Tema 2: Series numéricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 2: Series numéricas"

Transcripción

1 Tema 2: Series numéricas Una serie infinita (o simplemente serie) es una suma formal de infinitos términos a + a 2 + a Al número se le denomin-ésimo término de la serie Se llama sucesión de sumas parciales a la sucesión ( n ) (s n ) n N a k k n N donde el término s n recibe el nombre de n-ésima suma parcial Si la sucesión de sumas parciales converge a un ite L, decimos que la serie converge y que su suma es L En ese caso escribimos a + a 2 + a L Si la sucesión de sumas parciales de la serie no converge, decimos que la serie diverge Teorema Si converge, entonces 0 Corolario diverge si no existe o si es distinto de cero Ejemplo Las series geométricas Las series geométricas son de la forma ar n, donde a, r R y a 0 Al número real r se le llama razón de la serie Estudiemos la convergencia o divergencia de esta serie en función del valor de r Caso r En este caso l-ésima suma parcial de la serie es s n a + a() + a() a() n na y como s n ± entonces la serie diverge Caso r- En este caso las n-ésimas sumas parciales alternan entre a y 0, por lo que la serie diverge

2 Caso r Multiplicamos en ambos miembros por r: s n a + ar + ar ar n rs n ar + ar 2 + ar ar n Restamos las dos expresiones anteriores miembro a miembro: s n rs n a ar n s n ( r) a( r n ) Por lo tanto: s n a( rn ) r Observando el término general de la sucesión de sumas parciales deducimos que si r < entonces s n a r y si r > entonces s n Ejemplo 2 La serie telescópica Se llama serie teléscopica a la serie n(n + ) La clave para determinar su suma es descomponer su término general en diferencia de dos fracciones simples: n(n + ) n n + De esta forma, l-ésima suma parcial puede escribirse: ( s n ) ( ) ( ) ( n ) n + Y cancelando los términos adyacentes de signos opuestos, la expresión anterior se reduce a: s n n + que tiende a cuando n tiende a +, por lo que la serie telescópica converge y su suma es Teorema 2 Si A y b n B: a) b) + b n A + B b n A B

3 c) k k ka, k R 2 Si converge y k R, k 0 b n diverge, entonces + b n, b n y kb n divergen, Ejemplo 3 Hallar la suma de la serie Observemos que 3 n 6 n 3 n 6 n ( 2 ) n 6 n 2 + n 6 n Las dos series anteriores son series geométricas con a y r /2, r /6, respectivamente, por lo que: 3 n 6 n SERIES DE TÉRMINOS NO NEGATIVOS En lo que sigue, consideraremos series (/2) (/6) 4 5 cuyos términos son no negativos, es decir, 0, n N En este caso, la sucesión de sumas parciales es una sucesión creciente ya que s n+ s n + por lo que el teorema de sucesiones monotónas y acotadas nos lleva al siguiente resultado Teorema 3 con 0, n N converge si y sólo si su sucesión de sumas parciales (s n ) n N está acotada superiormente Teorema 4 Criterio de la integral Sea ( ) n N una sucesión de términos positivos tales que f(n) para alguna función f(x) decreciente, positiva y continua para cualquier x n 0, n 0 N Entonces integral + n 0 f(x)dx convergen o divergen ambas Ejemplo 4 La serie armónica Demostrar que la serie armónica Consideremos la función f(x) x además f(n) n Entonces: n es divergente n nn 0 y la que es positiva, continua y decreciente en [, + ) y

