EL MICROSCOPIO Y LA ORGANIZACIÓN CELULAR

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL MICROSCOPIO Y LA ORGANIZACIÓN CELULAR"

Transcripción

1 Práctica #2 EL MICROSCOPIO Y LA ORGANIZACIÓN CELULAR I. Objetivos Al final del laboratorio el estudiante debe ser capaz de: II. * Identificar y manejar las diferentes partes de un microscopio compuesto. * Aprender a colocar el microscopio en posición de trabajo. * Describir los procedimientos para preparar materiales y observarlos en el microscopio. * Identificar las estructuras de las células y sus respectivas funciones. * Familiarizarse con el trabajo en el microscopio. * Describir los procedimientos para preparar materiales y observarlos en el microscopio. * Identificar las estructuras de las células y sus respectivas funciones. Introducción 18 Según la teoría celular, la célula es la estructura biológica más pequeña y simple que posee todas las características básicas de vida. Todos los organismos vivos están compuestos de una o más células y toda actividad que realiza un organismo vivo está relacionada con las actividades metabólicas de las células. Así, para entender los procesos de la vida se necesita entender la estructura y la función de la célula. Debido al papel fundamental y único de las células en la organización de la vida, se podrá entender la razón por la cual el estudio de la célula es esencial para el estudio de la vida. Las células, sin embargo, se encuentran por debajo del límite de la resolución del ojo humano, haciendo necesario la utilización de un instrumento con capacidad de amplificación visual y alta resolución. El microscopio es un instrumento diseñado para hacer posible la observación y el examen de objetos muy pequeños, los cuales no podrían ser vistos sin la ayuda de lentes amplificadores. Hay dos tipos de microscopio según la fuente utilizada para su funcionamiento: el microscopio de luz y el microscopio electrónico. Dentro de los microscopios de luz existen variaciones; los más usados y conocidos son los microscopios simples o lupa, el microscopio compuesto y el microscopio binocular estereoscopio. Podemos encontrar otros tipos de microscopios de uso mas especializado en determinados campos de la biología y otras ciencias, tales como el microscopio de contraste de fase, de fluorescencia, UV, de luz polarizada, confocal., etc.) Los microscopios que se utilizan en entornos científicos cuentan con varias mejoras que permiten un estudio integral del espécimen. El microscopio óptico común está conformado por tres sistemas: (a) sistema mecánico, constituido por una serie de piezas en las que van instaladas las lentes, y que permiten el movimiento para el enfoque, (b) sistema óptico que comprende un conjunto de lentes dispuestas de tal manera que produce el aumento de las imágenes que se observan a través de ellas, y (c) sistema de iluminación que comprende las partes del microscopio que reflejan, transmiten y regulan la cantidad de luz necesaria para efectuar la observación a través del microscopio.

2 19 Para la formación de la imagen, el microscopio dispone de una distribución específica de grupos de lentes que permiten una gran amplificación. La fuente luminosa es un filamento de tungsteno cuya luz es dirigida hacia un sólo punto mediante la lente condensadora. El haz luminoso incide por debajo de la preparación que debe ser lo bastante fina como para que la luz pueda atravesarla. Al pasar por la muestra, parte de la luz es absorbida por ésta y la diferencia de absorción de la luz en diferentes partes del espécimen produce contrastes que revelan detalles de su estructura. Tras atravesar la muestra, la luz pasa a través de las lentes objetivos localizada por encima de la preparación. Existen diferentes lentes objetivos con diferentes capacidades de amplificación de la muestra y resolución de la imagen que pueden ir intercambiándose a lo largo del estudio. Finalmente, la luz pasa a través de las lentes oculares que, amplificándola aún más, hacen incidir la imagen sobre la Dado que la imagen de la muestra está ampliada muchas veces e invertida, es difícil moverla de forma manual. Por ello los soportes de los microscopios científicos de alta potencia están montados en una plataforma que se puede mover con tornillos micrométricos. Algunos microscopios cuentan con soportes giratorios. Todos los microscopios de investigación cuentan con tres o más objetivos montados en un cabezal móvil que permite variar la potencia de aumento. El tipo de microscopio más comúnmente utilizado es el llamado microscopio compuesto; con éste se obtiene una imagen bidimensional del objeto observado. Para el estudio de las células, en el presente laboratorio se usará el microscopio de luz El microscopio monocular compuesto es utilizado con altos poderes de amplificación para hacer observaciones de objetos sumamente pequeños, los cuales tienen que estar finamente cortados y puestos sobre vidrios especiales denominados portaobjetos. Además, deben ser transparentes para que la luz pueda atravesarlos. Es frecuente también cubrir los objetos con otros vidrios especiales más pequeños que los anteriores llamados cubreobjetos. Cuando se trabaja en el laboratorio, es de gran importancia conocer el poder o grado de aumento, el poder de resolución y la distancia de trabajo. El grado de aumento es la magnificación total que sufre la imagen del objeto que está debido al efecto de los lentes oculares y objetivos. Se obtiene multiplicando el número de veces que aumenta el lente ocular por el número de veces que aumenta el lente objetivo. Si el objetivo aumenta la imagen de un objeto 40 veces, ésta al pasar por la lente ocular será nuevamente aumentada. Si el ocular aumenta 10 veces, la magnificación total en este caso será: 10X x 40X = 400X. En la misma forma se procede cuando se trabaja con otros lentes de mayor poder. Este resultado permite saber cuantas veces más grande estamos viendo la imagen de un objeto. Igualmente importante es el poder de resolución: Es la posibilidad de distinguir separados dos puntos muy cercanos entre sí. Cuanto mayor sea el poder de resolución, menor será la distancia entre dos puntos a la cual pueden distinguirse como tales. El poder de resolución de un microscopio compuesto depende de la longitud de onda de la fuente luminosa y de la apertura numérica (propiedad óptica de la lente). Cualquier objeto cuyo diámetro sea menor que 0.1 mm es demasiado pequeño para poder ser observado a simple vista. La mayor utilidad del microscopio es la capacidad de ampliar el poder de resolución de la vista humana para objetos cuyo diámetro es menor que 0.1 mm. Por tanto, un microscopio sirve fundamentalmente para dos cosas: primero provee aumento y, segundo, permite ver detalles de objetos tan pequeños que no podrían ser vistos normalmente. De esta forma, el poder de resolución es quizá la característica más importante de un buen microscopio ya que de nada sirve una imagen muy grande del objeto, si ésta se ve borrosa y no puede distinguirse en sus detalles. Finalmente, se conoce como distancia de trabajo a la distancia comprendida entre los objetos en observación y el lente frontal del objetivo. Es inversamente proporcional al aumento; es decir, cuanto mayor sea el aumento del lente objetivo menor será la distancia de trabajo. Cuando se trabaje con un lente de inmersión la distancia de trabajo será mínima. En estos casos es necesario usar aceite de inmersión entre el lente objetivo y la preparación debido a que el índice de refracción para este tipo de lente es la del aceite y no la del aire. Esto permite obtener una imagen de gran tamaño y al mismo tiempo de gran nitidez.

