOR (CÁPSULA TO-3) MICA (asegura el contacto radiador-cápsula) Radiador con el mecanizado (agujero) adecuado Tubos aislantes para las patillas del semiconductor Tuerca de apriete y pieza aislante 13

14 Uso de catálogos TORNILLO SEMICONDUCTOR (CÁPSULA TO-220) MICA (Asegura el contacto radiador-cápsula) PARTE METÁLICA EN CONTACTO CON EL RADIADOR (CONDUCE EL CALOR) Radiador con el mecanizado (agujero) adecuado Mecanizado en el circuito impreso Mecanizado para las patillas del semiconductor Tuerca de apriete y pieza aislante Circuito impreso del que forma parte el componente DISIPACIÓN DE CALOR Y RADIADORES 14

P A R T A D O. 5 Diseño térmico. Electrónica Industrial

P A R T A D O. 5 Diseño térmico. Electrónica Industrial A 3.4 P A R T A D O 5 Diseño térmico 52 A Introducción 3.4 A. Introducción Siempre que por un elemento conductor circula una corriente eléctrica, se generan unas pérdidas de potencia que elevan la temperatura

Más detalles

Cálculo de disipadores de calor.

Cálculo de disipadores de calor. Cálculo de disipadores de calor. Los disipadores de calor son unos elementos complementarios que se usan para aumentar la evacuación de calor del componente al que se le coloque hacia el aire que lo rodea.

Más detalles

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada.

Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Anexo1. Ejemplo práctico, pg 1 Anexo1: Ejemplo práctico: Cálculo disipador con ventilación forzada. Para clarificar conceptos y ver la verdadera utilidad del asunto, haremos el siguiente ejemplo práctico

Más detalles

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES

PROBLEMA DE LA DISIPACIÓN TÉRMICA EN COMPONENTES TEMA 7 PROBLEMA E LA ISIPACIÓN TÉRMICA EN COMPONENTES 1. GENERALIAES. 2 2. EVACUACIÓN EL CALOR PROUCIO. 3 2.1. Evolución de la T j con el tiempo. 3 2.2. Ley de Ohm térmica. 4 2.3. Circuitos térmicos en

Más detalles

SISTEMAS ELECTRÓNICOS ANALÓGICOS Y DIGITALES

SISTEMAS ELECTRÓNICOS ANALÓGICOS Y DIGITALES SISTEMAS ELECTRÓNICOS ANALÓGICOS Y DIGITALES DISIPACIÓN DEL CALOR: Introducción Mecanismos de propagación del calor Modelo simplificado de la transferencia de calor Especificaciones térmicas de los semiconductores

Más detalles

Dispositivos semiconductores de potencia. Interruptores. Radiadores

Dispositivos semiconductores de potencia. Interruptores. Radiadores Tema VII. Lección 22 Dispositivos semiconductores de potencia. Interruptores. Radiadores 22.1 Generalidades 22.2 Modelo estático de la trasferencia térmica 22.3 Cálculo estático de radiadores 22.4 Modelo

Más detalles

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales

BALANCE DE ENERGÍA. Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales BALANCE DE ENERGÍA Diseño de Plantas Industriales Programa de Ingeniería Ambiental Facultad de Ciencias Ambientales Los objetivos del balance de Energía son: Determinar la cantidad energía necesaria para

Más detalles

Ejemplo de hoja de datos (1/3): 2.Diodos de potencia

Ejemplo de hoja de datos (1/3): 2.Diodos de potencia Ejemplo de hoja de datos (1/3): 2.Diodos de potencia 2.Diodos de potencia Ejemplo de hoja de datos (continuación 2/3): 2.Diodos de potencia Ejemplo de hoja de datos (continuación 3/3): Al aumentar la corriente

Más detalles

Parámetros de diseño con una fuente externa: Tensión de entrada: 6V a 12V Corriente máxima: 300mA Potencia máxima disipada: 2,1W

Parámetros de diseño con una fuente externa: Tensión de entrada: 6V a 12V Corriente máxima: 300mA Potencia máxima disipada: 2,1W Introducción Durante el diseño de cualquier circuito, uno de los puntos más importantes es decidir cual será la tensión de alimentación del mismo. En muchos casos, el circuito se alimentará desde una fuente

Más detalles

Ahora veamos que pasa con la temperatura y cómo se puede disipar.