4 + x [ln h + x]h [ln h ln ] + h + Aplicando el criterio de la integral, deducimos que la serie armónica es divergente Ejemplo 5 La serie p Demostrar que, dado un número real positivo p, la serie p converge si p > y diverge si p (0, ] Consideremos la función f(x) x p además f(n) n p Entonces: + [si p ] x p n p + 2 p + 3 p ++ n p +, que es positiva, continua y decreciente en [, + ) y [ ] x p+ h ( ) h + p + p h + ( ) h p Caso p > : El ite anterior vale y podemos deducir entonces, por el criterio de la integral, p que en este caso la serie p converge Enfatizamos que la suma de la serie p no es /(p ); el criterio nos indica que la serie converge, pero no sabemos a qué valor Caso p < : En este caso el ite anterior vale y por lo tanto la serie diverge Caso p : En este caso la serie p es la serie armónica, que como ya se ha visto anteriormente es divergente El comportamiento de la serie p nos indica que la serie armónica diverge sólo por poco Por ejemplo, para que las sumas parciales sean mayores que 20, se deben tomar alrededor de 78 millones de términos Teorema 5 Criterio de comparación Sean, b n y n 0 N se cumple b n c n, n n 0 c n series de términos no negativos y supongamos que para algún a) Si c n converge, entonces b n también converge b) Si diverge, entonces b n también diverge

5 Ejemplo 6 La serie n! +! + 2! + + converge, ya que todos sus términos son 3! positivos y menores o iguales a los correspondientes términos de + que es una serie convergente por serlo la serie geométrica Teorema 6 Criterio de comparación por paso al ite Sean y 2 n 2 n , b n tales que para algún n 0 N se cumple > 0 y b n > 0, n n 0 a) Si c > 0, entonces b n y b n convergen o divergen ambas b) Si 0 y b n c) Si y b n b n converge, entonces b n diverge, entonces converge diverge Ejemplo 7 Veamos que la serie Para ello definimos armónica) y concluímos que b n diverge Teorema 7 Criterio de la razón Sea 2n + n 2 + 2n + diverge 2n + n 2 + 2n + y b n 2n 2 + n n 2 + 2n + n Entonces, + una serie de términos no negativos y supongamos que a) La serie converge si L < b) La serie diverge si L > o L c) El criterio no es concluyente si L b n diverge (es la serie 2 Aplicando el apartado a) del teorema anterior, + L Entonces: (2n)! Ejemplo 8 Estudiar la convergencia de la serie n! n! Definimos (2n)! n! n!, por lo que a (2n + 2)! n+ (n + )! (n + )! Entonces: + (2n + 2)! n! n! (n + )! (n + )! (2n)! (2n + 2) (2n + ) (n + ) (n + ) 4 > Por lo tanto la serie diverge 4n 2 + n 2 +

6 Teorema 8 Criterio de la raíz Sea > 0, n n 0 y supongamos que a) La serie converge si L < b) La serie diverge si L > o L c) El criterio no es concluyente si L una serie tal que para algún n 0 N se cumple n an L Entonces: Ejemplo 9 La serie ( ) n ( ) n converge, ya que n + n + n + n 0 < SERIES ALTERNADAS Se llama serie alternada a una serie en la que los términos son positivos y negativos en forma alternante El n-ésimo término de una serie alternada es de la forma ( ) n+ u n o ( ) n u n, siendo u n un número positivo Teorema 9 Criterio de Leibnitz La serie alternada siguientes condiciones: ( ) n+ u n u u 2 + u 3 u 4 + converge si se satisfacen las a) Existe algún n 0 N tal que u n u n+, n n 0 b) u n 0 Ejemplo 0 La serie armónica alternante que satisface los requisitos del teorema anterior (tomar n 0 ) ( ) n+ n converge, ya 4 Teorema 0 Estimación del error para series alternantes Si la serie alternada ( ) n+ u n cumple las condiciones del Teorema 9 y s n S, siendo s n u u 2 + u 3 + ( ) n+ u n, entonces ( ) n+ u n S s n s n+ s n u n+, n n 0 Es decir, el error en la aproximación s n S (par n 0 ) tiene el mismo signo que el primer término omitido ( ) n+2 u n+ s n+ s n y su tamaño es menor o igual al de dicho término ( ) n Ejemplo Cuántos términos de la serie son necesarios para calcular su suma + 2n con un error menor que 0,00? Esta serie cumple las condiciones del Teorema 9 Si utilizamos la suma parcial de los n primeros términos para aproximar la suma de la serie, el error cumplirá: Error primer término omitido + 2 n+