3 20 III. Procedimiento. Durante la sesión de laboratorio se realizarán seis ejercicios que le permitirán adquirir habilidades y destrezas necesarias para trabajar con un microscopio compuesto de luz. Para ello, los estudiantes harán subgrupos con un máximo de 3 estudiantes (8-10 subgrupos). Cada subgrupo realizará y analizará los 6 experimentos Al finalizar los experimentos, se hará una discusión de los resultados obtenidos. Cada subgrupo debe estar preparado para discutir sus resultados Ejercicio 1.- Partes del microscopio Este ejercicio lo realizarán simultáneamente con el instructor. 1. Con la ayuda del instructor/asistente el estudiante identificará cada componente del microscopio y hará una descripción de sus funciones. Rotule el esquema que se presenta en el reporte 2. Verifique que conoce en forma detallada, cada uno de los pasos para el uso, funcionamiento y cuidados del microscopio. A.- Método de trabajo y cuidados del microscopio. 1. Coloque el microscopio sobre la mesa de trabajo. Cuando traslade el microscopio, hágalo sosteniéndolo con las dos manos, con la derecha sujete firmemente el brazo y posicione la izquierda bajo la base. 2. Antes de usar el microscopio, observe si todas sus partes se encuentran limpias y en buen estado. Si el ocular y los objetivos se encuentran sucios, proceda a limpiarlos cuidadosamente, utilizando un papel de seda. No utilice cualquier tipo de papel o limpiador. Si aún después de haber limpiado los lentes permanecen sucios u opacos, consulte con el asistente, quien procederá a limpiarlos con xilol. Cualquier daño debe ser informado inmediatamente al instructor. 3. Ponga el objetivo de bajo poder en línea, haciendo girar el revólver suavemente hasta que el lente quede en posición de trabajo. 4. Encienda la luz y abra el diafragma. La cantidad de luz, regulada por el diafragma, debe ser directamente proporcional al aumento utilizado. Mire por el lente ocular y ajuste el diafragma para que todo el campo óptico esté igualmente iluminado, con el fin de evitar el deslumbramiento. 5. Ponga la preparación a estudiar sobre la platina, asegurándose de que esté bien prensada y que no toque el lente frontal del objetivo. Mantenga seca la platina. 6. Una vez hecha la observación y antes de quitar la preparación, coloque el objetivo de bajo poder en posición de trabajo. La preparación debe ser colocada para observación o retirada solamente cuando el objetivo de menor aumento (4X) está en posición de observación 7. La luz debe permanecer apagada mientras el microscopio no está en uso. Asegúrese que el microscopio esté limpio antes de entregarlo al concluir sus observaciones. B.- Procedimiento para enfocar correctamente el microscopio 1. Ponga la preparación de prueba (cuadrado, letra, palabras, etc.) sobre la platina del microscopio, de tal manera que la porción del portaobjetos que contiene la muestra quede directamente sobre la abertura circular. Sujete el portaobjetos con las pinzas del carro. 2. Mientras observa por un lado del microscopio observe cuidadosamente el movimiento del tubo óptico o platina cuando accione la perilla del macrométrico hacia delante o hacia atrás. Anote hacia que dirección debe girar el macrométrico para acercar o alejar la platina (y el portaobjeto) de la preparación 3. Proceda a girar la perilla del macrométrico de manera que el tubo óptico descienda hasta que el objetivo de bajo poder esté muy cerca del portaobjeto, sin romper el portaobjeto (algunos modelos de

4 21 microscopios están construidos de tal forma que no es el tubo óptico el que se acciona con las perillas del enfoque, sino que es la platina). 4. Mirando ahora por el ocular, accione lentamente la perilla del macrométrico en la dirección contraria (objetivo de aleja de la preparación). Gire el macrométrico hasta que aparezca claramente la imagen de las letras impresas en el campo óptico. 5. A partir de entonces, será el micrométrico el que se usará para apreciar los detalles y los planos de la preparación. Con la perilla del micrométrico ajuste suavemente el foco hasta obtener una imagen nítida de las letras. Nuevamente, anote hacia que dirección debe girar el micrométrico para acercar la platina con el portaobjeto al objetivo con la cual se está trabajando En general el micrométrico no debe moverse más de 2 vueltas para obtener una imagen nítida. NUNCA DEBE GIRAR EL MACROMÉTRICO USANDO UN OBJETIVO DE ALTO PODER 6. Mueva el carro de tal forma que la preparación se mueva alejándose de usted y observe por el ocular. En qué dirección se observa el movimiento de la imagen? 7. Mueva ahora el carro de izquierda a derecha cuál es la dirección del movimiento de la imagen observada por el ocular Ejercicio 2.- Medidas microscópicas 1. Haga un dibujo en el reporte de la preparación utilizando el lente de bajo aumento 2. Gire el revólver suavemente hasta colocar en posición de trabajo, el lente objetivo de mediano poder. Cuando el lente está en la posición correcta, queda aprisionado por una pieza mecánica que sujeta el revólver al cuerpo del microscopio. 3. Observe cuidadosamente la imagen. Mueva el micrométrico cuidadosamente hasta obtener una imagen nítida. 4. Repita los pasos 2 y 3 con el objetivo del alto poder. 5. Cuando se observa con lentes de mayor aumento, es la iluminación igual, mayor o menor, que cuando se observa con el lente de bajo poder? 6. Haga los cambios y ajustes necesarios con el diafragma para obtener una iluminación óptima. Tenga cuidado de mantener el microscopio limpio y seco. 7. Haga un dibujo en el reporte de la preparación utilizando el lente de alto aumento Cuando observamos un objeto al microscopio su tamaño aparece tantas veces mayor cuantas veces sea el aumento del microscopio. Por ello para calcular el aumento real de lo que observamos al microscopio bastará dividir el tamaño aparente con que lo vemos por el aumento. La unidad de medición del microscopio es la micras o micrón (una milésima de un milímetro, mm) y se designa con la letra griega μ. En los laboratorios de investigación se utiliza el micrómetro para realizar las mediciones microscópicas. Supongamos que vemos un organismo al microscopio con un tamaño aparente de 0.4 mm, y que el aparato está equipado con un objetivo x20 y un ocular x10 (aumento=200), entonces, el tamaño real del organismo será: Tamaño real = tamaño aparente = 0,4 = 0,002 mm = 2,0 μm. Aumento 200