Ahora veamos que pasa con la temperatura y cómo se puede disipar. Especificaciones y consideraciones de diseño En primer lugar tenemos que fijar unos parámetros de trabajo de la placa. Hemos especificado que nos gustaría que la placa trabaje en un rango de (6V a 12V)

Más detalles

ETAPAS DE SALIDA BJTs de potencia Definiciones

ETAPAS DE SALIDA BJTs de potencia Definiciones Temperatura de unión Definiciones Los transistores de potencia disipan grandes cantidades de potencia en sus uniones entre colector y base. La potencia disipada se convierte en calor, que eleva la temperatura

Más detalles

La influencia e importancia de la temperatura en los LEDs. D. Francisco Cavaller Director de Proyectos y Prescripción CARANDINI

La influencia e importancia de la temperatura en los LEDs. D. Francisco Cavaller Director de Proyectos y Prescripción CARANDINI La influencia e importancia de la temperatura en los LEDs D. Francisco Cavaller Director de Proyectos y Prescripción CARANDINI La empaquetadura de los LEDs PCB (placa de circuito impreso) Lente (vidrio

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS SOBRE LA LEY DE OHM

EJERCICIOS Y PROBLEMAS RESUELTOS SOBRE LA LEY DE OHM Ejercicio resuelto Nº 1 La plancha de mi madre se ha roto. Podía alcanzar la temperatura de 60 o C cuando pasaba por el circuito de la plancha una intensidad de 15 Amperios. Pero se rompió y no calienta.

Más detalles

Disipación de potencia en semiconductores

Disipación de potencia en semiconductores Disipación de potencia en semiconductores Todos los dispositivos semiconductores disipan potencia internamente no sólo cuando están en estado de conducción sino también durante la transición de conducción

Más detalles

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura.

Determinar cuál es la potencia disipada por el transistor, y su temperatura de juntura. Circuitos Electrónicos II (66.10) Guía de Problemas Nº 3: Amplificadores de potencia de audio 1.- Grafique un circuito eléctrico que realice la analogía del fenómeno que involucra la potencia disipada

Más detalles

Módulo 2: Termodinámica. mica Temperatura y calor

Módulo 2: Termodinámica. mica Temperatura y calor Módulo 2: Termodinámica mica Temperatura y calor 1 Termodinámica y estado interno Para describir el estado externo de un objeto o sistema se utilizan en mecánica magnitudes físicas como la masa, la velocidad

Más detalles

6.1. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN A SIMULAR

6.1. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN A SIMULAR 6. EJEMPLO DE APLICACIÓN 6.1. DESCRIPCIÓN DEL SISTEMA DE REFRIGERACIÓN A SIMULAR En el presente apartado, se va a realizar una descripción de los componentes y el modo de funcionamiento del sistema de

Más detalles

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC

Más detalles

DIODOS SEMICONDUCTORES DE POTENCIA

DIODOS SEMICONDUCTORES DE POTENCIA DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000

Más detalles

ÍNDICE CÁLCULOS Capítulo 1: Diodos Leds... 2 Capítulo 2: Diodo emisor infrarrojo... 5 Capítulo 3: Fototransistor... 6 Capítulo 4: Disipador...

ÍNDICE CÁLCULOS Capítulo 1: Diodos Leds... 2 Capítulo 2: Diodo emisor infrarrojo... 5 Capítulo 3: Fototransistor... 6 Capítulo 4: Disipador... ÍNDICE CÁLCULOS Índice Cálculos... 1 Capítulo 1: Diodos Leds... 2 1.1. LED 8 mm... 2 1.2. LED 20mm... 3 Capítulo 2: Diodo emisor infrarrojo... 5 Capítulo 3: Fototransistor... 6 Capítulo 4: Disipador...

