z 2 4z + 5 = 0, z = x + iy, i 1,

Tamaño: px
Comenzar la demostración a partir de la página:

Download "z 2 4z + 5 = 0, z = x + iy, i 1,"

Transcripción

1 Àlgebra i Geometria I Tema I NOMBRES COMPLEXOS 1- Necessitat dels nombres complexos i definició (a) Les solucions de les equacions polinòmiques El nombre imaginari i 1 Els enters Z, els racionals Q i els reals R apareixen com una necessitat d ampliar un conjunt numèric per tal que certes equacions algebraiques (polinòmiques) admeten solució A l hora de resoldre equacions polinòmiques en els reals apareixen solucions que no són nombres reals Per exemple, si estudiem l equació quadràtica trobem les solucions z ± = ± 4 = ± i El nombre imaginari i 1 z 4z + 5 = 0, Les expressions de la forma z = a + ib, a, b R, les anomenem nombres complexos Teorema fonamental de l àlgebra: Una equació polinòmica de grau p amb coeficients complexos admet p solucions complexes (b) Forma binòmica i diagrama d Argand El conjunts dels nombres complexos els denotarem C Normalment, escriurem els nombres complexes de la forma binòmica: z = x + iy, i 1, on x, y són dos nombres reals que anomenarem, respectivament, part real de z, x = Re(z), i part imaginària de z, y = Im(z) Podem veure un nombre complex com una parella ordenada de nombres reals, z = (x, y) Aleshores podem representar z en el pla complex utilitzant l anomenat diagrama d Argand Més endavant introduirem les formes polar i exponencial d un nombre complex (c) Igualtat entre complexos i conjugació complexa Dos nombres complexos z 1, z són iguals si ho són les seues parts real i imaginària: z 1, z C, z a = x a + iy a, x a, y a R ; z 1 = z x 1 = x, y 1 = y El complex conjugat, z, d un complex z és el complex que té la mateixa part real i la part imaginària canviada de signe: z = x + iy, x, y R ; z = x iy Representació de z i z en el diagrama d Argand 1

2 - Operacions amb nombres complexos Un nombre complex és, formalment, un binomi Aleshores, la suma i el producte de dos nombres complexos és un altre nombre complex que es pot determinar com sumem i multipliquem dos binomis, tenint en compte que i = 1 (a) Suma de nombres complexos La suma de dos nombres complexos és un altre nombre complex amb parts real i imaginària que són suma de les parts real i imaginària dels dos sumands: Exemples: z 1, z C, z a = x a + iy a, x a, y a R ; z 1 + z = (x 1 + x ) + i(y 1 + y ) Suma de complexos en el diagrama d Argand La suma de complexos té les següents propietats: Associativa: Commutativa: Element neutre: 0 + i0 0 Element invers: z / z + ( z) = 0 Si z = x + iy, z = x + i( y) = x iy Diferència de complexos: z 1 z z 1 + ( z ) Totes aquestes propietats signifiquen que (C, +) és un grup abelià (b) Producte de nombres complexos El producte de dos nombres complexos és un altre nombre complex que es pot calcular de la següent forma: z 1, z C, z a = x a + iy a, x a, y a R ; z 1 z = (x 1 x y 1 y ) + i(x 1 y + y 1 x ) Exemples en el diagrama d Argand El producte de complexos té les següents propietats: Associativa: Commutativa: Element neutre: 1 + i0 1 Element invers: z 1 / z z 1 = 1 Si z 0, z 1 1 z = z z z Divisió de complexos: z 1 z 1 z 1 = z 1 z z z z Totes aquestes propietats signifiquen que (C {0}, ) és un grup commutatiu La suma i el producte de complexos satisfan la propietat distributiva: z 1 (z + z 3 ) = z 1 z + z 1 z 3 Aleshores (C, +, ) és un cos commutatiu (com veurem al tema següent Estructures Algebraiques )