5 22 En nuestro caso, por no poseer micrómetros, se obtienen las medidas haciendo una comparación entre el tamaño de la imagen del objeto observado al microscopio y el tamaño real del mismo. Para averiguar el tamaño aproximado del campo óptico, realice los siguientes pasos: 1. Recortar un cuadrado de papel milimetrado fotocopiado en acetato 2. Poner en el portaobjeto 3. Utilizando el objetivo de bajo aumento, mida el tamaño del campo visual haciendo coincidir una de las líneas del papel milimetrado con el borde del campo visual. Esto da la medida del diámetro del campo visual (D AB ) para éste aumento (AMP AB ) 4. Para calcular el diámetro del campo visual en aumentos mayores (D AP ), hay que recordar que cuanto mayor sea el aumento, el campo visual será proporcionalmente menor, es decir D AP = D BP * AMP BP / AMP AP 5. Una vez calculado el campo visual, se puede obtener el tamaño aproximado del objeto observado dividiendo el valor del diámetro del campo visual entre el número de veces que el objeto cabe en ese campo. 6. Ponga la preparación que tiene la letra e y enfóquela. Compare el tamaño de la letra con el tamaño del campo óptico. Determine el tamaño de la letra Ejercicio 3 - Poder de resolución Siguiendo los pasos anteriores, tome la letra "e" o un trocito de papel con puntos, cuente el número de puntos presentes en los tres poderes del microscopio; note las diferencias. Haga dibujos esquemáticos. Este ejercicio es un ejemplo del poder de resolución del microscopio. C.- Preparación del material de estudio Los materiales que son estudiados al microscopio se colocan sobre una lámina de vidrio llamada portaobjetos. Generalmente el material es cubierto con un vidrio pequeño llamado cubreobjetos. Ambos deben estar limpios y secos. En el presente laboratorio, usted examinará las características comunes de las células eucarióticas, sin embargo, no todas las células son iguales. Algunos organismos son unicelulares (una única célula); éstos realizan todas las funciones de respiración, digestión, reproducción y excreción con una sola célula. Otros forman agregados o grupos de células llamadas colonias. Las colonias simples no tienen conexiones fisiológicas pero mantienen una estructura multicelular. Las colonias más complejas tienen conexiones fisiológicas y cierta especialización de tipos de células. Limpie los portaobjetos con agua, tomándolos con los dedos por los bordes, frótelos con un pañuelo limpio y seco o con una toalla absorbente. Los cubreobjetos son muy frágiles y deben ser tratados con mucho cuidado. Ejercicio 4.- Organismos unicelulares Observe cada una de las siguientes muestras. En su reporte, haga un dibujo de lo que observa en el microscopio. Rotule las estructuras que observa. No olvide indicar el aumento utilizado en cada dibujo y el tamaño de cada organismo Recuerda siempre manipular los portaobjetos y cubreobjetos por los bordes. (A) Agua de charco Tome una gota de agua de charco, colóquela sobre un portaobjetos, cúbrala con un cubreobjetos, primero a bajo poder; luego a mediano y alto poder. Identifique los organismos que observa.

6 23 (B) Yogurt (opcional) Sobre un portaobjeto, coloque una gota de de solución salina (NaCl 0.9%). agua. Tome con un palillo una pequeña cantidad de yogurt y diluya sobre la gota de agua. Haz un frotis de la muestra (con otro portaobjeto presiona suavemente sobre la muestra en un ángulo de 45 y deslízalo hacia el otro extremo del portaobjeto, distribuyendo uniformemente la muestra). Flamea la muestra pasando rápidamente la muestra sobre el mechero, cuide de no quemar la muestra. Agrega una gota de azul de metileno y espera 5 min. Lava la muestra con agua destilada. Seca el exceso de agua del portaobjeto y observa al microscopio con objetivos 10X y 40x. (C) Cultivo de protista (opcional) Toma una muestra del cultivo con la pipeta pasteur y coloca una gota sobre el portaobjeto. Deja secar la muestra a aire y luego agrega una gota de hematoxilina. Deja reposa unos 10 min. Lava con agua destilada y agrega cuidadosamente unas gotas de HCl 0.1N hasta obtener una coloración rosa en el portaobjeto. Lava nuevamente y agrega unas gotas de alcohol al 70% y xilol. Observa al microscopio con objetivos de 10x y 40x. Ejercicio 5.- Organismos multicelulares: Células de plantas Los organismos multicelulares tienen un gran número de células con estructura y función especializadas, de modo que una célula de éstas no puede existir aislada. En caso de no contar con una preparación fija, proceda de la siguiente manera: haga un corte de la muestra, póngalo sobre el portaobjetos y con un gotero deposite una gota de agua, cubra la muestra con el cubreobjetos teniendo el cuidado de evitar la formación de burbujas. (A) Células de epidermis de cebolla (Allium cepa) Escoja epidermis de cebolla y colóquela en forma estirada en un portaobjetos con una gota de agua. Cúbrala con un cubreobjetos y obsérvela al microscopio con un aumento de 10 X. Observe los límites de la célula y coloque el objetivo de 40 X. Retire la preparación del microscopio y añada una gota de orceína sin quitar el cubreobjetos (en los bordes de éste), observe la muestra en lente de 10 X y anote los cambios que ocurren. Luego, observe con aumento de 40 X, dibuje e identifique las siguientes estructuras: pared celular, núcleo, citoplasma. (B) Células de hoja de Elodea (planta acuática) Prepare una hoja joven de Elodea sobre un portaobjetos con una gota de agua, cúbrala con el cubreobjetos y observe a 10 X y a 40 X. Observar las siguientes estructuras: pared celular, protoplasma, citoplasma, vacuola central, cloroplasto, núcleo. Observe el movimiento citoplasmático llamado ciclosis. El citoplasma es transparente pero se nota el movimiento de partículas verdes: cloroplastos. (C) Cromoplastos Coloque un corte delgado de epidermis de chile (Capsicum sp); colóquela sobre el portaobjetos, cúbrala con agua y observe la preparación a mayor aumento. Observe las estructuras que presenta. (D) Amiloplastos Haga un corte muy fino de papa (Solanum tuberosum); colóquelo sobre un portaobjetos, agréguele una gota de lugol y cúbralo. Observe a 10X; luego a 40X. Los amiloplastos tienen color azul al teñirse con lugol.

7 Ejercicio 6.- Organismos multicelulares: Células de animales 24 Un grupo de células íntimamente asociadas y que cumplen una función única específica se denomina tejido. Los tejidos animales generalmente se clasifican en tejido epitelial, conectivo, muscular y nervioso. Cada uno de estos tipos de tejidos está formado por células con tamaño, forma y organización característica. (A) Células epiteliales Con ayuda de una paleta, extraiga células epiteliales de la parte interna de sus mejillas. Colóquelas en un portaobjetos, añada una gota de agua y remueva. Luego, añada una gota de orceína y coloque un cubreobjetos. Observe la preparación a 10 X; luego a 40 X. Identifique: núcleo, nucleolo, citoplasma, membrana celular. (B) Tipos de tejidos: epitelial, muscular y nervioso Observa detenidamente cada una de las láminas disponibles en el laboratorio y describa las características de cada tipo de tejido en base al tipo de célula, tamaño celular, distribución en el cuerpo PARA LA PRÓXIMA PRÁCTICA: Los estudiantes deben traer a la sesión de laboratorio Zanahoria mediana Cebolla Bolsa pequeña de azúcar Reglas transparentes

Práctica 1: El Microscopio Óptico. Observación Microscópica de los Organismos

Práctica 1: El Microscopio Óptico. Observación Microscópica de los Organismos Práctica 1: El Microscopio Óptico. Observación Microscópica de los Organismos Tipos de microscopios Microscopio óptico Campo luminoso Campo oscuro Microscopio electrónico de Transmisión (TEM) de Barrido