Más detalles

UNIDAD 7: ENERGY (LA ENERGÍA)

UNIDAD 7: ENERGY (LA ENERGÍA) REPASO EN ESPAÑOL C.E.I.P. GLORIA FUERTES UNIDAD 7: ENERGY (LA ENERGÍA) NATURAL SCIENCE 6 La energía está por todos sitios en el Universo y es indestructible. La energía se transfiere de átomo en átomo,

Más detalles

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O

ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O ADAPTACIÓN CURRICULAR TEMA 11 CIENCIAS NATURALES 2º E.S.O Calor y temperatura 1ª) Qué es la energía térmica? La energía térmica es la energía que posee un cuerpo (o un sistema material) debido al movimiento

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia eléctrica de un resistor se define como la razón entre la caída de tensión, entre los extremos del resistor, y la corriente que circula por éste, tal que Teniendo en cuenta que

Más detalles

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A

P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A P R Á C T I C A S D E E L E C T R Ó N I C A A N A L Ó G I C A Nombres y apellidos: Curso:. Fecha:.. Firma: PRÁCTICA 1: RESISTENCIAS OBJETIVO: Conocer los tipos y características de las resistencias, así

Más detalles

COMPONENTES PASIVOS RESISTENCIAS CONDENSADORES INDUCTORES O RESISTORES O CAPACITORES O BOBINAS

COMPONENTES PASIVOS RESISTENCIAS CONDENSADORES INDUCTORES O RESISTORES O CAPACITORES O BOBINAS EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 9 COMPONENTES PASIVOS RESISTENCIAS CONDENSADORES INDUCTORES O RESISTORES O CAPACITORES O BOBINAS RESISTENCIAS O RESISTORES DEFINICIÓN * Una

Más detalles

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA

XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII.- INTERCAMBIADORES DE CALOR MÉTODO DE LA EFICIENCIA XVIII..- EFICACIA DE LOS INTERCAMBIADORES DE CALOR En muchas situaciones lo único que se conoce es la descripción física del intercambiador, como

Más detalles

TEMPERATURA Y CALOR. Oxford 2º ESO

TEMPERATURA Y CALOR. Oxford 2º ESO TEMPERATURA Y CALOR Oxford 2º ESO TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas

Más detalles

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval

ESTO NO ES UN EXAMEN, ES UNA HOJA DEL CUADERNILLO DE EJERCICIOS. Heroica Escuela Naval CUADERNILLO DE FÍSICA. TERCER GRADO. I.- SUBRAYE LA RESPUESTA CORRECTA EN LOS SIGUIENTES ENUNCIADOS. 1.- CUANDO DOS CUERPOS CON DIFERENTE TEMPERATURA SE PONEN EN CONTACTO, HAY TRANSMISIÓN DE: A) FUERZA.

Más detalles

PROCESO DE ACTUACIÓN DEL INTERCAMBIADOR DE CALOR

PROCESO DE ACTUACIÓN DEL INTERCAMBIADOR DE CALOR ÍNDICE INTRODUCCIÓN DISIPADORES DISIPADOR TÉRMICO PROCESO DE ACTUACIÓN DEL INTERCAMBIADOR DE CALOR MÉTODOS DE ENFRIAMIENTO DISIPADOR HIBRIDO DISIPACIÓN STOCK O DE FÁBRICA DISIPACIÓN MEDIA AVANZADA DISIPACIÓN

Más detalles

Ingeniería Térmica y de Fluidos (II)

Ingeniería Térmica y de Fluidos (II) Ingeniería Térmica y de Fluidos II) T9.- Superficies Ampliadas de Sección Transversal Cte Las trasparencias son el material de apoyo del profesor para impartir la clase. No son apuntes de la asignatura.

Más detalles

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR

TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR TEMA 1. MECANISMOS BÁSICOS DE TRANSMISIÓN DE CALOR El calor: Es una forma de energía en tránsito. La Termodinámica y La Transferencia de calor. Diferencias. TERMODINAMICA 1er. Principio.Permite determinar

Más detalles

"DETERMINACIÓN DEL RENDIMIENTO DE UNA MÁQUINA TÉRMICA"

DETERMINACIÓN DEL RENDIMIENTO DE UNA MÁQUINA TÉRMICA EXPERIMENTO FA3 LABORATORIO DE FÍSICA AMBIENTAL "DETERMINACIÓN DEL RENDIMIENTO DE UNA MÁQUINA TÉRMICA" MATERIAL: 1 (1) DISPOSITIVO PELTIER. 2 (1) POLÍMETRO (FUNCIÓN DE ÓHMETRO). 3 (1) POLÍMETRO (FUNCIÓN

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

1. Diferencia entre Calor y Temperatura.

1. Diferencia entre Calor y Temperatura. TEMA 11: EL CALOR Y LA TEMPERATURA 1 1. Diferencia entre Calor y Temperatura. Cuando decimos que un objeto está caliente, no significa que tiene mucho calor, sino que su temperatura es elevada. Cuando