3 (c) Propietats de la conjugació complexa La conjugació complexa té les següents propietats: (i) (z 1 + z ) = z1 + z (ii) (z 1 z ) = z1 z (iii) (z 1 ) = (z ) 1 ; (1/z) = 1/z (iv) Re(z) = 1(z + z ), Im(z) = 1(z z ) (v) z z = z z = x + y 3- Representació polar i manipulacions algebraiques (a) Mòdul i argument d un nombre complex Donat el nombre complex z = x + iy, x, y R, definim: Mòdul de z: z r = z z = x + y Argument de z: arg(z) θ = arctan(x/y) / cos θ = x r sin θ = y r En el càlcul de l argument és important el signe de les parts real i imaginària L argument està definit salvant un múltiple enter de π: arg(z) = θ + kπ, k Z Interpretar geomètricament en un diagrama d Argand el mòdul i l argument El mòdul de complexos té les següents propietats: (i) z = z (ii) z 1 z = z 1 z (iii) z 1 /z = z 1 / z (iv) z 1 ± z z 1 + z (b) Representació polar d un nombre complex Si per a un nombre complex z, r z, θ arg(z), aleshores les parts real x i imaginària y venen donades per: x = r cos θ, y = r sin θ Aleshores obtenim la forma polar o trigonomètrica d un nombre complex z: z = r(cos θ + i sin θ) (c) Representació exponencial d un complex Fórmula d Euler Recordem el desenvolupament en serie de Taylor d una funció real de variable real, f(x) = n=0 f (n) (0) x n ; cos x = n! k=0 ( 1) k x k, sin x = k! k=0 ( 1) k (k + 1)! xk+1 3

4 Tenint en compte el desenvolupament en serie de Taylor de la funció exponencial d una variable real, podem estendre la funció exponencial als nombres complexos: z C, exp(z) e z = Si particularitzem aquesta definició per a z = iθ, i tenim en compte el desenvolupament en serie de Taylor del sinus i el cosinus, obtenim la fórmula d Euler: e iθ = cos θ + i sin θ A partir de la fórmula d Euler arribem a la forma exponencial d un nombre complex: Algunes propietats: (i) e z 1 e z = e z 1+z (ii) (e z ) n = e nz (iii) (e z ) 1 = e z z = re iθ (d) Multiplicació i divisió en forma exponencial Si z a = z a e iθa, a = 1,, aleshores: n=0 z n n! z 1 z = z 1 z e i(θ 1+θ ), z 1 z = z 1 z ei(θ 1 θ ) 4- Potències, arrels i logaritmes de nombres complexos (a) Potències i arrels Si z a = z e iθ, aleshores la potència n-èssima ve donada per: z n = z n e inθ A partir d aquesta expressió i de la fórmula d Euler obtenim la fórmula de Moivre: (cos θ + i sin θ) n = cos nθ + i sin nθ Par al càlcul d arrels de nombres complexos hem de tenir en compte que l argument està definit salvant un múltiple de π En forma exponencial tenim: z = z e iθ = z e i(θ+kπ), k Z L arrel p-èssima (potència 1/p) de z és el complex w tal que w p = z Aleshores per al càlcul de l arrel p-èssima hem de trobar les p solucions no equivalents: p z z 1/p = z 1/p e i θ+kπ p, k = 0, 1,, p 1 Exemple: arrel p-èssima de la unitat Representació en un diagrama d Argand 4