Más detalles

Práctica 4 :Diversidad celular

Práctica 4 :Diversidad celular Práctica 4 :Diversidad celular I. OBJETIVOS Al final del laboratorio el estudiante debe ser capaz de: * Aplicar los procedimientos para preparar materiales y observarlos en el microscopio. * Identificar

Más detalles

EL MICROSCOPIO SECCION ESPAÑOLA CIENCIAS INTEGRADAS ESCUELA EUROPEA DE LUXEMBURGO 3º SECUNDARIA

EL MICROSCOPIO SECCION ESPAÑOLA CIENCIAS INTEGRADAS ESCUELA EUROPEA DE LUXEMBURGO 3º SECUNDARIA EL MICROSCOPIO Introducción En el estudio de las ciencias naturales ocupa una parte particularmente importante el, ya que permite observaciones que están fuera del alcance de la visibilidad directa del

Más detalles

Los estudiantes observarán las diferencias entre células vegetales y animales.

Los estudiantes observarán las diferencias entre células vegetales y animales. Laboratorio. Célula vegetal vs. Célula animal PSI Biología Nombre Objetivo Materiales Los estudiantes observarán las diferencias entre células vegetales y animales. Fórceps Cuentagotas de la medicina o

Más detalles

ombre:... Comisión:...

ombre:... Comisión:... Trabajo Práctico o 1: Trabajo Práctico º 1: Microscopía Microscopía Óptica ombre:... Comisión:... Objetivos 1. Reconocer las partes del microscopio. 2. Aprender las normas básicas para el manejo y cuidado.

Más detalles

Assessment and Student Activity Masters

Assessment and Student Activity Masters Assessment and Student Activity Masters Evaluación preliminar Instrucciones: Completa el espacio vacío con la palabra correcta. Las posibles respuestas se encuentran listadas en la parte inferior. 1. Sin,

Más detalles

Prácticas de Laboratorio MICROSCOPIO ÓPTICO

Prácticas de Laboratorio MICROSCOPIO ÓPTICO Prácticas de Laboratorio EL MICROSCOPIO ÓPTICO Objeto de la práctica El objeto de la práctica es el uso del microscopio y las observaciones que se pueden hacer con el mismo. Materiales utilizados El microscopio.

Más detalles

POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID. Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA)

POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID. Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA) POLITÉCNICO COLOMBIANO JAIME ISAZA CADAVID Libardo Ariel Blandón L (Biólogo UdeA, Lic Ed. Agroambiental Poli JIC y Esp. Ciencias Experimentales UdeA) MICROSCOPIA Elabore portada, introducción y descripción

Más detalles

Guía: Microscopio GUÍA MICROSCOPIO. Microscopio de Hooke (izquierda) y Microscopio de Leeuwenhoek (derecha), creadores de los primeros microscopios.

Guía: Microscopio GUÍA MICROSCOPIO. Microscopio de Hooke (izquierda) y Microscopio de Leeuwenhoek (derecha), creadores de los primeros microscopios. . ESCUELA SALUD GUÍA MICROSCOPIO Microscopio de Hooke (izquierda) y Microscopio de Leeuwenhoek (derecha), creadores de los primeros microscopios. DIRIGIDO A ALUMNOS DE: Técnico de Laboratorio Clínico y

Más detalles

PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA

PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA I. Objetivos. 1. Estudiar el efecto que tienen ciertas sustancias sobre la luz polarizada. 2. Encontrar la gráfica y ecuación de la concentración

Más detalles

PRACTICA Núm. 1 EL MICROSCOPIO. Conocer sus partes y su función, así como el cuidado, manejo y utilidad en el Laboratorio de Microbiología.

PRACTICA Núm. 1 EL MICROSCOPIO. Conocer sus partes y su función, así como el cuidado, manejo y utilidad en el Laboratorio de Microbiología. PRACTICA Núm. 1 EL MICROSCOPIO I. OBJETIVO Conocer sus partes y su función, así como el cuidado, manejo y utilidad en el Laboratorio de Microbiología. II. INTRODUCCION El microscopio es indispensable en

Más detalles

INICIACIÓN EN LA OBSERVACIÓN MICROSCÓPICA.

INICIACIÓN EN LA OBSERVACIÓN MICROSCÓPICA. UN MUNDO PEQUEÑO: INICIACIÓN EN LA OBSERVACIÓN MICROSCÓPICA. Autor: Francisco Luis López Rodríguez DNI: 80 127 204 -B INTRODUCCIÓN Para poder ver un objeto es necesario que la luz reflejada o emitida por

Más detalles

SESIÓN 3: MICROSCOPIO TRABAJO PREVIO CONCEPTOS FUNDAMENTALES

SESIÓN 3: MICROSCOPIO TRABAJO PREVIO CONCEPTOS FUNDAMENTALES SESIÓN 3: MICROSCOPIO TRABAJO PREVIO CONCEPTOS FUNDAMENTALES En esta sección se describen algunas de las características del microscopio compuesto. También la propiedad de las láminas planoparalelas de

Más detalles

1.4. Clasificación Microscópica de Rocas Ígneas. 1.4.1. Microscopios de Luz Polarizada.

1.4. Clasificación Microscópica de Rocas Ígneas. 1.4.1. Microscopios de Luz Polarizada. 1.4. Clasificación Microscópica de Rocas Ígneas. 1.4.1. Microscopios de Luz Polarizada. Primero describiremos un microscopio óptico común y la forma que los microscopios deben manipularse. Posteriormente

Más detalles

PRÁCTICA 15 El espectrómetro de difracción

PRÁCTICA 15 El espectrómetro de difracción PRÁCTICA 15 El espectrómetro de difracción Laboratorio de Física General Objetivos Generales 1. Medir el rango de longitudes que detecta el ojo humano. 2. Analizar el espectro de emisión de un gas. Equipo

Más detalles

Trabajo Práctico N o 2 :Procariotas y Eucariotas. Nombre:... Comisión:...