Más detalles

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7

COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 COMPONENTES ELECTRÓNICOS ANALÓGICOS Página 1 de 7 SEMICONDUCTORES Termistores Foto resistores Varistores Diodo Rectificador Puente Rectificador Diodo de Señal Diodo PIN Diodo Zener Diodo Varactor Fotodiodo

Más detalles

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser

Teniendo en cuenta que si el voltaje se mide en Volts y la corriente en Amperes las unidades de resistencia resultan ser Ley de Ohm La resistencia se define como la razón entre la caída de tensión, entre los dos extremos de una resistencia, y la corriente que circula por ésta, tal que 1 Teniendo en cuenta que si el voltaje

Más detalles

Medición de la Conductividad

Medición de la Conductividad Medición de la Conductividad 1.1. Introducción Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

Átomo de Cobre Cu 29. 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen

Átomo de Cobre Cu 29. 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen Átomo de Cobre Cu 29 1capa 2e 2capa 8e 3capa 18e 4capa 1e (capa de valencia) Cargas iguales se repelen Cargas diferentes se atraen (video van der graaf generator) Conductor Conductores son los materiales

Más detalles

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1

Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin. Física II Mg. José Castillo Ventura 1 Dentro de las más conocidas, tenemos: Celcius, Fahrenheit, kelvin 100 100 180 Mg. José Castillo Ventura 1 Kelvin Grado Celcius Grado Farenheit Kelvin K = K K = C + 273,15 K = (F + 459,67)5/9 Grado Celcius

Más detalles

Interpretación de las hojas de datos de diodos

Interpretación de las hojas de datos de diodos 1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo

Más detalles

PROBLEMAS TRANSMISIÓN DE CALOR

PROBLEMAS TRANSMISIÓN DE CALOR PROBLEMAS TRANSMISIÓN DE CALOR CD_1 El muro de una cámara frigorífica de conservación de productos congelados está compuesto por las siguientes capas (de fuera a dentro): - Revoco de cemento de 2 cm de

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA

CALEFACCIÓN TEMA I. DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA DEPARTAMENTO DE CONSTRUCCION ARQUITECTONICA ESCUELA TECNICA SUPERIOR DE ARQUITECTURA LAS PALMAS DE GRAN CANARIA CALEFACCIÓN TEMA I. CONCEPTOS FÍSICOS BÁSICOS. MANUEL ROCA SUÁREZ JUAN CARRATALÁ FUENTES

Más detalles

TEMPERATURA. E c partículas agitación térmica Tª

TEMPERATURA. E c partículas agitación térmica Tª TEMPERATURA Y CALOR TEMPERATURA Temperatura: de un cuerpo es la magnitud que expresa la agitación térmica de sus partículas que lo forman relacionado con su energía cinética, E c. E c partículas agitación

Más detalles

AMBITO PRÁCTICO: 4º ESO CURSO

AMBITO PRÁCTICO: 4º ESO CURSO AMBITO PRÁCTICO: 4º ESO CURSO 2.010-2.011 CONOCIMIENTOS PRELIMINARES Y DE REPASO: ELECTRICIDAD-ELECTRÓNICA IES EMILIO PEREZ PIÑERO Profesor: Alfonso-Cruz Reina Fernández ELECTRICIDAD-ELECTRÓNICA BÁSICA

Más detalles

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua

Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II Introducción Electricidad- Análisis en C.C. Unidad Didáctica 1 Introducción Electricidad- Análisis en en Corriente Continua Instalaciones y Servicios Parte II- UD1 CONTENIDO

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

EL DIODO DE POTENCIA

EL DIODO DE POTENCIA EL DIODO DE POTENCIA Ideas generales sobre diodos de unión PN Ecuación característica del diodo: V V T i = I S (e -1) donde: V T = k T/q I S = A q n i2 (D p /(N D L p )+D n /(N A L n )) Operación con polarización

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Electrónica 2. Práctico 4 Amplificadores de Potencia

Electrónica 2. Práctico 4 Amplificadores de Potencia Electrónica 2 Práctico 4 Amplificadores de Potencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

Unidad 12. Circuitos eléctricos de corriente continua

Unidad 12. Circuitos eléctricos de corriente continua Unidad 12. Circuitos eléctricos de corriente continua 1. El circuito eléctrico 2. Magnitudes eléctricas 3. Elementos de un circuito 4. Resolución de problemas complejos 5. Distribución de la energía eléctrica