7 Este error será menor que 0,00 si + 2 n+ > 000 n > ln(999) ln(2) n > 8,96 Serán necesarios al menos n 9 términos para estimar la suma con un margen de error de 0,00 respecto de su valor real CONVERGENCIA ABSOLUTA Y CONVERGENCIA CONDICIONAL Una serie converge absolutamente si la serie de términos no negativos converge Una serie que converge, pero que no converge absolutamente, converge condicionalmente Teorema Criterio de la convergencia absoluta Toda serie absolutamente convergente es convergente Ejemplo 2 La serie ( ) n 2 n es convergente ya que converge absolutamente Lo comprobamos considerando la correspondiente serie de valores absolutos geométrica de razón /2 y por lo tanto convergente, que es una serie 2n Observación: El recíproco del teorema anterior no es cierto Existen series convergentes que no son absolutamente convergentes En el Ejemplo 0 vimos que la serie armónica alternante ( ) n+ n es convergente, sin embargo esta serie no converge absolutamente ya que la correspondiente serie de términos positivos es la serie armónica n , que como n demostramos en el Ejemplo 4 es divergente

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Agosto de 202 Si intentamos sumar los términos de una sucesión infinita {a n } obtenemos

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia

Cálculo Integral Criterios de convergencia. Universidad Nacional de Colombia Cálculo Integral Criterios de convergencia Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 205 Criterios de convergencia Cuando estudiamos las

Más detalles

Series numéricas y de potencias. 24 de Noviembre de 2014

Series numéricas y de potencias. 24 de Noviembre de 2014 Cálculo Series numéricas y de potencias 24 de Noviembre de 2014 Series numéricas y de potencias Series numéricas Sucesiones de números reales Concepto de serie de números reales. Propiedades Criterios

Más detalles

Sucesiones y Series Sucesiones

Sucesiones y Series Sucesiones Capítulo 6 Sucesiones y Series 6.. Sucesiones En particular estudiaremos las sucesiones de números reales, es decir, las que verifican la siguiente definición. Definición 6... Llamaremos sucesión a la

Más detalles

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos

Series numéricas (I) 1 Convergencia y divergencia. 2 Series importantes. 3 Propiedades generales. 4 Series de términos positivos Convergencia y divergencia Series numéricas (I Definición Sea { } una sucesión de reales y sea la sucesión asociada {S n } de sumas parciales, S n = a + a 2 + a 3 + +. LLamaremos serie a la pareja formada

Más detalles

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.

c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L. 147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones

Más detalles

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces

Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces Parte III Series Una aplicación de las sucesiones consiste en representar sumas in nitas. Dicho brevemente, si fa n g es una sucesión, entonces a n = a a a : : : a n : : : es una serie. Los números a ;

Más detalles

Sucesiones y series numéricas

Sucesiones y series numéricas Sucesión Se llama sucesión a una función f : N R que a cada natural n asocia un número real a n. Se denota por {a n } o (a n), o {a 1,a 2,...,a n,...}. Ejemplos 1, 4 3, 9 7, 16 15,..., n 2 2 n 1,... {0.3,0.33,0.333,...}

Más detalles

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números

BORRADOR. Sucesiones y series numéricas Sucesiones. es un conjunto ordenado de números Capítulo 4 Sucesiones y series numéricas 4.1. Sucesiones Una sucesión {s n } es un conjunto ordenado de números {s 1,s 2,s 3,...,s n,...}. Técnicamente, una sucesión puede considerarse como una aplicación

Más detalles

CRITERIOS DE CONVERGENCIA

CRITERIOS DE CONVERGENCIA CRITERIOS DE CONVERGENCIA 1.- CRITERIO DE COMPARACIÓN ( MEDIANTE ACOTACIÓN ) Sea una Serie de Términos positivos, y una Serie ( Auxiliar ) de términos positivos. P Si œ n 0 ù y CONVERGE CONVERGE P Si œ

Más detalles

EJERCICIOS ADICIONALES.