Trabajo Práctico N o 2 :Procariotas y Eucariotas. Nombre:... Comisión:... Trabajo Práctico N o 2: Trabajo Práctico N o 2 :Procariotas y Eucariotas Procariotas y Eucariotas Nombre:... Comisión:... Objetivos 1. Reconocer tipos celulares en el microscopio. 2. Establecer diferencias

Más detalles

UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO Facultad de Ciencias Naturales Dpto. Biología General BOTANICA GENERAL

UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO Facultad de Ciencias Naturales Dpto. Biología General BOTANICA GENERAL UNIVERSIDAD NACIONAL DE LA PATAGONIA SAN JUAN BOSCO Facultad de Ciencias Naturales Dpto. Biología General BOTANICA GENERAL MICROSCOPIA Trabajo Práctico Nº 2 Alumno/a:... Fecha:... Objetivos: - Reconocer

Más detalles

DIVERSIDAD DE LOS SERES VIVOS. CARACTERÍSTICAS Y CLASIFICACIÓN DE LOS SERES VIVOS ANEXO PARA LOS DOCENTES

DIVERSIDAD DE LOS SERES VIVOS. CARACTERÍSTICAS Y CLASIFICACIÓN DE LOS SERES VIVOS ANEXO PARA LOS DOCENTES DIVERSIDAD DE LOS SERES VIVOS. CARACTERÍSTICAS Y CLASIFICACIÓN DE LOS SERES VIVOS ANEXO PARA LOS DOCENTES Microscopio ocular tubo Tornillo macrométrico revolver objetivos Tornillo micrométrico platina

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

Guía introductoria al uso del microscopio óptico

Guía introductoria al uso del microscopio óptico Universidad de Chile Facultad de Medicina PreuMed 2012 Biología Guía introductoria al uso del microscopio óptico Material complementario para desarrollar antes de la realización de la actividad práctica.

Más detalles

Práctica 3 : Introducción a la microscopia celular

Práctica 3 : Introducción a la microscopia celular Práctica 3 : Introducción a la microscopia celular I. - OBJETIVOS Al final del laboratorio el estudiante debe ser capaz de: * Identificar y manejar las diferentes partes de un microscopio compuesto. *

Más detalles

MANUAL DE PRÁCTICAS DE BIOLOGÍA CELULAR

MANUAL DE PRÁCTICAS DE BIOLOGÍA CELULAR MANUAL DE PRÁCTICAS DE BIOLOGÍA CELULAR 1/18 CONTENIDO Página I. PRESENTACIÓN II. PRÁCTICAS Práctica 1. Uso correcto del microscopio de campo claro, la iluminación Koelher Práctica 2. Estudio al microscopio

Más detalles

FORMACIÓN DE IMÁGENES CON LENTES

FORMACIÓN DE IMÁGENES CON LENTES Laboratorio de Física de Procesos Biológicos FORMACIÓN DE IMÁGENES CON LENTES Fecha: 19/12/2005 1. Objetivo de la práctica Estudio de la posición y el tamaño de la imagen de un objeto formada por una lente

Más detalles

Observaciones al microscopio

Observaciones al microscopio Observaciones al microscopio En esta práctica Ud. deberá poner en práctica los conocimientos adquiridos en la práctica anterior, por lo tanto para ingresar al laboratorio deberá manejar satisfactoriamente

Más detalles

ESTAMOS MOSQUEADOS!!!

ESTAMOS MOSQUEADOS!!! ESTAMOS MOSQUEADOS!!! Por qué somos cómo somos? La herencia es algo más? Algo que nos tiene mosqueados en nuestra clase del Colegio Pintor Rosales. Este proyecto va a proporcionar las primeras bases de

Más detalles

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor

Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor Guía de Preparación de Muestras para PLASTICOS para el Software de Formulación de Datacolor 1. Generalidades 2. Qué se necesita para comenzar? 3. Qué hacer para sistemas opacos y translúcidos? 4. Qué hacer

Más detalles

Problemas de Óptica. PAU (PAEG)

Problemas de Óptica. PAU (PAEG) 1. (Junio 09 ) Observamos una pequeña piedra que esta incrustada bajo una plancha de hielo, razona si su profundidad aparente es mayor o menor que su profundidad real. Traza un diagrama de rayos para justificar

Más detalles

PARTES FUNDAMENTALES DE UNA CÁMARA FOTOGRÁFICA

PARTES FUNDAMENTALES DE UNA CÁMARA FOTOGRÁFICA PARTES FUNDAMENTALES DE UNA CÁMARA FOTOGRÁFICA 1. Lente El lente es el componente de la cámara fotográfica que sirve para enfocar y regular el foco (las cámaras que tienen zoom son capaces de acercar y

Más detalles

Microscopio. Microscopio

Microscopio. Microscopio P E R C E P C I Ó N Microscopio Microscopio P E R C E P C I Ó N La invención del microscopio (término procedente del griego "mikro: pequeño y skop: visión) no está del todo clara; según los italianos,

Más detalles

INTERFERENCIA DE ONDAS DE LUZ

INTERFERENCIA DE ONDAS DE LUZ INTERFERENCIA DE ONDAS DE LUZ Objetivo: Material: Deducir la naturaleza de las ondas de luz analizando patrones de interferencia. 1. Interferómetro de precisión. 2. Láser diodo. 3. Plataforma mecánica

Más detalles

CÁMARA THOMA Y NEUBAUER IMPROVED PARA EL RECUENTO DE LEVADURAS (TIRAJE)

CÁMARA THOMA Y NEUBAUER IMPROVED PARA EL RECUENTO DE LEVADURAS (TIRAJE) 1/5 CÁMARA THOMA Y NEUBAUER IMPROVED PARA EL RECUENTO DE LEVADURAS (TIRAJE) En este documento se pretende explicar de forma clara y sencilla el proceso de recuento y viabilidad de las levaduras para el

Más detalles

LINEAS EQUIPOTENCIALES

LINEAS EQUIPOTENCIALES LINEAS EQUIPOTENCIALES Construcción de líneas equipotenciales. Visualización del campo eléctrico y del potencial eléctrico. Análisis del movimiento de cargas eléctricas en presencia de campos eléctricos.

Más detalles

Práctica 1. MEDIDAS DE PRECISIÓN

Práctica 1. MEDIDAS DE PRECISIÓN Práctica 1. MEDIDAS DE PRECISIÓN OBJETIVOS Manejo de aparatos de precisión que se utilizan en el laboratorio. Medir dimensiones de diferentes cuerpos y a partir de éstas sus volúmenes. MATERIAL Aparatos

Más detalles

GUÍA DE LOS MAESTROS ACTIVIDAD: MIDE EL PESO USANDO UNA BALANZA DE MUELLE

GUÍA DE LOS MAESTROS ACTIVIDAD: MIDE EL PESO USANDO UNA BALANZA DE MUELLE GUÍA DE LOS MAESTROS ACTIVIDAD: MIDE EL PESO USANDO UNA BALANZA DE MUELLE Tiempo Sugerido: 150 minutos (tres períodos de 50 minutos) Objetivo General: Reconocer que el peso es una fuerza. Objetivos Específicos:

Más detalles

UNIVERSIDAD AUTONOMA DE CHIAPAS FACULTAD DE CIENCIAS QUIMICAS LABORATORIO DE BIOLOGIA CELULAR. Practica 1 MICROSCOPIO

UNIVERSIDAD AUTONOMA DE CHIAPAS FACULTAD DE CIENCIAS QUIMICAS LABORATORIO DE BIOLOGIA CELULAR. Practica 1 MICROSCOPIO UNIVERSIDAD AUTONOMA DE CHIAPAS Alumno (a): N de lista: Gris Hill Carrillo Ovando 8 Marbella Guadalupe Gómez Jiménez 10 Luis Daniel López Ruiz 16 Nayeli del Carmen López Vázquez 17 Cinthia del Rocio Silias

Más detalles

Ejercicio 2. Uso y cuidado del microscopio Preparado por: Prof. Ángel A. Ortiz-Vélez

Ejercicio 2. Uso y cuidado del microscopio Preparado por: Prof. Ángel A. Ortiz-Vélez Universidad de Puerto Rico en Ponce: Departamento de Biología: Biol 3013: Ag. 04 Ejercicio 2. Uso y cuidado del microscopio Preparado por: Prof. Ángel A. Ortiz-Vélez I. Introducción En el estudio de las

Más detalles

6. ESPECTROS DE EMISIÓN ATÓMICA

6. ESPECTROS DE EMISIÓN ATÓMICA 6. ESPECTROS DE EMISIÓN ATÓMICA 6.1. OBJETIVOS Medir la longitud de onda de las líneas espectrales emitidas en la región visible por varios gases altamente diluidos. Medir la constante de Rydberg a partir

Más detalles

Interferómetro de Michelson

Interferómetro de Michelson Interferómetro de Michelson Objetivo Medir la longitud de onda de la luz emitida por un laser, determinar la variación del índice de refracción del aire con la presión y evaluar el índice de refracción

Más detalles

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013

ES 1 097 480 U ESPAÑA 11. Número de publicación: 1 097 480. Número de solicitud: 201331388 A47G 29/00 (2006.01) 03.12.2013 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 1 097 480 Número de solicitud: 1331388 1 Int. CI.: A47G 29/00 (06.01) 12 SOLICITUD DE MODELO DE UTILIDAD U 22 Fecha de presentación:

Más detalles

Una vez descrita la constitución general de un robot, podemos empezar con la

Una vez descrita la constitución general de un robot, podemos empezar con la CAPÍTULO 2 Construcción y Mecanismo de Operación del Brazo Robótico Una vez descrita la constitución general de un robot, podemos empezar con la descripción de nuestro robot, cómo fue construido y cómo

Más detalles

GUÍA DE LOS MAESTROS ACTIVIDAD: EL COLOR DEPENDE DEL CRISTAL CON QUE SE MIRA

GUÍA DE LOS MAESTROS ACTIVIDAD: EL COLOR DEPENDE DEL CRISTAL CON QUE SE MIRA GUÍA DE LOS MAESTROS ACTIVIDAD: EL COLOR DEPENDE DEL CRISTAL CON QUE SE MIRA Tiempo Sugerido: 100-150 minutos (dos a tres períodos de 50 minutos) Objetivo General: a. Conocer que el color es una propiedad

Más detalles

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES

Fundamentos de Materiales - Prácticas de Laboratorio Práctica 9. Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES Práctica 9 DETERMINACIÓN DEL ÍNDICE DE REFRACCIÓN DE MATERIALES TRANSPARENTES 1. Objetivos docentes Familiarizarse con las propiedades ópticas de refracción y reflexión de materiales transparentes. 2.

Más detalles

Profesora: Ana María Gallardo Suárez. Observación de hongos MOHO DEL PAN Y DE LA FRUTA. PRACTICA Nº 3 CURSO: 3 ESO. Recursos ana.fjb.

Profesora: Ana María Gallardo Suárez. Observación de hongos MOHO DEL PAN Y DE LA FRUTA. PRACTICA Nº 3 CURSO: 3 ESO. Recursos ana.fjb. Observación de hongos MOHO DEL PAN Y DE LA FRUTA. PRACTICA Nº 3 CURSO: 3 ESO Recursos ana.fjb.es Objetivos de la Práctica Estudio de hongos descomponedores de alimentos: * Observación macroscópica del

Más detalles

Proyecto # 4 Difracción de Aperturas Circulares

Proyecto # 4 Difracción de Aperturas Circulares Proyecto # 4 Difracción de Aperturas Circulares La mayor parte de los sistemas con los que Usted va a trabajar están hechos de componentes cuyas aperturas son circulares. Estos pueden ser espejos, lentes

Más detalles

Práctica de laboratorio 8.4.1: Actividad de laboratorio sobre conectores de medios

Práctica de laboratorio 8.4.1: Actividad de laboratorio sobre conectores de medios Práctica de laboratorio 8.4.1: Actividad de laboratorio sobre conectores de medios Objetivos de aprendizaje Analizador de cables típico Al completar esta práctica de laboratorio, usted podrá: Pruebe los

Más detalles

TRABAJO POTENCIA Y ENERGÍA

TRABAJO POTENCIA Y ENERGÍA TRABAJO POTENCIA Y ENERGÍA TRABAJO, POTENCIA Y ENERGÍA Todos habitualmente utilizamos palabras como trabajo, potencia o energía. En esta unidad precisaremos su significado en el contexto de la física;

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

Por favor, leer las siguientes instrucciones cada vez que aplique el test.

Por favor, leer las siguientes instrucciones cada vez que aplique el test. INSTRUCCIONES GENERALES PARA LA REALIZACION DEL TEST Por favor, leer las siguientes instrucciones cada vez que aplique el test. Verificar, antes de comenzar el test, que todo el material necesario esté

Más detalles

Mediciones Eléctricas

Mediciones Eléctricas Mediciones Eléctricas Grupos Electrógenos Mediciones Eléctricas Página 1 de 12 Tabla de Contenido Objetivo 1: Medidas de magnitudes eléctricas... 3 Objetivo 2: Generalidades sobre instrumentos de medición...

Más detalles

Partes de los Espermatozoide

Partes de los Espermatozoide PRÁCTICA DE LABORATORIO 5 OBSERVACIÓN DE CÉLULAS SEXUALES MASCULINAS Docente: Rolando Hernández Lazo INTRODUCCIÓN Espermatozoide es la célula reproductora sexual masculina o gameto masculino encargada

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA

EXAMEN FÍSICA 2º BACHILLERATO TEMA 4: ÓPTICA INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

ACTIVIDAD EXPERIMENTAL No. 2 TÉCNICAS COMUNES DEL LABORATORIO DE QUÍMICA.

ACTIVIDAD EXPERIMENTAL No. 2 TÉCNICAS COMUNES DEL LABORATORIO DE QUÍMICA. ACTIVIDAD EXPERIMENTAL No. 2 TÉCNICAS COMUNES DEL LABORATORIO DE QUÍMICA. Introducción: Cuando se inicia un curso en el que por primera vez se trabaja en un laboratorio escolar, es necesario que el alumno

Más detalles

Licencia. Todos los derechos reservados. Este reporte puede ser distribuido libremente pero queda

Licencia. Todos los derechos reservados. Este reporte puede ser distribuido libremente pero queda Licencia copyright www.segurodevidaparapadres.com Todos los derechos reservados. Este reporte puede ser distribuido libremente pero queda estrictamente prohibida cualquier modificación del mismo. El contenido

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

ANÁLISIS DE DATOS NO NUMERICOS

ANÁLISIS DE DATOS NO NUMERICOS ANÁLISIS DE DATOS NO NUMERICOS ESCALAS DE MEDIDA CATEGORICAS Jorge Galbiati Riesco Los datos categóricos son datos que provienen de resultados de experimentos en que sus resultados se miden en escalas

Más detalles

Procesos de Fabricación I. Guía 2, 3 0. Procesos de Fabricación I

Procesos de Fabricación I. Guía 2, 3 0. Procesos de Fabricación I Procesos de Fabricación I. Guía 2, 3 0 Procesos de Fabricación I Procesos de Fabricación I. Guía 2, 3 1 Facultad: Ingeniería Escuela: Ingeniería Mecánica Asignatura: Procesos de Fabricación 1 Tema: Uso

Más detalles

d s = 2 Experimento 3

d s = 2 Experimento 3 Experimento 3 ANÁLISIS DEL MOVIMIENTO EN UNA DIMENSIÓN Objetivos 1. Establecer la relación entre la posición y la velocidad de un cuerpo en movimiento 2. Calcular la velocidad como el cambio de posición

Más detalles

CUADERNO DE LABORATORIO 5º E. PRIMARIA

CUADERNO DE LABORATORIO 5º E. PRIMARIA C.E.I.P. BLAS INFANTE Fuente Carreteros CUADERNO DE LABORATORIO 5º E. PRIMARIA UN VIAJE AL DESCONOCIDO MUNDO DE LO INVISIBLE NOMBRE Y APELLIDOS: UN VIAJE AL MUNDO DESCONOCIDO DE LO INVISIBLE Mundos en

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Sesión 7: Visón general

Sesión 7: Visón general Sesión 7: Visón general Hablemos de las calorías Comemos calorías por una razón: nuestros cuerpos las necesitan para sobrevivir. Proporcionan el combustible para todo lo que hacemos, incluso para nuestra

Más detalles

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD

PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD PROBLEMAS LUZ Y ÓPTICA SELECTIVIDAD 1.- Un objeto luminoso de 2mm de altura está situado a 4m de distancia de una pantalla. Entre el objeto y la pantalla se coloca una lente esférica delgada L, de distancia

Más detalles

Apéndice 2. Puesta a punto y uso del Espectrómetro

Apéndice 2. Puesta a punto y uso del Espectrómetro Puesta a punto del espectrómetro 1 Apéndice 2. Puesta a punto y uso del Espectrómetro I) INTRODUCCIÓN II) DESCRIPCIÓN DEL EQUIPO III) ENFOQUE IV) MEDIDA DE ÁNGULOS DE DIFRACCIÓN V) USO DE LA REJILLA DE

Más detalles

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA-

FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- FÍSICA de 2º de BACHILLERATO ÓPTICA -GEOMÉTRICA- EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2013) DOMINGO

Más detalles

Medición del nivel de intensidad de diferentes ruidos

Medición del nivel de intensidad de diferentes ruidos Universidad Nacional Autónoma de Honduras Facultad de ciencias Escuela de física Medición del nivel de intensidad de diferentes ruidos Objetivos. Conocer y manejar los conceptos básicos de ruido.. Aprender

Más detalles

Curso de fotografía Técnica fotográfica. Control de la luz Ricardo Sánchez Alférez www.cursofoto.com

Curso de fotografía Técnica fotográfica. Control de la luz Ricardo Sánchez Alférez www.cursofoto.com Curso de fotografía Técnica fotográfica Control de la luz Ricardo Sánchez Alférez www.cursofoto.com Control de la luz Una cámara fotográfica es, resumiendo, un aparato capaz de almacenar la luz emitida/reflejada

Más detalles

MANUAL DE USUARIO ELECTRIFICACIÓN RURAL FOTOVOLTAICA

MANUAL DE USUARIO ELECTRIFICACIÓN RURAL FOTOVOLTAICA MANUAL DE USUARIO ELECTRIFICACIÓN RURAL FOTOVOLTAICA MANUAL DE USUARIO 01 Utilidad del manual 02 Los rayos del sol, fuente de energía renovable 03 El Sistema Fotovoltaico Domiciliario (SFD) 04 Cuidados

Más detalles

Laboratorio 5. El microscopio y las células. Objetivos I N T R O D U C C I Ó N

Laboratorio 5. El microscopio y las células. Objetivos I N T R O D U C C I Ó N Laboratorio 5 El microscopio y las células Objetivos Al finalizar este laboratorio, el estudiante podrá: 1. Identificar las partes principales del microscopio compuesto y sus funciones. 2. Conocer las

Más detalles

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS

INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS INTRODUCCIÓN: LA FÍSICA Y SU LENGUAJE, LAS MATEMÁTICAS La física es la más fundamental de las ciencias que tratan de estudiar la naturaleza. Esta ciencia estudia aspectos tan básicos como el movimiento,

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Biología de Eucariotes. Practica 1 Microscopia

Biología de Eucariotes. Practica 1 Microscopia Biología de Eucariotes Practica 1 Microscopia Microscopios Partes del microscopio, cuidados y mantenimiento Naturaleza Microscopio Definición: son aparatos que en virtud de las leyes de formación de imágenes

Más detalles

PROCESAMIENTO DE MUESTRAS SANGUÍNEAS PARA

PROCESAMIENTO DE MUESTRAS SANGUÍNEAS PARA PROCESAMIENTO DE MUESTRAS SANGUÍNEAS PARA DIAGNÓSTICO Proyecto AECID 2012 Nuevos procedimientos para el diagnóstico de enfermedades olvidadas utilizando tele-microscopía de bajo coste. 1 TABLA DE CONTENIDOS

Más detalles

Práctica 4. Interferencias por división de amplitud

Práctica 4. Interferencias por división de amplitud Interferencias por división de amplitud 1 Práctica 4. Interferencias por división de amplitud 1.- OBJETIVOS - Estudiar una de las propiedades ondulatorias de la luz, la interferencia. - Aplicar los conocimientos

Más detalles

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO

LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO LA ESTRATEGIA NACIONAL DE BOSQUES Y CAMBIO CLIMÁTICO En palabras simples, el Cambio Climático es la modificación del clima que actualmente ocurre en

Más detalles

Actividad principal: Piso Loco Notas para el profesor

Actividad principal: Piso Loco Notas para el profesor Objetivos de aprendizaje A lo largo de esta actividad, los estudiantes construirán y pondrán a prueba modelos que incorporan las siguientes técnicas asociadas al uso de poleas: Reducción de la velocidad

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº

UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio

Más detalles

3. RESPONSABLE. Realizado por: Revisado por: Aprobado por: Hernán Mauricio Chávez Ardila Cargo: Rector. Diana Fuquene Cargo: Coord.

3. RESPONSABLE. Realizado por: Revisado por: Aprobado por: Hernán Mauricio Chávez Ardila Cargo: Rector. Diana Fuquene Cargo: Coord. Versión: 01 Fecha: 23/11/2011 Código: DO-PR-016 Página: 1 de 10 1. OBJETIVO Describir el funcionamiento y la secuencia de operaciones para el correcto manejo de MICROSCOPIOS de la Corporación Tecnológica

Más detalles

TÉRMINOS Y CONDICIONES

TÉRMINOS Y CONDICIONES TÉRMINOS Y CONDICIONES Denominación: MÁS POR MÁS de la CUENTA CORRIENTE INVERAMIGO B.O.D. Mercado Objetivo: Esta Campaña está dirigida a toda persona natural y jurídica que mantenga y/o abra una Cuenta

Más detalles

Ejercicio de estadística para 3º de la ESO

Ejercicio de estadística para 3º de la ESO Ejercicio de estadística para 3º de la ESO Unibelia La estadística es una disciplina técnica que se apoya en las matemáticas y que tiene como objetivo la interpretación de la realidad de una población

Más detalles

LA CÁMARA FOTOGRÁFICA DIGITAL (y III)

LA CÁMARA FOTOGRÁFICA DIGITAL (y III) 3.5. Visor LA CÁMARA FOTOGRÁFICA DIGITAL (y III) En fotografía, el visor es el sistema óptico que permite encuadrar el campo visual que se pretende que abarque la imagen. Es decir, el visor es la ventanilla,

Más detalles

Sesión 3 - Movimiento Diferencial

Sesión 3 - Movimiento Diferencial Sesión 3 - Movimiento Diferencial Qué aprenderemos en esta sesión? Para entender como nuestro robot se va a desplazar por cualquier superficie, debemos aprender la manera en que lo hace, por eso, en esta

Más detalles

CURSO TEORICO-PRÁCTICO SOBRE MICROSCOPIA Y RECUENTO DE LEVADURAS PARA PRODUCTORES DE CERVEZA

CURSO TEORICO-PRÁCTICO SOBRE MICROSCOPIA Y RECUENTO DE LEVADURAS PARA PRODUCTORES DE CERVEZA CURSO TEORICO-PRÁCTICO SOBRE MICROSCOPIA Y RECUENTO DE LEVADURAS PARA PRODUCTORES DE CERVEZA AUTORES: Diego Libkind Celia Tognetti Martin Moliné Laboratorio de Microbiologia Aplicada y Biotecnología Instituto

Más detalles

1.1. Introducción y conceptos básicos

1.1. Introducción y conceptos básicos Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................

Más detalles

UTILIZACIÓN DE LAS NUEVAS TECNOLOGÍAS PARA EL APRENDIZAJE DE LA ÓPTICA GEOMÉTRICA

UTILIZACIÓN DE LAS NUEVAS TECNOLOGÍAS PARA EL APRENDIZAJE DE LA ÓPTICA GEOMÉTRICA UTILIZACIÓN DE LAS NUEVAS TECNOLOGÍAS PARA EL APRENDIZAJE DE LA ÓPTICA GEOMÉTRICA Fernández, E. 1, García, C. 1, Fuentes, R. 1 y Pascual, I. 1 1 Dep. Óptica, Farmacología y Anatomía, Universidad de Alicante,

Más detalles

Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad)

Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad) Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad) Laboratorio de Mecánica y fluidos Objetivos Determinar la densidad relativa de un líquido empleando el tubo en U. Determinar la presión

Más detalles

ESTABILIZADORES Diginex

ESTABILIZADORES Diginex ESTABILIZADORES Diginex DESCRIPCIÓN DEL PANEL FRONTAL a) Interruptor de encendido. b) Lectura digital de la tensión de entrada. c) Indicación luminosa de correcta polaridad de entrada y existencia de tierra.

Más detalles

La Quimioterapia y el Cáncer De Próstata

La Quimioterapia y el Cáncer De Próstata La Quimioterapia y el Cáncer De Próstata (La siguiente información está basada en la experiencia general de muchos pacientes con cáncer de próstata. Su experiencia puede ser diferente.) 1 Contenido Introducción...3

Más detalles

ANÁLISIS DEL ESTADO DE POLARIACIÓN

ANÁLISIS DEL ESTADO DE POLARIACIÓN SESIÓN 5: ANÁLISIS DEL ESTADO DE POLARIACIÓN TRABAJO PREVIO CONCEPTOS FUNDAMENTALES Luz natural Luz con el vector eléctrico vibrando en todas las direcciones del plano perpendicular a la dirección de propagación.

Más detalles

QUÉ ES UN NÚMERO DECIMAL?

QUÉ ES UN NÚMERO DECIMAL? QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y

Más detalles

Calibración de un manómetro

Calibración de un manómetro Calibración de un manómetro Práctica de laboratorio de Ingeniería Fluidomecánica DEPARTAMENTO DE INGENIERÍA ENERGÉTICA Y FLUIDOMECÁNICA INGENIERÍA FLUIDOMECÁNICA Abril de 2012 Calibración de un manómetro

Más detalles

L M M J V S D - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

L M M J V S D - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 ENERO - - - - 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 La alternancia entre las posiciones sentado y de pie recomendadas mejoran la circulación y reduce las tensiones

Más detalles

Tipos de instalaciones

Tipos de instalaciones Tipos de instalaciones Existen este infinidad de configuraciones, pero como técnicos debemos referirnos a las normalizadas por la NTE, la cual diferencia cinco tipos basados en número de circuitos y programas,

Más detalles

DE VIDA PARA EL DESARROLLO DE SISTEMAS

DE VIDA PARA EL DESARROLLO DE SISTEMAS MÉTODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS 1. METODO DEL CICLO DE VIDA PARA EL DESARROLLO DE SISTEMAS CICLO DE VIDA CLÁSICO DEL DESARROLLO DE SISTEMAS. El desarrollo de Sistemas, un proceso

Más detalles

Preparación y manipulación de la Fibra Óptica

Preparación y manipulación de la Fibra Óptica Práctica 2 Preparación y manipulación de la Fibra Óptica OBJETIVOS 1. Preparar la fibra óptica para trabajar con ella en el laboratorio. 2. Aprender a realizar los cortes en la fibra óptica. IINTRODUCCION

Más detalles

Cambio del filtro y aceite de la transmision

Cambio del filtro y aceite de la transmision Cambio del filtro y aceite de la transmision Objetivo: Cambiar el fluido de la transmisión automática y eje de transmisión. Esta hoja de actividades contiene: Instrucciones paso por paso para completar

Más detalles

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1

CURSO 2010-2011 TECNOLOGÍA TECNOLOGÍA 4º ESO TEMA 5: Lógica binaria. Tecnología 4º ESO Tema 5: Lógica binaria Página 1 Tecnología 4º ESO Tema 5: Lógica binaria Página 1 4º ESO TEMA 5: Lógica binaria Tecnología 4º ESO Tema 5: Lógica binaria Página 2 Índice de contenido 1. Señales analógicas y digitales...3 2. Código binario,

Más detalles

1. MEDIDAS DE TENDENCIA CENTRAL

1. MEDIDAS DE TENDENCIA CENTRAL 1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas

Más detalles

Capítulo 21 Óptica 1

Capítulo 21 Óptica 1 Capítulo 21 Óptica 1 Reflexión y refracción Las leyes de la reflexión y de la refracción nos dicen lo siguiente: Los rayos incidente, reflejado y transmitido están todos en un mismo plano, perpendicular

Más detalles