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles

UNIDAD 3: EL CALOR Y LA TEMPERATURA

UNIDAD 3: EL CALOR Y LA TEMPERATURA CIENCIAS DE LA NATURALEZA 2º ESO Alumno/a: grupo: UNIDAD 3: EL CALOR Y LA TEMPERATURA Lee atentamente y copia: 1. LA ENERGÍA TÉRMICA Si ponemos a calentar un cazo con agua y sal, veremos como el agua líquida

Más detalles

Nombre: Fecha: Grupo: Grado:

Nombre: Fecha: Grupo: Grado: SECRETARÍA DE EDUCACIÓN PÚBLICA ADMINISTRACIÓN FEDERAL DE SERVICIOS EDUCATIVOS EN EL D.F. DIRECCIÓN GENERAL ESC SEC TEC 66 FRANCISCO J. MUJICA 2015-2016 PROFESORA: MA. DELOS ÁNGELES COCOLETZI G. TURNO

Más detalles

UD 1. PROCESO TECNOLÓGICO, DIBUJO Y MEDICIÓN

UD 1. PROCESO TECNOLÓGICO, DIBUJO Y MEDICIÓN TECNOLOGÍA 3º ESO EJERCICIOS RECUPERACIÓN SEPTIEMBRE Alumno/a: Grupo: Fecha: UD 1. PROCESO TECNOLÓGICO, DIBUJO Y MEDICIÓN 1. Completa los espacios en blanco 1.- Cuando dibujamos las vistas de una pieza,

Más detalles

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones

Índice general. Pág. N. 1. Magnitudes de la Física y Vectores. Cinemática. Cinemática Movimiento en dos dimensiones Pág. N. 1 Índice general Magnitudes de la Física y Vectores 1.1. Introducción 1.2. Magnitudes físicas 1.3. Ecuaciones Dimensionales 1.4. Sistema de Unidades de Medida 1.5. Vectores 1.6. Operaciones gráficas

Más detalles

Parcial_1_Curso.2012_2013. Nota:

Parcial_1_Curso.2012_2013. Nota: Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.

Más detalles

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia

E.E.S. I. Universidad Abierta Interamericana Facultad de Tecnología Informática. Trabajo de Investigación. Cristian La Salvia Universidad Abierta Interamericana Facultad de Tecnología Informática E.E.S. I Trabajo de Investigación Alumno: Profesor: Cristian La Salvia Lic. Carlos Vallhonrat 2009 Descripción de la investigación...

Más detalles

ESTUDIO TERMOGRÁFICO COMPARATIVO DE PINTURA PLÁSTICA COMERCIAL CON PINTURA TÉRMICA MARCA SUBERLEV (VALENCIA)

ESTUDIO TERMOGRÁFICO COMPARATIVO DE PINTURA PLÁSTICA COMERCIAL CON PINTURA TÉRMICA MARCA SUBERLEV (VALENCIA) ESTUDIO TERMOGRÁFICO COMPARATIVO DE PINTURA PLÁSTICA COMERCIAL CON PINTURA TÉRMICA MARCA SUBERLEV (VALENCIA) ANÁLISIS Datos del análisis: Análisis de comportamiento de pinturas al calor irradiado. Una

Más detalles

ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica

ELECTRÓNICA ANALÓGICA. Tema 1 Introducción a la electrónica analógica ELECTRÓNICA ANALÓGICA Tema 1 Introducción a la electrónica analógica Índice Tensión, diferencia de potencial o voltaje. Corriente eléctrica. Resistencia eléctrica. Potencia eléctrica. Circuito eléctrico

Más detalles

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo.