EJERCICIOS ADICIONALES. UNIVERSIDAD SIMON BOLIVAR PREPARADURIA DE MATEMATICAS MATEMATICAS 4 (MA-5) Miguel Guzmán (magt_3@hotmail.com) Tema: SUCESIONES EJERCICIOS ADICIONALES..- Considere la sucesión establecida por la relación

Más detalles

TEMA 4. Series de potencias

TEMA 4. Series de potencias TEMA 4 Series de potencias. Introducción En el tema anterior hemos estudiado la aproximación polinómica local de funciones mediante el polinomio de Taylor correspondiente. En particular, vimos para la

Más detalles

Cálculo Integral Series de potencias. Universidad Nacional de Colombia

Cálculo Integral Series de potencias. Universidad Nacional de Colombia Cálculo Integral Series de potencias Jeanneth Galeano Peñaloza - Claudio Rodríguez Beltrán Universidad Nacional de Colombia Segundo semestre de 2015 Series de potencias Una serie de potencias alrededor

Más detalles

Series de números complejos

Series de números complejos Análisis III B - Turno mañana - Series 1 Series de números complejos 1 Definiciones y propiedades Consideremos una sucesión cualquiera de números complejos (z n ) n1. Para cada n N, sabemos lo que quiere

Más detalles

Sucesiones. Convergencia

Sucesiones. Convergencia Sucesiones. Convergencia Sucesión: Es una aplicación de IN en IR: f : IN IR n = f (n) En vez de f (n) se escribe a n, que se denomina término general de la sucesión. A la sucesión se le representa por:

Más detalles

: k }, es decir. 2 k. k=0

: k }, es decir. 2 k. k=0 FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, que llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n.

Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n. Capítulo 4 Series 4 Introducción Definición 4 Sea (x n ) n= una sucesión de números reales Para cada n N definimos n S n = x k = x + x 2 + + x n k= La sucesión (S n ) n se conoce como la serie infinita

Más detalles

Un resumen de la asignatura. Junio, 2015

Un resumen de la asignatura. Junio, 2015 Un resumen de la asignatura Departamento de Matemática Aplicada a las Tecnologías de la Información y las Comunicaciones ETSIT (UPM) Junio, 2015 1 Los Números Reales(R) Los números Irracionales Continuidad

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA25 Clase 5: Series de potencias. Operaciones con series de potencias. Series de potencias Elaborado por los profesores Edgar Cabello y Marcos González Cuando estudiamos las series geométricas, demostramos

Más detalles

C alculo Noviembre 2010

C alculo Noviembre 2010 Cálculo Noviembre 2010 Series numéricas. Sucesiones Definición Una sucesión es una aplicación a : IN IR. Denotamos simplificadamente a n en vez de a(n). El límite de la sucesión (a n ) es l R si para

Más detalles

Sucesiones Introducción

Sucesiones Introducción Temas Límites de sucesiones. convergentes. Sucesiones divergentes. Sucesiones Capacidades Conocer y manejar conceptos de sucesiones convergentes y divergentes. Conocer las principales propiedades de las

Más detalles

TEMA 4: SUCESIONES EN R.

TEMA 4: SUCESIONES EN R. TEMA 4: SUCESIONES EN R. 4.0. INTRODUCCIÓN. El concepto de límite desempeña un papel fundamental en todo el Cálculo Infinitesimal. En este tema introduciremos este concepto de la forma más sencilla posible:

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones

Variable Compleja I ( ) Ejercicios resueltos. Las convergencias puntual y uniforme de sucesiones y series de funciones Variable Compleja I (205-6) Ejercicios resueltos Las convergencias puntual y uniforme de sucesiones y series de funciones Recordemos la definición de la convergencia uniforme: f n (z) f (z) en un conjunto

Más detalles

DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n -

DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n - DEFINICIÓN DE SUCESIÓN. Definición: Una sucesión de números reales es una aplicación del conjunto de los números naturales en los reales: x : n x n - Una sucesión asigna a cada número natural un número

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

Divergencia de sucesiones

Divergencia de sucesiones Tema 7 Divergencia de sucesiones Nuestro próximo objetivo es prestar atención a ciertas sucesiones no acotadas de números reales, ue llamaremos sucesiones divergentes. Estudiaremos su relación con los

