FASE ESPECÍFICA RESPUESTAS FÍSICA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FASE ESPECÍFICA RESPUESTAS FÍSICA"

Transcripción

1 UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS Convocatoria 2013 FASE ESPECÍFICA RESPUESTAS FÍSICA En cada Bloque elija una Opción: Bloque 1.- Teoría (2,5 puntos) Opción A: 1.- Movimiento angular de una partícula. 2.- Naturaleza de la luz. Opción B: 1.- Principio de Huygens. 2.- Potencia y distancias focales de una lente. Bloque 2.- Cuestiones (2,5 Puntos) Opción A: 1.- Una rueda parte del reposo y en 10 segundos adquiere una velocidad angular de 300 r.p.m. Cuál es su aceleración angular? Cuántas vueltas dio en ese tiempo? ; Que equivalen a 25 vueltas. ; 2.- El índice de refracción del cuarzo es 1,544. Con qué velocidad se propaga la luz en él? Opción B: 1.- La masa de la tierra es aproximadamente de kg y la de la luna de 7, kg y la distancia entre la luna y la tierra es de km. Con qué fuerza se atraen luna y tierra? La fuerza de atracción entre la tierra y la luna se obtiene por aplicación de la ley de Newton de la gravitación universal: 2.- Una carga eléctrica puntual de +2 C se encuentra situada en el centro geométrico de un cubo de 2 m de arista. El medio es el vacío. Cuál es el flujo eléctrico a través de la superficie cúbica? Podemos considerar la propia superficie del cubo como la superficie gaussiana (es cerrada y está situada en un campo eléctrico). Por lo tanto aplicando el teorema de Gauss de forma discreta:

2 Bloque 3.- Problemas (2,5 puntos) Opción A: Un cuerpo de 20 kg de masa se encuentra sobre una superficie horizontal con la que presenta un coeficiente de rozamiento = 0,2. El cuerpo esta unido mediante un hilo, que pasa por la garganta de una polea, a otro cuerpo que cuelga de masa m. Se pide 1º.- Realizar el diagrama de fuerzas del problema. 2º.- Calcular el valor de la masa m para que el sistema comience a deslizar. 3º.- Cuál es la tensión del hilo. 1.- Sobre el cuerpo colgado actúan el peso y la tensión de la cuerda; sobre el colocado en la superficie horizontal actúan el peso, la reacción normal del suelo, la tensión de la cuerda y la fuerza de rozamiento que se opone al posible movimiento. 2.- Al considerar que la polea y la cuerda son ideales, la tensión que actúa sobre los dos cuerpos es la misma y la aceleración con la que se moverían también. En el instante de que comience a moverse se cumple: Para el cuerpo apoyado: Para el cuerpo que cuelga: Por lo tanto sustituyendo:, y simplificando: 3.- Para calcular la tensión del hilo sólo hemos de sustituir en la ecuación del cuerpo que cuelga: Opción B: Un satélite artificial de 500 kg de masa gira en torno a la tierra a una altura de km sobre su superficie, teniendo en cuenta que el radio de la tierra es de km. Calcular: 1º.- Su velocidad. 2º.- Su energía cinética. 3º.- Su energía potencial gravitatoria. 4º.- Su energía total. 1.- El radio de la órbita del satélite es y, además:, la velocidad del satélite es: 2.- Calculemos su energía cinética: 3.- La energía potencial gravitatoria tomando como nivel cero el infinito, valdrá: 4.- La energía total será la suma de la energía cinética y la potencial:

3 Bloque 4.- Problemas (2,5 puntos) Opción A: Un protón con una energía de 1 MeV se mueve perpendicularmente a un campo magnético de 1,5 T. Calcular: a) Velocidad del protón. b) Fuerza que actúa sobre el protón. c) Radio de la trayectoria circular que describe. La masa del protón es 1, kg y su carga 1, C a.- Como uno de los datos es la energía cinética, la velocidad es: b.- Como la velocidad y el campo son perpendiculares: por lo tanto sustituyendo datos: c.- Para calcular el radio de la trayectoria igualamos la fuerza normal con la fuerza magnética: de donde Opción B: Una lente convergente de radios iguales, y que supondremos delgada, tiene una distancia focal de 50 cm. Proyecta, sobre una pantalla, la imagen de un objeto de 5 cm de longitud. Cuál es la distancia de la pantalla a la lente para que la imagen tenga una longitud de 40 cm? y F F y. Como ;, siendo objeto real e imagen real, ésta tiene que estar invertida. Por lo tanto:. De este modo la ecuación se convierte en:

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r

Solución: a) En un periodo de revolución, el satélite barre el área correspondiente al círculo encerrado por la órbita, r 2. R T r 1 PAU Física, junio 2011 OPCIÓN A Cuestión 1.- Un satélite que gira con la misma velocidad angular que la Tierra (geoestacionario) de masa m = 5 10 3 kg, describe una órbita circular de radio r = 3,6 10

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2010. Fase general. OPCION A Cuestión 1.- Una partícula que realiza un movimiento armónico simple de 10 cm de amplitud tarda 2 s en efectuar una oscilación completa. Si en el instante

Más detalles

Examen de Selectividad de Física. Septiembre 2009. Soluciones

Examen de Selectividad de Física. Septiembre 2009. Soluciones Examen de electividad de Física. eptiembre 2009. oluciones Primera parte Cuestión 1.- Razone si son verdaderas o falsas las siguientes afirmaciones: El valor de la velocidad de escape de un objeto lanzado

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

FISICA DE LOS PROCESOS BIOLOGICOS

FISICA DE LOS PROCESOS BIOLOGICOS FISICA DE LOS PROCESOS BIOLOGICOS BIOELECTROMAGNETISMO 1. Cuál es la carga total, en coulombios, de todos los electrones que hay en 3 moles de átomos de hidrógeno? -289481.4 Coulombios 2. Un átomo de hidrógeno

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

Relación entre peso, masa y gravedad

Relación entre peso, masa y gravedad Relación entre peso, masa y gravedad Todo cae; las hojas de los árboles, un ladrillo, un lápiz y nos parece obvio. Pero fue Isaac Newton, allá por el siglo XVII que, probablemente observando cómo caía

Más detalles

BLOQUE 4.2 ÓPTICA GEOMÉTRICA

BLOQUE 4.2 ÓPTICA GEOMÉTRICA BLOQUE 4.2 ÓPTICA GEOMÉTRICA 1- DE QUÉ TRATA LA ÓPTICA GEOMÉTRICA? El desarrollo de la Óptica y de sus usos o aplicaciones discurrió prácticamente al margen de la discusión relativa a la naturaleza de

Más detalles

RELACIÓN DE PROBLEMAS

RELACIÓN DE PROBLEMAS Departamento de Física Escuela Politécnica Superior de Linares (Universidad de Jaén) ASIGNATURA Física Mecánica TEMA 1 TÍTULO Cinemática RELACIÓN DE PROBLEMAS 1º) El módulo de la velocidad del sonido en

Más detalles

EL MOVIMIENTO ARMÓNICO SIMPLE

EL MOVIMIENTO ARMÓNICO SIMPLE 1 EL MOVIMIENTO ARMÓNICO SIMPLE IDEAS PRINCIPALES Oscilaciones Movimiento periódico Movimiento armónico simple Péndulo simple Oscilaciones amortiguadas Oscilaciones forzadas Resonancia Análisis de Fourier

Más detalles

Solución Actividades Tema 5 LAS FUERZAS. PRESIÓN ATMOSFÉRICA E HIDROSTÁTICA

Solución Actividades Tema 5 LAS FUERZAS. PRESIÓN ATMOSFÉRICA E HIDROSTÁTICA Solución Actividades Tema 5 LAS FUERZAS. PRESIÓN ATMOSFÉRICA E HIDROSTÁTICA Actividades de la Unidad 2. Indica si está actuando alguna fuerza en las siguientes situaciones cotidianas. Cuando así sea, distingue

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

LIBRO DE FISICA GENERAL

LIBRO DE FISICA GENERAL Manual de Física General TEMARIO Nº 03 LIBRO DE FISICA GENERAL OCTUBRE 2008 1 CONTENIDO Capitulo 1 Fisica General 1. Unidades de medida SI y Sistema Inglés. 2. Ecuaciones Dimensionales 3. Cantidades Escalares

Más detalles

Sistema Tierra-Luna-Sol: Fases y eclipses

Sistema Tierra-Luna-Sol: Fases y eclipses : Fases y eclipses Rosa M. Ros International Astronomical Union, Universidad Politécnica de Cataluña (Barcelona, España) Resumen Se presentan algunos modelos sobre las fases de la Luna y los eclipses de

Más detalles

Dinámica de una partícula

Dinámica de una partícula Dinámica de una partícula Este es el capítulo central de la mecánica. En el capítulo anterior aprendimos a describir el movimiento de una partícula. Ahora analizaremos las causas del movimiento. El marco

Más detalles

CAPÍTULO 4 F Í S I C A

CAPÍTULO 4 F Í S I C A CPÍTULO 4 F Í S I C 1. FUERZ 1.1 Qué significa fuerza? Cuando usted presiona un resorte o patea una pelota de fútbol, usted está aplicando una fuerza para aumentar o disminuir el largo del primero o para

Más detalles

α = (rad/s 2 ) Experimento 8

α = (rad/s 2 ) Experimento 8 Experimento 8 MOVIMIENTO DE ROTACIÓN Objetivos 1. Establecer algunas similitudes entre el movimiento de traslación y el de rotación,. Medir la posición, velocidad y aceleración angulares de objetos girando,

Más detalles

TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL

TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL 1. Algunas consideraciones elementales a) Suponemos que la Tierra permanece fija y son los astros quienes se mueven en torno a ella. Es decir, en nuestro modelo

Más detalles

Que hay detrás de un hoyo negro.

Que hay detrás de un hoyo negro. Que hay detrás de un hoyo negro. Titulo. Hoyos negros, características que lo determinan como realidad más no como fantasía. Resumen. Por siglos el hombre ha intentado encontrar una manera de interpretar

Más detalles

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora

Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Caída de un imán por un tubo conductor y análisis de los pulsos inducidos en una espira exploradora Martin, Laura Leibovich, Débora laura_martin1@hotmail.com debbie@megabras.com Laboratorio de física -

Más detalles

CURSO DE AMBIENTACIÓN A LA VIDA UNIVERSITARIA

CURSO DE AMBIENTACIÓN A LA VIDA UNIVERSITARIA COORDINADORA Profesora Mercedes Colombo PRESENTACIÓN El siguiente módulo está destinado a los ingresantes de las facultades de Ciencias de la Salud, Ciencias de la Administración, Ciencias Económicas,

Más detalles

Problemas y Cuestiones de las Olimpiadas de Química 323

Problemas y Cuestiones de las Olimpiadas de Química 323 Problemas y Cuestiones de las Olimpiadas de Química 33. ESTRUCTURA ATÓMICA.. Los números atómicos del Mn y Ni son 5 y 8, respectivamente. Los iones Mn (II) y Ni (II) son, respectivamente: a) Iones d 5

Más detalles

I.E.S. Al-ándalus. Dpto de Física y Química. Física 2º Bachillerato. Tema 5. Vibraciones y ondas -1 - VIBRACIONES Y ONDAS

I.E.S. Al-ándalus. Dpto de Física y Química. Física 2º Bachillerato. Tema 5. Vibraciones y ondas -1 - VIBRACIONES Y ONDAS I.E.S. Al-ándalus. Dpto de Física Química. Física º Bachillerato. Tema 5. Vibraciones ondas - - TEMA 5 VIBRACIONES Y ONDAS 5. Moimiento oscilatorio. Moimiento armónico simple. 5. Moimiento ondulatorio.

Más detalles

BLOQUE 3.2 ONDAS. Se puede transferir energía a un cuerpo distante mediante otro cuerpo portador: por ejemplo, la bola que

BLOQUE 3.2 ONDAS. Se puede transferir energía a un cuerpo distante mediante otro cuerpo portador: por ejemplo, la bola que BLOQUE 3. ONDAS La mayor parte de la información que recibimos nos llega en forma de algún tipo de onda. El sonido, la luz, las señales que reciben nuestros aparatos de radio y televisores son ejemplos

Más detalles

Los fluidos desempeñan un papel crucial en muchos aspectos de la vida cotidiana.

Los fluidos desempeñan un papel crucial en muchos aspectos de la vida cotidiana. 14 MECÁNICA DE FLUIDOS METAS DE APRENDIZAJE Al estudiar este capítulo, usted aprenderá: El significado de la densidad de un material y la densidad media de un cuerpo. Qué se entiende por presión en un

Más detalles

Teorías del Sistema Solar. Historia de las ideas que llevaron a formulación de la ley de gravitación

Teorías del Sistema Solar. Historia de las ideas que llevaron a formulación de la ley de gravitación Teorías del Sistema Solar Historia de las ideas que llevaron a formulación de la ley de gravitación Pedro J. Hernández González 1999-2004 pjhdez@navegalia.com No reproducir sin permiso El movimiento del

Más detalles

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría

Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE. Objetivos. Teoría Experimento 9 LEY DE HOOKE Y MOVIMIENTO ARMÓNICO SIMPLE Objetivos 1. Verificar la ley de Hooke, 2. Medir la constante k de un resorte, y 3. Medir el período de oscilación de un sistema masa-resorte y compararlo

Más detalles

1.2. NÚMEROS CUÁNTICOS.

1.2. NÚMEROS CUÁNTICOS. 1.2. NÚMEROS CUÁNTICOS. 1.2.1. NÚMERO CUÁNTICO PRINCIPAL. En la corteza, los electrones se sitúan siguiendo caminos determinados llamados orbitales. Cada orbital está definido por tres números cuánticos,

Más detalles