Analógicos. Digitales. Tratan señales digitales, que son aquellas que solo pueden tener dos valores, uno máximo y otro mínimo. Electrónica Los circuitos electrónicos se clasifican en: Analógicos: La electrónica estudia el diseño de circuitos que permiten generar, modificar o tratar una señal eléctrica. Analógicos Digitales Tratan

Más detalles

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA

MEDICIÓN DE CONDUCTIVIDAD TÉRMICA MEDICIÓN DE CONDUCTIVIDAD TÉRMICA Introducción: Las soluciones de la Ley de Fourier en su formulación diferencial, empleando las condiciones de borde adecuadas, permite resolver el problema de conducción

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Unidad 4: instalaciones en viviendas Parte 3: Instalaciones de gas y calefacción 4º ESO

Unidad 4: instalaciones en viviendas Parte 3: Instalaciones de gas y calefacción 4º ESO Unidad 4: instalaciones en viviendas Parte 3: Instalaciones de gas y calefacción 4º ESO Instalaciones de calefacción 2 COLECTORES SOLARES 3 Aprovechan las cualidades de absorción de la radiación y transmisión

Más detalles

CIRCUITOS ELECTRÓNICOS, DIODO LED

CIRCUITOS ELECTRÓNICOS, DIODO LED Laboratorio electrónico Nº 3 CIRCUITOS ELECTRÓNICOS, DIODO LED Objetivo Aplicar los conocimientos de circuitos electrónicos Familiarizarse con los dispositivos y componentes electrónicos Objetivo específico

Más detalles

Circuitos de Corriente Continua

Circuitos de Corriente Continua Fundamentos Físicos y Tecnológicos de la Informática Circuitos de Corriente Continua -Elementos activos de un circuito: generadores ideales y reales. Equivalencia de generadores. -Potencia y energía. Ley

Más detalles

CORRIENTE ELECTRICA. Presentación extraída de Slideshare.

CORRIENTE ELECTRICA. Presentación extraída de Slideshare. FISICA II CORRIENTE ELECTRICA Presentación extraída de Slideshare. 1.1 CORRIENTE ELECTRICA CORRIENTE ELECTRICA Moviemiento ordenado y permanente de las partículas cargadas en un conductor, bajo la influencia

Más detalles

Resistencia de filamento 0,5 Ω Balanza Digital Calorímetro de Aluminio Conectores 120 ml de agua Revestimiento de lana para aislación

Resistencia de filamento 0,5 Ω Balanza Digital Calorímetro de Aluminio Conectores 120 ml de agua Revestimiento de lana para aislación FIS-153 Electricidad y Magnetismo Efecto Joule Objetivo Estudiar la transferencia de energía entre una resistencia eléctrica energizada y el medio ambiente que está sumergida (agua), obteniendo, a partir

Más detalles

SICO SOL Pioneros y lideres en tecnología solar SISTEMAS TERMO SOLARES PRESENTACION

SICO SOL Pioneros y lideres en tecnología solar SISTEMAS TERMO SOLARES  PRESENTACION SISTEMAS TERMO SOLARES www.sicosol.web.bo PRESENTACION BREVE RESEÑA HISTORICA 1981 Modelo de 150 litros Cochabamba 1987 Modelo de 200 Litros Cochabamba SISTEMAS TERMO SOLARES Principio Termosifón: Un líquido

Más detalles

FIS Bases de la Mecánica Cuántica

FIS Bases de la Mecánica Cuántica FIS-433-1 Bases de la Mecánica Cuántica Qué es la Teoría Cuántica? La teoría cuántica es el conjunto de ideas más exitoso jamás concebido por seres humanos. Por medio de esta teoría tenemos la capacidad

Más detalles

Sonda térmica de aire del interior (B10/4), serie 219 hasta 06/2006

Sonda térmica de aire del interior (B10/4), serie 219 hasta 06/2006 Motor del soplador (A32m1)/regulador del soplador (A32n1) Disposición: El motor del soplador (A32m1) y el regulador del soplador (A32n1) se encuentran debajo de la guantera, en la caja del aire acondicionado.

Más detalles

La anterior ecuación se puede también expresar de las siguientes formas:

La anterior ecuación se puede también expresar de las siguientes formas: 1. LEY DE OHM GUÍA 1: LEYES ELÉCTRICAS El circuito eléctrico es parecido a un circuito hidráulico ya que puede considerarse como el camino que recorre la corriente (el agua) desde un generador de tensión

Más detalles

RESISTENCIA Y LEY DE OHM

RESISTENCIA Y LEY DE OHM RESISTENCIA Y LEY DE OHM Objetivos: - Aprender a utilizar el código de colores de la E.I.A. (Electronics Industries Association ) - Aprender a armar algunos circuitos simples en el tablero de pruebas (Protoboard).