Más detalles

10. Series de potencias

10. Series de potencias FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San

Más detalles

Problemas resueltos Series Numéricas

Problemas resueltos Series Numéricas Problemas resueltos Numéricas Ximo Beneyto3 Genius, a good idea in Maths Tema : numéricas. Problemas PROBLEMAS RESUELTOS 1. De una serie conocemos el término general de su suma parcial de orden "n",. Se

Más detalles

Enumerar suficientes términos de la sucesión como para que quede claro como seguir. a n 0 : 1; 2; 4; 8; 16;

Enumerar suficientes términos de la sucesión como para que quede claro como seguir. a n 0 : 1; 2; 4; 8; 16; Clase 3 Series de potencias 3.. Introducción Al hojear casi cualquier libro de matemática universitaria, habitualmente nos encontramos con el símbolo de sumatoria. Lo mismo sucede con muchos libros específicos

Más detalles

UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS.

UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. UNIDAD 1: ESTUDIEMOS SUCECIONES ARITMETICAS Y GEOMETRICAS. Sucesiones Una sucesión es un conjunto de números que son imagen de una función, cuyo dominio son, (normalmente), los enteros positivos, comenzando

Más detalles

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS

ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS B. SUCESIONES B.1 Diversos conjuntos numéricos. En

Más detalles

TEMA 3. SERIES NUMÉRICAS

TEMA 3. SERIES NUMÉRICAS TEMA 3. SERIES NUMÉRICAS 3.1 DEFINICIÓN DE SERIE DE NÚMEROS REALES Definición: Dada una sucesión de números reales x n, se considera una nueva sucesión s n de la forma : s 1 x 1 s 2 x 1 x 2 s 3 x 1 x 2

Más detalles

Inducción y recursividad

Inducción y recursividad Capítulo Inducción y recursividad.. Proposiciones Definición (Proposición) Una proposición es una colección de símbolos sintácticos a la cual se le puede asignar uno y solo un valor de verdad: verdadero

Más detalles

Apunts. Ejercicios resueltos de series numéricas. Series numéricas. Continuitat. Prof Ximo Beneyto

Apunts. Ejercicios resueltos de series numéricas. Series numéricas. Continuitat. Prof Ximo Beneyto Series numéricas Ejercicios resueltos de series numéricas Prof Ximo Beneyto PROBLEMES RESOLTS 1. De una serie sabemos el término general de su suma parcial de orden "n",. Se pide : 2. Hallar a n y formar

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesiones de números reales Llamaremos sucesión de números reales a una función a : IN IR. Notaremos a(n) =a n. Para referirnos a la sucesión cuyo término n-ésimo es a n usaremos la notación {a n }. 1.

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS E.A.P. DE. MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

Más detalles

1 Sucesiones. Ejemplos. a n = n. a n = n! a n = p n. a n = 2n3 + n n a n = ln(n) a n = n n

1 Sucesiones. Ejemplos. a n = n. a n = n! a n = p n. a n = 2n3 + n n a n = ln(n) a n = n n Sucesiones De nición. Una sucesión, a, es una función que tiene como dominio el conjunto de los números naturales y como contradominio el conjunto de los números reales: a : N! R. Se usa la siguiente notación:

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

Series y sucesiones de números complejos

Series y sucesiones de números complejos 1 Universidad Simón Bolívar. Preparaduría nº 8. christianlaya@hotmail.com ; @ChristianLaya. Series y sucesiones de números complejos Definición: una sucesión de números complejos tiene un límite si para

Más detalles

1.3. El teorema de los valores intermedios

1.3. El teorema de los valores intermedios Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA II. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM

UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA II. CARÁCTER: Obligatoria DENSIDAD HORARIA HT HP HS THS/SEM UNIVERSIDAD CENTROCCIDENTAL LISANDRO ALVARADO DECANATO DE INGENIERIA CIVIL MATEMATICA II CARÁCTER: Obligatoria PROGRAMA: Ingeniería Civil DEPARTAMENTO: Ciencias Básicas CODIGO SEMESTRE DENSIDAD HORARIA

Más detalles

Fórmula integral de Cauchy

Fórmula integral de Cauchy Fórmula integral de Cauchy Comentario: de acuerdo con esta fórmula, uno puede conocer el valor de f dentro del entorno, conociendo únicamente los valores que toma f en el contorno C! Fórmula integral de

Más detalles

Para qué tantas hipótesis en el Criterio de la Integral. Luis Alejandro Acuña P. Escuela de Matemática Instituto Tecnológico de Costa Rica.