5 (b) Logaritmes Com en el cas dels nombres reals, la funció logaritme d un nombre complex es defineix com la inversa de la funció exponencial: Dues propietats: (i) ln(z 1 z ) = ln z 1 + ln z (ii) ln z = ln z + i(θ + kπ), k Z w = ln z z = e w Notem que la funció logaritme d un nombre complex és multivalorada ja que la part imaginària està determinada salvant kπ En aquest curs prendrem sempre la part principal del logaritme, és a dir, una part imaginària a l interval ] π, π] Exemple: ln( i) = i π A partir del logaritme podem definir l exponencial de base arbitrària: z w = e w ln z, que té les següents propietats: (i) a z 1 a z = a z 1+z (ii) ln a z = z ln a (iii) (a z ) w = a zw (iv) (a z ) 1 = a z 5- Funcions trigonomètriques i funcions hiperbòliques (a) Funcions trigonomètriques A partir de la fórmula d Euler obtenim la representació exponencial de les funcions sinus i cosinus: sin θ = eiθ e iθ, cos θ = eiθ + e iθ i Aquestes expressions permeten definir les funcions trigonomètriques d un nombre complex: Propietats: sin z eiz e iz i (i) sin z + cos z = 1, cos z eiz + e iz, (ii) sin(z 1 + z ) = sin z 1 cos z + sin z cos z 1 (iii) cos(z 1 + z ) = cos z 1 cos z sin z 1 sin z ( tan z sin z ) cos z 5

6 (b) Funcions hiperbòliques Les funcions hiperbòliques d un nombre real es defineixen: sinh x ex e x, cosh x ex + e x, ( tanh x sin x ) cos x De la mateixa manera podem definir les funcions hiperbòliques d un nombre complex: ( sinh z ez e z, cosh z ez + e z, tanh z sin z ) cos z Relació entre les funcions trigonomètriques i les hiperbòliques: Propietats: (i) cosh z sinh z = 1 sin iz = i sinh z, cos iz = cosh z, tan iz = i tanh z ; sinh iz = i sin z, cosh iz = cos z, tanh iz = i tan z (ii) sinh(z 1 + z ) = sinh z 1 cosh z + sinh z cosh z 1 (iii) cosh(z 1 + z ) = cosh z 1 cosh z + sinh z 1 sinh z 6

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere

Les Arcades. Molló del terme. Ermita la Xara. Esglèsia Sant Pere Les Arcades Molló del terme Ermita la Xara Esglèsia Sant Pere Pàg. 2 Monomi Un monomi (mono=uno) és una expressió algebraica de la forma: *+,-=/, 1 on R N., rep el nom d indeterminada o variable del monomi,

Más detalles

Unitat 5. Resolució d equacions

Unitat 5. Resolució d equacions Unitat 5. Resolució d equacions Curs d Anivellament de Matemàtiques Montserrat Corbera / Vladimir Zaiats montserrat.corbera@uvic.cat / vladimir.zaiats@uvic.cat c 01 Universitat de Vic Sagrada Família,

Más detalles

POLINOMIS. p(x) = a 0 + a 1 x + a 2 x a n x n,

POLINOMIS. p(x) = a 0 + a 1 x + a 2 x a n x n, POLINOMIS Un monomi és una expressió de la forma ax m, on el coeficient a és un nombre real o complex, x és una indeterminada i m és un nombre natural o zero. Un polinomi és una suma finita de monomis,

Más detalles

TEMA 3 : Nombres Racionals. Teoria

TEMA 3 : Nombres Racionals. Teoria .1 Nombres racionals.1.1 Definició TEMA : Nombres Racionals Teoria L'expressió b a on a i b son nombres enters s'anomena fracció. El nombre a rep el nom de numerador, i b de denominador. El conjunt dels

Más detalles

POLINOMIS. Divisió. Regla de Ruffini.

POLINOMIS. Divisió. Regla de Ruffini. POLINOMIS. Divisió. Regla de Ruffini. Recordeu: n Un monomi en x és una expressió algebraica de la forma a x on a és un nombre real i n és un nombre natural. A s anomena coeficient i n s anomena grau del

Más detalles

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

Funcions polinomiques

Funcions polinomiques H. Itkur funcions-ii -1/13 Funcions polinomiques Definició Un polinomi amb coeficients reals és una expressió de la forma p(x) = a 0 + a 1 x + a 2 x 2 +... + a n x n on a 0, a 1,..., a n són nombres reals