Más detalles

RESISTENCIAS NO LINEALES INTRODUCCIÓN

RESISTENCIAS NO LINEALES INTRODUCCIÓN RESISTENCIAS NO LINEALES INTRODUCCIÓN Existen resistencias cuyo valor óhmico no es constante, sino que dependen de una magnitud no mecánica externa a ellas, como la temperatura, la tensión o la intensidad

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA

ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA TECNOLOGÍA INDUSTRIAL ÍNDICE 1. QUÉ ES LA ENERGÍA? 2. FORMAS O CLASES DE ENERGÍA 3. PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA 4. TRANSFORMACIONES ENERGÉTICAS 5. FUENTES DE ENERGÍA 6. IMPORTANCIA DE LA ENERGÍA

Más detalles

CATALOGO DISIPADORES DE CALOR HEATSINKS

CATALOGO DISIPADORES DE CALOR HEATSINKS CATALOGO 2.0 www.disipa.net DISIPADORES DE CALOR HEATSINKS INTRODUCCIÓN Desde DISIPA queremos ofrecerle nuestra gama de disipadores de calor, nuestra experiencia y asesoramiento técnico. Disipadores a

Más detalles

Tipos de CALEFACCION agua- agua

Tipos de CALEFACCION agua- agua Tipos de CALEFACCION agua- agua A continuación se muestran los tipos más habituales de una calefacciones para uso domestico, dando una descripción básica del funcionamiento, sus pros y contras, en función

Más detalles

Radiadores de bajo contenido de agua y baja temperatura

Radiadores de bajo contenido de agua y baja temperatura Radiadores de bajo contenido de agua y baja temperatura Seminario Metrogas Administradores 2014 Felipe Calvo Evolución de los sistemas de calefacción Cambio de paradigma: calefacción de efecto rápido en

Más detalles

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura.

2.- Calcula la energía que posee un balón de baloncesto que pesa 1,5 kg, y se encuentra en el alero de un tejado situado a 6 metros de altura. SOLUCIONES EJERCICIOS AUTOEVALUACIÓN 1.- Que energía cinética acumula un ciclista que tiene una masa de 75 kg y se desplaza a una velocidad de 12 metros por segundo. Aplicando la definición de energía

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 09. Transmisión de Calor Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se

Más detalles

El cálculo de la producción interna de calor considera dos variables:

El cálculo de la producción interna de calor considera dos variables: El cálculo de la producción interna de calor considera dos variables: Metabolismo(M): conjunto de reacciones químicas del sujeto Trabajo exterior (W):la parte del metabolismo que realiza un trabajo exterior

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra

Sistemas y Circuitos Eléctricos 1 GSE Juan Carlos García Cazcarra Unidad Didáctica 2: Condensadores y Resistencias. 1.- Condensadores Es un aparato constituido por dos conductores llamados armaduras, separados por un aislante (dieléctrico) que se cargan con igual cantidad

Más detalles

Calculo de resistencias limitadoras y diodo zener

Calculo de resistencias limitadoras y diodo zener Calculo de resistencias limitadoras y diodo zener La formula para el calculo de una resistencia limitadora es en general. R =(vcc-vl)/il Donde: R es la el valor de la resistencia buscada en ohm. Vcc es

Más detalles

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos.

UNIDAD TEMÁTICA 3: ELECTRÓNICA. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 10. Dibuja los esquemas simbólicos de los siguientes circuitos. 11. Sobre los esquemas dibujados en el ejercicio anterior indica mediante flechas el sentido de la corriente eléctrica: (considera que los

Más detalles

Manual Técnico ENSAYO DE CALENTAMIENTO EN BOBINADO DE BALASTOS

Manual Técnico ENSAYO DE CALENTAMIENTO EN BOBINADO DE BALASTOS ENSAYO DE CALENTAMIENTO EN BOBINADO DE BALASTOS. INTRODUCCIÓN Una de las características técnicas más importantes en un balasto destinado a incorporarse en una luminaria, la constituye el valor de temperatura

Más detalles

ACTIVIDADES PENDIENTES 2º ESO CIENCIAS DE LA NATURALEZA CURSO 2015/2016 BLOQUE 2: UNIDAD 10, 11 y 12.