Para qué tantas hipótesis en el Criterio de la Integral. Luis Alejandro Acuña P. Escuela de Matemática Instituto Tecnológico de Costa Rica. Para qué tantas hipótesis en el Criterio de la Integral. Luis Alejandro Acuña P. Escuela de Matemática Instituto Tecnológico de Costa Rica Resumen: Se repasa el planteo tradicional del Criterio de la Integral

Más detalles

Sucesiones y series de números reales

Sucesiones y series de números reales Capítulo 2 Sucesiones y series de números reales 2.. Sucesiones de números reales 2... Introducción Definición 2... Llamamos sucesión de números reales a una función f : N R, n f(n) = x n. Habitualmente

Más detalles

BORRADOR. Series de potencias y de funciones Sucesiones de funciones

BORRADOR. Series de potencias y de funciones Sucesiones de funciones Capítulo 5 Series de potencias y de funciones 5.1. Sucesiones de funciones En los dos últimos capítulos de la asignatura, deseamos estudiar ciertos tipos de series de funciones, es decir, expresiones sumatorias

Más detalles

SUCESIONES. Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,...

SUCESIONES. Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... SUCESIONES DEFINICIÓN DE SUCESIÓN Se llama sucesión a un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero,... Los elementos de la sucesión se llaman términos

Más detalles

Sucesiones en R. j. armando Velazco. Bitácora personal de matemáticas

Sucesiones en R. j. armando Velazco. Bitácora personal de matemáticas Sucesiones en R j. armando Velazco Bitácora personal de matemáticas 2 de febrero 206 El presente trabajo se distribuye bajo una Licencia Creative Commons Atribución- CompartirIgual 4.0 Internacional. Para

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3).

Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3). TEOREMA DE BOLZANO: Probar que la ecuación x 3-4x - 2 = 0 tiene alguna raíz real, aproximando su valor hasta las décimas. Consideramos la función f(x) = x 3-4x - 2 la cual es continua por ser polinómica.

Más detalles

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas

CÁLCULO ELEMENTAL PROBLEMAS. Valor absoluto. Funciones y sus gráficas CÁLCULO ELEMENTAL PROBLEMAS Valor absoluto - Resolver las ecuaciones siguientes: (i) 2x 6 = x (ii) x + 8 = 3x 4 2- Resolver la inecuación 2x 3 4 Funciones y sus gráficas 3- Dada f(x) = 2x 2 x, hallar f(

Más detalles

SUCESIONES Y SERIES INFINITAS

SUCESIONES Y SERIES INFINITAS de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de SUCESIONES Y SERIES INFINITAS Sergio Stive Solano Septiembre de 2012 de Una serie de potencia es aquella que tiene la forma c

Más detalles

TEMA 4. Sucesiones de números reales.

TEMA 4. Sucesiones de números reales. Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x

Más detalles

GBG ejerciciosyexamenes.com 1

GBG ejerciciosyexamenes.com 1 PROGRESIONES PROGRESIONES ARITMÉTICAS 1. Hallar los términos que se indican de las siguientes progresiones aritméticas: a) El término 20 en: 1, 6, 11, 16... b) El término 6 en: 3, 7, 11, 15... c) El 12

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.

SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005.

MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005. MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 0 de Febrero de 005. Tenéis 3 horas para hacer estos ejercicios. Podéis usar una versión de los apuntes como están en la red, sin ninguna anotación. No

Más detalles

Apuntes. Apuntes. fâvxá ÉÇxá wx aøåxüéá extäxáa. Sucesiones. cüéuäxåtá ÜxáâxÄàÉá. Universidad