Más detalles

El conjunt dels nombres complexos

El conjunt dels nombres complexos El conjunt dels nombres complexos Jesús Ríos Garcés 2 Índex 1 El conjunt dels nombres complexos 5 1.1 Suma de nombres complexos.................. 6 1.2 Producte de nombres complexos................ 7 1.3

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

TEMA 3: Polinomis 3.1 DEFINICIONS:

TEMA 3: Polinomis 3.1 DEFINICIONS: TEMA 3: Polinomis 3.1 DEFINICIONS: Anomenarem monomi qualsevol expressió algèbrica formada per la multiplicació d un nombre real i d una variable elevada a un exponent natural. El nombre es diu coeficient

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES

EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES EXERCICIS POLINOMIS I FRACCIONS ALGEBRAIQUES Suma de monomis. 1. Realitza les següents operacions: + 8 4 9 9 6 + 4 5 5 1 + 4 4 4 11 7 f) 6 7 1 8. Realitza les següents operacions: 1 + 5 5 + 1 y + y + y

Más detalles

Polinomis i fraccions algèbriques

Polinomis i fraccions algèbriques Tema 2: Divisivilitat. Descomposició factorial. 2.1. Múltiples i divisors. Cal recordar que: Si al dividir dos nombres enters a i b trobem un altre nombre enter k tal que a = k b, aleshores diem que a

Más detalles

TEMA 1: Trigonometria

TEMA 1: Trigonometria TEMA 1: Trigonometria La trigonometria, és la part de la geometria dedicada a la resolució de triangles, es a dir, a determinar els valors dels angles i dels costats d un triangle. 1.1 MESURA D ANGLES

Más detalles

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos Números complejos Sesión teórica 2 (págs. 10-15) 21 de septiembre de 2010 Llamaremos números complejos a los elementos del conjunto: C = {a + bi a, b R}. La expresión a + bi se denomina forma binómica

Más detalles

FUNCIONS REALS. MATEMÀTIQUES-1

FUNCIONS REALS. MATEMÀTIQUES-1 FUNCIONS REALS. 1. El concepte de funció. 2. Domini i recorregut d una funció. 3. Característiques generals d una funció. 4. Funcions definides a intervals. 5. Operacions amb funcions. 6. Les successions

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

Geometria / GE 2. Perpendicularitat S. Xambó

Geometria / GE 2. Perpendicularitat S. Xambó Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització

Más detalles

Tema 1: TRIGONOMETRIA

Tema 1: TRIGONOMETRIA Tema : TRIGONOMETRIA Raons trigonomètriques d un angle - sinus ( projecció sobre l eix y ) sin α sin α [, ] - cosinus ( projecció sobre l eix x ) cos α cos α [ -, ] - tangent tan α sin α / cos α tan α

Más detalles

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( )

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( ) GEOMETRIA EN L ESPAI VECTORS EN L ESPAI OPERACIONS AMB VECTORS Un vector és un segment orientat en l espai que té un mòdul, una direcció i un sentit coneguts: té un extrem i un origen (Exemple: vector

Más detalles

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos Semana 12 [1/8] 15 de mayo de 2007 Aviso Semana 12 [2/8] Importante Los contenidos asociados a números complejos en la tutoría de la semana 11, se consideran como parte de esta semana. Esto se reflejará

Más detalles

SOLUCIONARI Unitat 8. a) De tercer grau i amb dos termes. Comencem. b) De quart grau i amb cinc termes. c) De segon grau i amb un terme.

SOLUCIONARI Unitat 8. a) De tercer grau i amb dos termes. Comencem. b) De quart grau i amb cinc termes. c) De segon grau i amb un terme. SOLUCIONARI Unitat 8 Comencem Utilitza les potències de base 0 per descompondre aqests nombres: 56;,05;,; 005 i tres milions i mig. 56 0 5 0 6 0,05 0 5 0 0, 0 005 0 5 milions i mig 0 6 5 0 5 Troba el valor

Más detalles

Francesc Bars Cortina. Uns apunts de números complexos.