ACTIVIDADES PENDIENTES 2º ESO CIENCIAS DE LA NATURALEZA CURSO 2015/2016 BLOQUE 2: UNIDAD 10, 11 y 12. DEPARTAMENTO DE CIENCIAS NATURALES IES LA ESCRIBANA ACTIVIDADES PENDIENTES 2º ESO CIENCIAS DE LA NATURALEZA CURSO 2015/2016 BLOQUE 2: UNIDAD 10, 11 y 12. UNIDAD 10: LA ENERGÍA UNIDAD 11: CALOR Y TEMPERATURA

Más detalles

Técnico Profesional FÍSICA

Técnico Profesional FÍSICA Programa Técnico Profesional FÍSICA Calor I: calor y temperatura Nº Ejercicios PSU 1. Un recipiente contiene un líquido a temperatura desconocida. Al medir la temperatura del líquido en MTP las escalas

Más detalles

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y

La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y RADIACIÓN La radiación es la energía de calor transferida por radiación electromagnética. Depende del medio en el que ocurra, de las temperaturas relativas y la superficie que absorba o emita la energía.

Más detalles

UNIDAD 8.ELECTRICIDAD

UNIDAD 8.ELECTRICIDAD UNIDAD 8.ELECTRICIDAD CORRIENTE ELÉCTRICA CIRCUITOS ELÉCTRICOS MAGNITUDES ELÉCTRICAS FUNDAMENTALES LEY DE OHM DEPARTAMENTO TECNOLOGÍA IES AVENIDA DE LOS TOREROS UD. 8: ELECTRICIDAD - 1 ELECTRICIDAD Por

Más detalles

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias.

Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. 38 6. LEY DE OHM. REGLAS DE KIRCHHOFF Objetivo Comprobar experimentalmente la ley de Ohm y las reglas de Kirchhoff. Determinar el valor de resistencias. Material Tablero de conexiones, fuente de tensión

Más detalles

MANUAL DE PRÁCTICAS 2 CAPÍTULO 5 PRÁCTICA 2.5 INFLUENCIA DE LA TEMPERATURA SOBRE LA RESISTENCIA DE LOS CONDUCTORES. Objeto de la práctica

MANUAL DE PRÁCTICAS 2 CAPÍTULO 5 PRÁCTICA 2.5 INFLUENCIA DE LA TEMPERATURA SOBRE LA RESISTENCIA DE LOS CONDUCTORES. Objeto de la práctica 2 CAPÍTULO 5 PRÁCTICA 2.5 INFLUENCIA DE LA TEMPERATURA SOBRE LA RESISTENCIA DE LOS CONDUCTORES Objeto de la práctica Estudiar el efecto de la temperatura sobre la resistencia de los conductores. Principio

Más detalles

Creamos confort para ti EMISORES TÉRMICOS ELÉCTRICOS. Etna

Creamos confort para ti EMISORES TÉRMICOS ELÉCTRICOS. Etna Creamos confort para ti EMISORES TÉRMICOS ELÉCTRICOS Amplitud de gama La gama de emisores está compuesta por una amplia variedad de modelos con regulación digital (Serie Digital) y regulación electrónica

Más detalles

Esquemas. CIRCUITO DE REGULACIÓN DE INTENSIDAD. Toda buena fuente debe tener una

Esquemas. CIRCUITO DE REGULACIÓN DE INTENSIDAD. Toda buena fuente debe tener una Una fuente de alimentación es uno de los instrumentos más necesarios para un laboratorio o taller de electrónica, siempre que tenga unas características de regulación de tensión y corriente adecuadas para

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

Desarrollo y Construcción de Prototipos Electrónicos

Desarrollo y Construcción de Prototipos Electrónicos Desarrollo y Construcción de Prototipos Electrónicos U.D. 1.5.- Elementos complementarios de circuitos Tema 1.5.1.- Disipación de temperatura en semiconductores: Radiadores de calor Introducción En un

Más detalles

INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA II PROGRAMACIÓN PRIMER PERIODO

INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA II PROGRAMACIÓN PRIMER PERIODO UNIDAD 1: EL CALOR INSITITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES FISICA II - 2016 PROGRAMACIÓN PRIMER PERIODO Propone soluciones a problemas de aplicación al calor y la temperatura

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y

ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión. ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y I ANEXO 1: Tablas de las propiedades del aire a 1 atm de presión ҪENGEL, Yunus A. y John M. CIMBALA, Mecánica de fluidos: Fundamentos y aplicaciones, 1ª edición, McGraw-Hill, 2006. Tabla A-9. II ANEXO

Más detalles