Apuntes. Apuntes. fâvxá ÉÇxá wx aøåxüéá extäxáa. Sucesiones. cüéuäxåtá ÜxáâxÄàÉá. Universidad fâvxá ÉÇxá wx aøåxüéá extäxá cüéuäxåtá ÜxáâxÄàÉá Universidad fâvxá ÉÇxá wx aøåxüéá extäxáa ctz Çt D PROBLEMAS RESUELTOS 1.- Dada la sucesión de números reales con 1.1 Estudiar su monotonía 1.2 Probar que

Más detalles

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS 2.1 SUCESIONES DE NUMEROS REALES 2.1.1 Definición de sucesión de números reales Definición: Una sucesión de números reales es una aplicación del conjunto

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Fundamentos Matemáticos. Grado en Ingeniería Informática. Grado en Ingeniería de Computadores. Universidad de Alcalá

Fundamentos Matemáticos. Grado en Ingeniería Informática. Grado en Ingeniería de Computadores. Universidad de Alcalá Fundamentos Matemáticos Grado en Ingeniería Informática Grado en Ingeniería de Computadores Universidad de Alcalá Francisco Javier Bueno Guillén Óscar Gutiérrez Blanco José Enrique Morais San Miguel Francisco

Más detalles

Cálculo diferencial e integral I. Eleonora Catsigeras

Cálculo diferencial e integral I. Eleonora Catsigeras Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones

Más detalles

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática

1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática 1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.

Más detalles

13. Series de Laurent.

13. Series de Laurent. Funciones de variable compleja. Eleonora Catsigeras. 3 Mayo 2006. 33 3. Series de Laurent. 3.. Definición de serie de Laurent y corona de convergencia. Definición 3... Serie de Laurent. Se llama serie

Más detalles

MATEMATICAS 4. GUIA DE EJERCICIOS PARA EL PRIMER (y/o SEGUNDO) PARCIAL DE MATEMATICAS 4 con SOLUCIONES. Temas presentes en la guía.

MATEMATICAS 4. GUIA DE EJERCICIOS PARA EL PRIMER (y/o SEGUNDO) PARCIAL DE MATEMATICAS 4 con SOLUCIONES. Temas presentes en la guía. MATEMATICAS 4 GUIA DE EJERCICIOS PARA EL PRIMER (y/o SEGUNDO) PARCIAL DE MATEMATICAS 4 con SOLUCIONES Temas presentes en la guía. 1.- Sucesiones de números. Series de números..- Criterios de convergencia.

Más detalles

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N

+ i,... es una sucesión. Otra forma de denotar la misma sucesión es {z n } n N Capítulo 6 Sucesiones y series en C Todo el trabajo de este capítulo esta destinada a mostrar que tiene sentido sumar infinitas funciones de variable compleja. En gran medida es un copy/paste de la versión

Más detalles

Sucesiones y Series de Funciones

Sucesiones y Series de Funciones Sucesiones y Series de Funciones Consideremos una sucesión {f n }, donde f n : I R R, entonces decimos que {f n } es una sucesión de funciones. Ejemplos: i) {f n }, donde f n : R R está dada por Tenemos

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles

si este límite es finito, y en este caso decimos que f es integrable (impropia)

si este límite es finito, y en este caso decimos que f es integrable (impropia) Capítulo 6 Integrales impropias menudo resulta útil poder integrar funciones que no son acotadas, e incluso integrarlas sobre recintos no acotados. En este capítulo desarrollaremos brevemente una teoría

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS SUCESIONES DE FUNCIONES En primer curso estudiamos el concepto de convergencia de una sucesión de números. Decíamos que dada una sucesión de números reales (x n ) n=1 R, ésta

Más detalles

Series Sucesiones y series en C

Series Sucesiones y series en C Series En este capítulo vamos a estudiar desarrollos en serie de funciones holomorfas, para lo cual vamos en primer lugar a revisar resultados de la teoría de series, adaptándolos a series de términos

Más detalles

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II CÁLCULO II Grado M+I Sucesiones y series de funciones Sucesiones y series de funciones 1 / Sucesiones funciones. Convergencia puntual Sucesión de funciones Definición Una sucesión de funciones será cualquier

Más detalles

UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS

UNIDAD. Logaritmos ÍNDICE DE CONTENIDOS UNIDAD 2 Sucesiones y número e. Logaritmos ÍNDICE DE CONTENIDOS 1. Sucesiones de números reales............................... 35 1.1. Progresiones aritméticas y geométricas....................... 36 1.2.