Francesc Bars Cortina. Uns apunts de números complexos. Francesc Bars Cortina Uns apunts de números complexos. Enginyeria Química UAB, 15 de juliol de 2011 ii Francesc Bars Contingut 1 Nombres complexos 1 1.1 Definició i primeres propietats de nombres complexos.......

Más detalles

TEMA 1: Divisibilitat. Teoria

TEMA 1: Divisibilitat. Teoria TEMA 1: Divisibilitat Teoria 1.0 Repàs de nombres naturals. Jerarquia de les operacions Quan en una expressió apareixen operacions combinades, l ordre en què les hem de fer és el següent: 1. Les operacions

Más detalles

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis.

2. Operacions amb polinomis: la suma, la resta i el producte de polinomis. POLINOMIS I FUNCIONS POLINÒMIQUES. 1. Els polinomis.. Operacions amb polinomis: La suma, la resta i el producte de polinomis. 3. Identitats notables. El binomi de Newton. 4. Divisió de polinomis. Regla

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

CONTENIDOS 1º PRIMARIA MATEMÁTICAS CONTENIDOS 2º PRIMARIA

CONTENIDOS 1º PRIMARIA MATEMÁTICAS CONTENIDOS 2º PRIMARIA CONTENIDOS 1º PRIMARIA MATEMÁTICAS - NÚMEROS 0-79. - UNIDADES Y DECENAS. - MAYOR, MENOR E IGUAL. - ANTERIOR Y POSTERIIOR. - SUMAS Y RESTAS DOS CIFRAS EN HORIZONTAL Y EN VERTICAL SIN LLEVAR. - PROBLEMAS

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

ANÀLISI. MATEMÀTIQUES-2

ANÀLISI. MATEMÀTIQUES-2 1. ANÀLISI. Caldrà repassar alguns temes de cursos anteriors, com el tema de Funcions polinòmiques i, els de Funcions reals i Límits de funcions, caldrà recordar també els gràfics i propietats més importants

Más detalles

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:

operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base

Más detalles

Tema 13. El número complejo Introducción Un poco de historia

Tema 13. El número complejo Introducción Un poco de historia Tema 13 El número complejo. 13.1. Introducción. 13.1.1. Un poco de historia La primera referencia conocida a raíces cuadradas de números negativos proviene del trabajo de matemáticos griegos, como Herón

Más detalles

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta .- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-

Más detalles

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.

Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES. Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser

Más detalles

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83

Objectius. Crear expressions algebraiques. MATEMÀTIQUES 2n ESO 83 5 Expressions algebraiques Objectius Crear expressions algebraiques a partir d un enunciat. Trobar el valor numèric d una expressió algebraica. Classificar una expressió algebraica en monomi, binomi,...

Más detalles

ELS NOMBRES REALS. MATEMÀTIQUES-1

ELS NOMBRES REALS. MATEMÀTIQUES-1 ELS NOMBRES REALS. MATEMÀTIQUES- ELS NOMBRES REALS.. Els nombres reals.. Intervals de la recta real.. Valor absolut d un nombre real. 4. Notació científica.. Aproximacions i errors. 6. Potències i radicals.

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen.

Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen. Els nombres enters Els nombres enters Els nombres enters són els que permeten comptar tant els objectes que es tenen com els objectes que es deuen. Enters positius: precedits del signe + o de cap signe.

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS

Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

EXERCICIS - SOLUCIONS

EXERCICIS - SOLUCIONS materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte xevi.vb@gmail.com ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos 1. Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

XXXV OLIMPÍADA MATEMÀTICA

XXXV OLIMPÍADA MATEMÀTICA XXXV OLIMPÍADA MATEMÀTICA Primera fase (Catalunya) 10 de desembre de 1999, de 16 a 0h. 1. Amb quadrats i triangles equilàters de costat unitat es poden construir polígons convexos. Per exemple, es poden

Más detalles

Prova de competència matemàtica

Prova de competència matemàtica PROVES DE QUALIFICACIO DE NIVELL 3 Prova de competència matemàtica Nombres naturals: jerarquia d operacions: La jerarquia es: 1. parèntesi 2. multiplicacions i divisions 3. sumes i restes a) 25 : 5 + 3.

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

SOLUCIONARI Unitat 1

SOLUCIONARI Unitat 1 SOLUCIONARI Unitat Comencem En un problema de física es demana el temps que triga una pilota a assolir una certa altura. Un estudiant, que ha resolt el problema correctament, arriba a la solució t s. La

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 SÈRIE 1 Pregunta 1 3 1 lim = 3. Per tant, y = 3 és asímptota horitzontal de f. + 3 1 lim =. Per tant, = - és asímptota horitzontal

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1. Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto de Matemática Análisis Complejo Práctica N Expresar los siguientes números complejos en la forma a + ib, con a, b R: (a) (i

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

Trigonometria Resolució de triangles.

Trigonometria Resolució de triangles. Trigonometria Resolució de triangles. Raons trigonomètriques d un angle agut. Considerarem el triangle rectangle ABC on A = 90º Recordem que en qualsevol triangle rectangle Es complia el teorema de Pitàgores:

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles

MATEMÀTIQUES APLICADES A LES CIÈNCIES SOCIALS. 1r BATXILLERAT

MATEMÀTIQUES APLICADES A LES CIÈNCIES SOCIALS. 1r BATXILLERAT MATEMÀTIQUES APLICADES A LES CIÈNCIES SOCIALS 1r BATXILLERAT Llibre utilitzat: Matemàtiques aplicades a les ciències socials 1, Editorial Castellnou UNITAT 1. ELS NOMBRES REALS 1.1 Classificació dels nombres

Más detalles

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES

FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES FUNCIONS I FÓRMULES TRIGONOMÈTRIQUES Pàgina 8. Encara que el mètode per a resoldre les preguntes següents se sistematitza a la pàgina següent, pots resoldre-les ara: a) Quants radiants corresponen als

Más detalles

EQUACIONS. 4. Problemes d equacions.

EQUACIONS. 4. Problemes d equacions. EQUACIONS 1. Conceptes bàsics. 1.1. Definició d igualtat algebraica. 1.. Propietats de les igualtats algebraiques. 1.. Definició d identitat. 1.4. Definició d equació. 1.5. Membres i termes d una equació.

Más detalles

MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS

MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS MATEMÀTIQUES Versió impresa POTÈNCIES I RADICALS 1. IDEA DE POTÈNCIA I DE RADICAL Al llarg de la història, han aparegut molts avenços matemàtics com a solucions a problemes concrets de la vida quotidiana.

Más detalles

Geometria / GQ 2. Invariants euclidians de les còniques S. Xambó

Geometria / GQ 2. Invariants euclidians de les còniques S. Xambó Geometria / GQ 2. Invariants euclidians de les còniques S. Xambó,, Classificació de còniques mitjançant invariants Obtenció de les equacions reduïdes i canòniques a partir dels invariants Exemple: àrea

Más detalles

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen

Más detalles

Els nombres complexos

Els nombres complexos Els ombres complexos Els ombres complexos Defiició Oposat Represetació Forma bioòmica z = a + bi, o bé z = (a, b) esset a la part real i b, la part imagiària. a = r cos α b = r si α z = a bi Cojugat z

Más detalles

QUÍMICA 2 BATXILLERAT. Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES

QUÍMICA 2 BATXILLERAT. Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES QUÍMICA 2 BATXILLERAT Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES Les substàncies pures dins la classificació de la matèria Les SUBSTÀNCIES PURES (també anomenades espècies químiques) només

Más detalles

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients

Polinomis. Objectius. Abans de començar. 1.Expressions algebraiques pàg. 64 Dels enunciats a les expressions Valor numèric Expressió en coeficients 4 Polinomis Objectius En aquesta quinzena aprendràs: A treballar amb expressions literals per obtenir valors concrets en fórmules i equacions en diferents contextos. La regla de Ruffini. El teorema del

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES 2n d ESO

DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES 2n d ESO Institut Galileo Galilei Departament de Matemàtiques Curs 015-16 DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES n d ESO A continuació tens una sèrie d'exercicis i activitats relacionats amb els continguts treballats

Más detalles

Matemàtiques 1 - FIB

Matemàtiques 1 - FIB Matemàtiques - FI 7--7 Examen Final F Àlgebra lineal JUSTIFIQUEU TOTES LES RESPOSTES. [ punts] Siguin E i F dos espais vectorials, f : E F una aplicació lineal. (a) Digueu què ha de satisfer f per tal

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

Iniciació a les Matemàtiques per a l enginyeria

Iniciació a les Matemàtiques per a l enginyeria Iniciació a les Matemàtiques per a l enginyeria Els nombres naturals 8 Què és un nombre natural? 11 Quins són les operacions bàsiques entre nombres naturals? 11 Què són i per a què serveixen els parèntesis?

Más detalles

Iniciació a les Matemàtiques per a l enginyeria

Iniciació a les Matemàtiques per a l enginyeria Iniciació a les Matemàtiques per a l enginyeria Els nombres naturals 8 Què és un nombre natural? 11 Quins són les operacions bàsiques entre nombres naturals? 11 Què són i per a què serveixen els parèntesis?

Más detalles

Tema 1: El plano complejo

Tema 1: El plano complejo Nota: Las siguientes líneas son un resumen de las cuestiones que se han tratado en clase sobre este tema. El desarrollo de todos los tópicos tratados está recogido en la bibliografía recomendada en la

Más detalles

9. Clase 9. Números Complejos

9. Clase 9. Números Complejos 9. Clase 9. Números Complejos En el enfoque del estudio de los números complejos consideramos el conjunto de todos los pares ordenados de números reales. Un par ordenado de números reales se denota por

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.

Más detalles

1. Análisis en variable compleja y transformadas

1. Análisis en variable compleja y transformadas 1. Análisis en variable compleja y transformadas Ampliación de Matemáticas y Métodos Numéricos Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez M a Luz Muñoz Ruiz José Manuel González Vida

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

MATEMÀTIQUES 4t d ESO FEINA DE RECUPERACIÓ CURS NOM DE L ALUMNE/A:. CURS I GRUP:

MATEMÀTIQUES 4t d ESO FEINA DE RECUPERACIÓ CURS NOM DE L ALUMNE/A:. CURS I GRUP: MATEMÀTIQUES 4t d ESO FEINA DE RECUPERACIÓ CURS 0-4 NOM DE L ALUMNE/A:. CURS I GRUP: Aquests eercicis que us presentem és la feina mínima que ens ha semblat adient per preparar amb garanties la prova de

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 1 OPERACIONS AMB ENTERS

Àmbit de les Matemàtiques, de la Ciència i de la Tecnologia M14 Operacions numèriques UNITAT 1 OPERACIONS AMB ENTERS UNITAT 1 OPERACIONS AMB ENTERS 1 Què treballaràs? En acabar la unitat has de ser capaç de... Sumar, restar, multiplicar i dividir nombres enters. Entendre i saber utilitzar les propietats de la suma i

Más detalles

El número real y complejo

El número real y complejo El número real y complejo Dpto. Matemática Aplicada Universidad de Málaga Sistema de números reales Números naturales N = {0,1,2,3,...} Números enteros Z = {..., 3, 2, 1,0,1,2,3,...} { } p Números racionales

Más detalles

3 integral indefinida

3 integral indefinida H.Itkur Ampliació Anàlisi Integral indefinida 1/19 anàlisi de funcions 3 integral indefinida CONCEPTE DE PRIMITIVA. Donades les funcions f:[a,b] R i F:[a,b] R x f (x) x F (x) diem que F és una primitiva

Más detalles

TEMARIO 1º ESO (Recopilación de diferentes editoriales: Barcanova Edebé, etc)

TEMARIO 1º ESO (Recopilación de diferentes editoriales: Barcanova Edebé, etc) Ofimega acadèmies - Temarios matemáticas - 1- TEMARIO 1º ESO (Recopilación de diferentes editoriales: Barcanova Edebé, etc) 1. ELS NOMBRES NATURALS 1. Els nombres grans: milions, miliards, bilions 2. Operacions

Más detalles

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1

GEOMETRIA ANALÍTICA DEL PLA. MATEMÀTIQUES-1 GEOMETRIA ANALÍTICA DEL PLA. 1. Vectors en el pla.. Equacions de la recta. 3. Posició relativa de dues rectes. 4. Paral lelisme de rectes. 5. Producte escalar de dos vectors. 6. Perpendicularitat de rectes.

Más detalles

Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación

Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación Fundamentos Matemáticos de la Ingeniería Ingeniería de Telecomunicación Universidad de Alcalá José Enrique Morais San Miguel 27 de septiembre de 2004 Índice general I VARIABLE COMPLEJA 1 1. Funciones de

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

Vectores y números complejos

Vectores y números complejos Vectores y números complejos Desde cursos anteriores nos hemos tropezado con las llamadas raíces imaginarias o complejas de polinomios. De este modo la solución a un polinomio cúbico x = 2i x 3 3x 2 +

Más detalles

TRIGONOMETRIA. FUNCIONS TRIGONOMÈTRIQUES. MATEMÀTIQUES-1

TRIGONOMETRIA. FUNCIONS TRIGONOMÈTRIQUES. MATEMÀTIQUES-1 TRIGONOMETRIA. FUNCIONS TRIGONOMÈTRIQUES. 1. Angles i mesura d angles.. Raons trigonomètriques d un angle agut. 3. Resolució de triangles rectangles. 4. Raons trigonomètriques d un angle qualsevol. 5.

Más detalles

Unitat didàctica 2. Polinomis i fraccions algebraiques

Unitat didàctica 2. Polinomis i fraccions algebraiques Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,

Más detalles

BLOC 1.- LES CLASSES DE NÚMEROS

BLOC 1.- LES CLASSES DE NÚMEROS BLOC 1.- LES CLASSES DE NÚMEROS 1. Números naturals: són els que utilitzem per a comptar per unitats (1,,, 4, 6...). Números enters: són els números per unitats, però tant negatius com positius i el zero

Más detalles

MA5: Els nombres i llurs propietats: operacions numèriques

MA5: Els nombres i llurs propietats: operacions numèriques MA5: Els nombres i llurs propietats: operacions numèriques Els nombres enters Els temes que analitzarem són: Ordenació d'enters Representació gràfica d'enters Valor absolut d un nombre enter Suma, resta,

Más detalles

POLINOMIS i FRACCIONS ALGEBRAIQUES

POLINOMIS i FRACCIONS ALGEBRAIQUES POLINOMIS i FRACCIONS ALGEBRAIQUES. Polinomis: introducció.. Definició de polinomi.. Termes d un polinomi.. Grau d un polinomi.. Polinomi reduït..5 Polinomi ordenat..6 Polinomi complet..7 Polinomi oposat..8

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015 Oficina d Accés a la Universitat Pàgina 1 de 12 Sèrie 5 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i.

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i. Pàgina 1 5 Proves d accés a la Universitat per a més grans 5 anys Abril 015 Sèrie Exercicis Opció A A1.- Consireu el polinomi 7 6. Justifiqueu que 1 i són dues arrels l polinomi. Determineu la tercera

Más detalles

Equacions de primer i segon grau

Equacions de primer i segon grau Equacions de primer i segon grau Les equacions de primer i segon grau Equacions de primer grau amb una incògnita Exemple 3x 5 = x + 5 és una equació de primer grau amb una incògnita: és una equació perquè

Más detalles

UNITAT 3 OPERACIONS AMB FRACCIONS

UNITAT 3 OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de

Más detalles