Más detalles

Más sobre las series geométricas. 1. Derivación de series geométricas elementales

Más sobre las series geométricas. 1. Derivación de series geométricas elementales Semana - Clase 2 4/0/0 Tema : Series Más sobre las series geométricas Las series infinitas se encuentran entre las más poderosas herramientas que se introducen en un curso de cálculo elemental. Son un

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5.

Observación: Aceptaremos que la función f no este definida para un número finito de términos como por ejemplo f(n) = n 5. Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07- Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles

1/58. Sucesiones < >

1/58. Sucesiones < > 1/58 Sucesiones Concepto de sucesión 2/58 Es más fácil reconocer una sucesión que definirla. Decimos, por ejemplo, que: x n D 1 C 1 n n ; y n D n sen.1=n/; z n D 1 C 1 2 C C 1 n son sucesiones. ara cada

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

Análisis Matemático 1 para estudiantes de Ingeniería

Análisis Matemático 1 para estudiantes de Ingeniería Alejandro E. García Venturini - Mónica Scardigli Análisis Matemático 1 para estudiantes de Ingeniería EDICIONES COOPERATIVAS , INDICE 505 NOCIONES PREVIAS... 7 Los conjuntos numéricos... 9 Conjuntos de

Más detalles

Integral impropia Al definir la integral definida b

Integral impropia Al definir la integral definida b Mte Univ II, 14 FCE-BUAP CÁLCULO INTEGRAL ALEJANDRO RAMÍREZ PÁRAMO 1. Sucesiones y series Integrl impropi Al definir l integrl definid b f(x)dx, pretendimos que l función f estb definid; demás de cotd,

Más detalles

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta :

Unidad IV. La sucesión de sumas parciales asociada a una sucesión está definida para cada como la suma de la sucesión desde hasta : Unidad IV Series. 4.1 Definición de seria. Una serie es la generalización de la noción de suma a los términos de una sucesión infinita. Informalmente, es el resultado de sumar los términos: a 1 + a 2 +

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados. y y MA3002 y Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna

Más detalles

3.4 El Teorema de Taylor. Extremos relativos

3.4 El Teorema de Taylor. Extremos relativos 3.4. EL TEOREMA DE TAYLOR. EXTREMOS RELATIVOS 103 3.4 El Teorema de Taylor. Extremos relativos La derivación está directamente relacionada con la posibilidad de aproximar localmente funciones suficientemente

Más detalles

RESUMEN DE TEORIA. Primera Parte: Series y Sucesiones

RESUMEN DE TEORIA. Primera Parte: Series y Sucesiones RESUMEN DE TEORIA Primera Parte: Series y Sucesiones SUCESIONES Definición: La sucesión converge a L y se escribe lim = si para cada número positivo hay un número positivo correspondiente N tal que =>

Más detalles

Ya hemos indicado anteriormente su concepto, ahora bien de manera formal se dice que se tiene una serie numérica cuando se tiene:

Ya hemos indicado anteriormente su concepto, ahora bien de manera formal se dice que se tiene una serie numérica cuando se tiene: TUTORIAL SERIES NUMÉRICAS Las series numéricas están presentes en gran cantidad de aplicaciones de nuestro entorno industrial. Puede ser que no seamos conscientes de ello pero es así; pensad que se define

Más detalles

Integrales impropias múltiples

Integrales impropias múltiples Integrales impropias múltiples ISABEL MARRERO Departamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice 1. Introducción 1 2. Caracterización de la integrabilidad impropia 2 3.

Más detalles

4 Conjunto de los números reales

4 Conjunto de los números reales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #4: viernes, 3 de junio de 2016. 4 Conjunto de los números reales 4.1

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

1. Medida Exterior. Medida de Lebesgue en R n

1. Medida Exterior. Medida de Lebesgue en R n 1. La integral de Lebesgue surge del desarrollo de la integral de Riemann, ante las dificultades encontradas en las propiedades de paso al ĺımite para calcular la integral de una función definida como

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles