y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "y bola riel Mg UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página 1 de 5"

Transcripción

1 INGENIERÍA EN AUTOMATIZACIÓN Y CONTROL INDUSTRIAL Control Automático II Má Problema UNIVERSIDAD NACIONAL DE QUILMES 4 de noviembre de 2002 Página de 5. Control de un itema de Bola Riel La Figura muetra un itema de bola riel en el que una bola e coloca obre un riel obre el que puede rodar libremente. El ángulo de inclinación α del riel puede modificare mediante la acción de un torque τ obre el mimo; al cambiar la inclinación del riel la acción de la gravedad hace mover la bola. Se pretende dieñar un controlador para regular la poición de la bola actuando obre el torque τ aplicado al riel. Parámetro fíico del itema: M maa de la bola 0. kg R radio de la bola 0.05 m g aceleración de la gravedad 9.8 m/ 2 J momento de inercia de la bola 0 5 kgm 2 L bola τ Epecificacione de dieño: riel Mg α i Tiempo de etablecimiento al 2% menor a 3 ii Sobrevalor menor al 5%. Figura : Sitema de bola riel Ecuacione de etado del itema linealizado: Mg 0 0 ( ẋ = J + M ) 0 0 R x u donde x = ẏ α u = τ. α (a) Analizar controlabilidad del itema. Repecto a la obervabilidad del itema: qué etado podrían eventualmente utilizare para contruir un obervador midiendo ólo un etado? Jutificar la repueta. (b) Dieñar un controlador por realimentación de etado u = Nr Kx para atifacer la epecificacione de dieño (i) (ii) obtener eguimiento a una referencia r = 0.5m. (c) Dieñar un controlador con acción integral para obtener eguimiento robuto. (d) Dieñar un obervador utilizando ólo la medición de la poición de la bola. (e) Cargar en SIMULINK el modelo BRNL.mdl que contiene el modelo no lineal del itema. i. Implementar obre ete modelo el controlador dieñado en el punto c realimentando lo etado etimado por el obervador dieñado en el punto d. ii. Determinar por imulación el máximo valor de referencia r admiible obre el modelo no lineal manteniendo la epecificacione de dieño (comenzar con un valor de r pequeño digamo r = 0.m o menor). 2. Control del ángulo de elevación de un avión. El itema de ecuacione () α α θ 0.232δ = 0 θ α θ.5δ = 0 e un modelo implificado del movimiento de un avión linealizado alrededor de un punto de operación. La variable α repreenta el ángulo de ataque del avión θ e u ángulo de elevación con repecto a la horizontal δ e la inclinación del alerón elevador (variable de control). Lo valore numérico en (2) correponden a un avión comercial Boeing ( Problema de examen final de Control 2 del 23/2/2000.

2 Control Automático II Má Problema Página 2 de 5 α θ δ Figura 2: Control de ángulo de elevación Epecificacione de Dieño: Se deea dieñar un controlador por realimentación para que la alida el ángulo de elevación θ(t) tenga una repueta al ecalón con un obrevalor menor al 0% un tiempo de crecimiento menor a 2 egundo un tiempo de etablecimiento menor a 0 egundo un error etático menor al 2%. Por ejemplo: i la entrada e un ecalón de 0.2 rad ( grado) entonce el ángulo de elevación no debe exceder 0.22 rad alcanza 0.2 rad en meno de 2 egundo entra en régimen etacionario en meno de 0 egundo con un valor entre rad. Sobrevalor: menor que 0% Tiempo de crecimiento: menor a 2 egundo Tiempo de etablecimiento: menor a 0 egundo Error etático: menor que 2% Sitema a lazo abierto (a) Ecribir el modelo en epacio de etado del itema en la forma ẋ = Ax + Bu = Cx + Du. Analizar u etabilidad a lazo abierto u propiedade de controlabilidad obervabilidad. Obtener la función tranferencia entre la entrada de control δ el ángulo de elevación θ analizar poible limitacione de dieño. Dieño por realimentación de etado (b) Dieñar la ganancia de realimentación de etado K de la Figura 3 para que la alida del itema θ atifaga la epecificacione de dieño para un ecalón en la referencia r. (Una vez que K e ha ajutado para una repueta dinámica atifactoria determinar la ganancia N para compenar el error etático.) r δ θ N ẋ Ax Bu K Figura 3: Equema de realimentación de etado Implementar el itema en SIMULINK graficar la repueta del itema a lazo cerrado a un ecalón en la referencia de 0.2 rad a una perturbación de alida { 0 0 t < 0 d o (t) = t.

3 Control Automático II Má Problema Página 3 de 5 Dicutir lo reultado. Dieño por realimentación de etado con acción integral (c) Modificar el dieño de la Figura 3 como ea neceario para incorporar acción integral en la regulación de θ mejorando la propiedade de robutez rechazo de perturbacione. Recalcular la ganancia de realimentación para cumplir con la epecificacione de dieño. Dieño por realimentación de alida con acción integral (d) Suponer ahora que θ e la única variable medible del itema. Dieñar un obervador de etado para convertir el dieño del punto anterior en un controlador dinámico (itema controlador-obervador) por realimentación de alida. (Nota: para poder dieñar el obervador podría er neceario modificar la realimentación de etado K. Por qué?) (e) Implementar el equema de controlador-obervador en SIMULINK repetir el enao del punto (b). Comparar lo reultado. 3. Regulación de temperatura de un horno. La Figura 4 repreenta un horno ailado longitudinalmente pero expueto a la temperatura ambiente T ext en un extremo calefaccionado en el otro extremo u. El horno poee tre punto de medición indicado como termocupla para enar la temperatura en x. Calefactor x x 3 T ext u Termocupla Figura 4: Horno Un modelo en ecuacione de etado tomando como variable de etado la temperatura en x como entrada de control u como entrada de perturbación T ext e ẋ 3/2 /2 0 x 0 (2) ẋ2 = /2 /2 x u + 0 T ext. ẋ3 0 /2 3/2 x 3 0 La Figura 5 muetra el diagrama de bloque correpondiente al itema (2). Criterio de dieño. Se deea dieñar un regulador para la temperatura en para que con una temperatura de referencia T re f = 200C e atifagan la iguiente epecificacione: (i) Tiempo de etablecimiento menor a 5 egundo. (ii) Sobrevalor menor a 5%. (iii) Cero error etático a una entrada T re f ecalón arbitraria. (iv) Cero error etático a una perturbación ecalón T ext arbitraria. (a) Analizar la controlabilidad del itema con repecto a la entrada u T ext. (b) Aumiendo que la tre temperatura x pueden enare: i. Dieñar un control por realimentación de etado u = NT re f Kx para atifacer la epecificacione (i) (ii) (iii). ii. Redieñar el control para incorporar acción integral atifacer ahora (i) (ii) (iii) (iv).

4 Control Automático II Má Problema Página 4 de 5 Tref /2 3/2 x 2 x2 3 x3 xd /2 x2d /2 x3d 3/2 /2 2 Text Figura 5: Diagrama de bloque del horno (c) Suponer que e pueden enar a lo umo do temperatura (ólo ha do termocupla). i. E neceario utilizar la do termocupla para poder etimar aintóticamente el etado completo del itema? Jutificar la repueta eñalar qué debería medire. ii. E neceario utilizar la do termocupla para poder implementar la realimentación con acción integral del punto b(ii)? Jutificar la repueta eñalar qué debería medire. iii. De acuerdo a la repueta al punto anterior elegir qué medir dieñar un obervador de etado para etimar lo no medido. iv. Implementar en SIMULINK el obervador del punto c(ii) acoplado al controlador con acción integral del punto b(ii). Simular la repueta del itema completo para T re f = 250C T ext = 28C. 4. Control de velocidad de un motor de CC Un motor de corriente continua controlado por corriente de campo etá decripto por el modelo en ecuacione de etado de egundo orden ẋ = θ x θ 2 u + θ 3 ẋ 2 = θ 4 + θ 5 x u = donde x e la corriente de armadura e la velocidad u e la corriente de campo θ i i =...5 on contante poitiva. Se deea dieñar un control de velocidad de forma que iga a una velocidad de referencia contante R. Se aume que u 2 R < θ 3 2θ 5 /(4θ θ 2 θ 4 ) que el dominio de operación etá retringido a x > θ 3 /(2θ ). Epecificacione de deempeño R : 200 obrevalor máximo: 5% tiempo de etablecimiento: 0.4 error de eguimiento en régimen: 0 Dato numérico θ = 60 θ 2 = 0.5 θ 3 = 40 θ 4 = 6 θ 5 = (a) Determinar la entrada de régimen permanente u rp necearia para mantener la alida en un valor contante R dado.

5 Control Automático II Má Problema Página 5 de 5 (b) Implementar el itema en SIMULINK etudiar el deempeño del itema mediante imulación. En particular etudiar la repueta al ecalón; el comportamiento tranitorio lo efecto de una variación de un ±20% en todo lo parámetro del modelo. (c) Obtener un modelo linealizado del itema dieñar un control lineal por realimentación de etado con acción integral para alcanzar la velocidad deempeño deeado. Repetir lo enao del punto b. (d) Suponer que e mide la velocidad pero no la corriente de armadura x. Repetir el punto c uando un obervador para etimar la corriente de armadura. Repetir b comparar el deempeño la robutez de ete controlador con el dieñado en la parte c. 5. Control de un péndulo invertido. Coniderar el pendulo invertido de la Figura 6. mi θ F M Figura 6: Péndulo Invertido El modelo en ecuacione de etado linealizado e ẋ = ẍ = 0.88ẋ θ +.882u θ = x 4 θ = ẋ θ u = x 2 = θ donde x ẋ on poición velocidad del carrito θ θ ángulo velocidad angular del péndulo. Epecificacione de deempeño R : 0.2 m obrevalor en θ: 20 grado (0.35 radiane) tiempo de etablecimiento para x θ: 5 tiempo de ubida para x: error de eguimiento en régimen: 2% (a) Dieñar un control por realimentación de etado con acción integral para atifacer lo requerimiento epecificado. (b) Implementar el dieño anterior con un obervador de orden reducido. E poible contruir un obervador midiendo ólo una alida? De er poible implementar ete obervador comparar el deempeño del itema de control completo con el obtenido con el obervador MIMO anterior ante perturbacione contante en la alida.

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1

DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº 1 DEPARTAMENTO DE ELECTRÓNICA Y AUTOMÁTICA CARRERAS: BIOINGENIERÍA E INGENIERÍA ELECTRÓNICA ÁREA: CONTROL ASIGNATURA: CONTROL II GUÍA DE APRENDIZAJE Y AUTOEVALUACIÓN Nº Análii de Etabilidad de lo Sitema

Más detalles

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II)

EJERCICIOS DE TEORÍA DE CONTROL AUTOMÁTICO SISTEMAS CONTINUOS (II) C8. Para el itema de la cuetión C6, Qué diría i alguien ugiriera trabajar con el itema en torno al punto de operación (U,Y b )? C9. Se deea controlar la poición del eje de un motor. Para identificar el

Más detalles

Lugar Geométrico de las Raíces

Lugar Geométrico de las Raíces Lugar Geométrico de la Raíce N de práctica: 9 Tema Correpondiente: Lugar geométrico de la raíce Nombre completo del alumno Firma N de brigada: Fecha de elaboración: Grupo: Elaborado por: Reviado por: Autorizado

Más detalles

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS

SISTEMAS DINÁMICOS IEM2º - Modelos de Sistemas Mecánicos PROBLEMAS SISEMAS INÁMICOS IEMº - Modelo de Sitema Mecánico PROBLEMAS P. Para lo itema mecánico de tralación motrado en la figura, e pide: a uncione de tranferencia entre la fuerza f y la velocidade de la maa. b

Más detalles

SISTEMAS MECANICOS EJEMPLO 1.- SISTEMA MECANICO TRASLACIONAL. Carrito que se desplaza en línea recta en dirección horizontal.

SISTEMAS MECANICOS EJEMPLO 1.- SISTEMA MECANICO TRASLACIONAL. Carrito que se desplaza en línea recta en dirección horizontal. SISTEAS ECANICOS EJEPLO.- SISTEA ECANICO TRASLACIONAL Carrito que e deplaza en línea recta en dirección horizontal. Ft) 0 yt) Objetivo: Determinar la repueta dinámica del deplazamiento del carrito yt)

Más detalles

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES

ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES CAPITULO 3 ANÁLISIS DEL LUGAR GEOMÉTRICO DE LAS RAÍCES 3. INTRODUCCIÓN La etabilidad relativa y la repueta tranitoria de un itema de control en lazo cerrado etán directamente relacionada con la localización

Más detalles

Anexo 1.1 Modelación Matemática de

Anexo 1.1 Modelación Matemática de ELC-3303 Teoría de Control Anexo. Modelación Matemática de Sitema Fíico Prof. Francico M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/tic.html Modelación de Sitema Fíico Francico

Más detalles

COLEGIO LA PROVIDENCIA

COLEGIO LA PROVIDENCIA COLEGIO LA PROVIDENCIA Hna de la Providencia y de la Inmaculada Concepción 2013 ALLER MOVIMIENO CIRCULAR UNIFORME DOCENE: Edier Saavedra Urrego Grado: décimo fecha: 16/04/2013 Realice un reumen de la lectura

Más detalles

1. Análisis de Sistemas Realimentados

1. Análisis de Sistemas Realimentados Análii v2.doc 1 1. Análii de Sitema Realimentado 1. Análii de Sitema Realimentado 1 1.1. INTRODUCCIÓN... 2 1.2. ESTABILIDAD... 2 1.3. ESTRUCTURAS DE REALIMENTACIÓN... 3 1.3.1. Sitema Etable e Inetable...

Más detalles

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T

( s) ( ) CAPITULO II 2.1 INTRODUCCIÓN. 1 ss. θ θ K = θ θ. θ θ 0, ) 2-1. Fig.2.1: Diagrama de bloques de. : Amplificador + motor T -1 CAPITULO II.1 INTRODUCCIÓN Fig..1: Diagrama de bloque de donde: A J : Momento de inercia B : Coeficiente de roce T() Torque : Amplificador + motor T J B W G FTLC 1 J ( + ) θ θ o i B J. ( ) ( ) + + Donde

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto de Fíica Facultad de Ingeniería Univeridad de la República do. PARCIAL - Fíica General 9 de noviembre de 007 VERSIÓN El momento de inercia de una efera maciza de maa M y radio R repecto de un

Más detalles

Tema 2. Descripción externa de sistemas

Tema 2. Descripción externa de sistemas de Sitema y Automática Tema. Decripción externa de itema Automática º Curo del Grado en Ingeniería en Tecnología Indutrial de Sitema y Automática Contenido Tema.- Decripción externa de itema:.1. Introducción.

Más detalles

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r

respecto del eje de las x: 30º 45º a) 6.00 unidades y 90º b) 2.16 unidades y 80º x c) 2.65 unidades y 70º d) 2.37 unidades y 52º C r Guía de Fíica I. Vectore. 1. Conidere lo vectore A ByC r r r,. Su valore y aboluto, en unidade arbitraria, on de 3, 2 y 1 repectivamente. Entonce el vector reultante r r r r D = A + B + C erá de valor

Más detalles

! y teniendo en cuenta que el movimiento se reduce a una dimensión

! y teniendo en cuenta que el movimiento se reduce a una dimensión Examen de Fíica-1, 1 Ingeniería Química Examen final Septiembre de 2011 Problema (Do punto por problema) Problema 1 (Primer parcial): Una lancha de maa m navega en un lago con velocidad En el intante t

Más detalles

CONTROL EN CASCADA POR MÉTODOS DIFUSOS

CONTROL EN CASCADA POR MÉTODOS DIFUSOS Revita EIA, ISSN 794-37 Número 8, p. 8-93. Diciembre 007 Ecuela de Ingeniería de Antioquia, Medellín (Colombia) CONTROL EN CASCADA POR MÉTODOS DIFUSOS Joé David Grajale* Daniel Felipe López* Joaquín Emilio

Más detalles

Sistemas Físicos. Prof. Francisco M. González-Longatt ELC Teoría de Control

Sistemas Físicos. Prof. Francisco M. González-Longatt  ELC Teoría de Control ELC-3303 Teoría de Control Modelación Matemática de Sitema Fíico Prof. Francico M. González-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/sp.htm . Introducción En el análii y dieño de itema

Más detalles

Capítulo 6: Entropía.

Capítulo 6: Entropía. Capítulo 6: Entropía. 6. La deigualdad de Clauiu La deigualdad de Clauiu no dice que la integral cíclica de δq/ e iempre menor o igual que cero. δq δq (ciclo reverible) Dipoitivo cíclico reverible Depóito

Más detalles

Efectos del retardo en el control de lazo cerrado de plantas sobreamortiguadas

Efectos del retardo en el control de lazo cerrado de plantas sobreamortiguadas Revita de la Facultad de Ingeniería Indutrial 5(): 0-9 (0) UNMSM ISSN: 560-96 (Impreo) / ISSN: 80-9993 (Electrónico) Efecto del retardo en el control de lazo cerrado de planta obreamortiguada Recibido:

Más detalles

Diseño de un Controlador PI para Sistemas Inestables con Retardo de Primer Orden

Diseño de un Controlador PI para Sistemas Inestables con Retardo de Primer Orden Memoria del Congreo Nacional de Control Automático 01 Cd. del Carmen, Campeche, México, 17 al 19 de Octubre de 01 Dieño de un Controlador PI para Sitema Inetable con Retardo de Primer Orden M. A. Quiroz

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Fíica General Proyecto PMME - Curo 008 Intituto de Fíica Facultad de Ingeniería UdelaR TITULO Dinámica de la partícula AUTORES Aniella Bertellotti y Gimena Ortiz. ITRODUCCIÓ En nuetro proyecto utilizamo

Más detalles

1. Cómo sabemos que un cuerpo se está moviendo?

1. Cómo sabemos que un cuerpo se está moviendo? EL MOVIMIENTO. CONCEPTOS INICIALES I.E.S. La Magdalena. Avilé. Aturia A la hora de etudiar el movimiento de un cuerpo el primer problema con que no encontramo etá en determinar, preciamente, i e etá moviendo

Más detalles

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular.

ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Universal. Actividad 1.- Define movimiento circular uniforme, radio vector y desplazamiento angular. ACTIVIDADES RESUELTAS T 3 MCU Ley de Gravitación Univeral Actividad 1.- Define movimiento circular uniforme, radio vector y deplazamiento angular. Movimiento circular uniforme (MCU) e el movimiento de

Más detalles

REGULACIÓN AUTOMATICA (8)

REGULACIÓN AUTOMATICA (8) REGULACIÓN AUOMAICA 8 Repueta en frecuencia Nyquit Ecuela Politécnica Superior Profeor: Darío García Rodríguez -4.-Dada la función de tranferencia de lazo abierto de un itema con imentación unitaria, para

Más detalles

Errores y Tipo de Sistema

Errores y Tipo de Sistema rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema

Más detalles

TEMA 4: El movimiento circular uniforme

TEMA 4: El movimiento circular uniforme TEMA 4: El moimiento circular uniforme Tema 4: El moimiento circular uniforme 1 ESQUEMA DE LA UNIDAD 1.- Caracterítica del moimiento circular uniforme. 2.- Epacio recorrido y ángulo barrido. 2.1.- Epacio

Más detalles

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones

caracterización de componentes y equipos de radiofrecuencias para la industria de telecomunicaciones Aplicación de lo parámetro de diperión en la caracterización de componente y equipo de radiofrecuencia para la indutria de telecomunicacione Suana adilla Laboratorio de Analizadore de Rede padilla@cenam.mx

Más detalles

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad.

PROYECTO DE TEORIA DE MECANISMOS. Análisis cinemático y dinámico de un mecanismo plano articulado con un grado de libertad. Nombre: Mecanimo: PROYECTO DE TEORIA DE MECANISMOS. Análii cinemático y dinámico de un mecanimo plano articulado con un grado de libertad. 6. Cálculo de la velocidade con el método de lo centro intantáneo

Más detalles

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A.

TEST. Cinemática 129. a) 8 b) 1 / 2 c) 10 d) 1 e) 3. a) d) 2.- De las gráficas: b) e) N.A. Cinemática 9 TEST.- La velocidade v de tre partícula:, y 3 en función del tiempo t, on motrada en la figura. La razón entre la aceleracione mayor y menor e: a) 8 b) / c) 0 d) e) 3.- De la gráfica: a) d)

Más detalles

Compensación en atraso. por el método de respuesta en frecuencia

Compensación en atraso. por el método de respuesta en frecuencia Copenación en atrao por el étodo de repueta en frecuencia Copenación en atrao por el étodo de repueta en frecuencia Copenador electrónico en atrao con aplificadore operacionale E E 0 RR R R 4 + RC + R4C

Más detalles

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez

Automá ca. Ejercicios Capítulo5.Estabilidad. JoséRamónLlataGarcía EstherGonzálezSarabia DámasoFernándezPérez CarlosToreFerero MaríaSandraRoblaGómez Automáca Ejercicio Capítulo.Etabilidad JoéRamónLlataGarcía EtherGonáleSarabia DámaoFernándePére CarloToreFerero MaríaSandraRoblaGóme DepartamentodeTecnologíaElectrónica eingenieríadesitemayautomáca Problema

Más detalles

ENERGÍA (I) CONCEPTOS FUNDAMENTALES

ENERGÍA (I) CONCEPTOS FUNDAMENTALES NRGÍA (I) CONCPTOS UNDAMNTALS IS La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido general),

Más detalles

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012

PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema

Más detalles

2.7 Problemas resueltos

2.7 Problemas resueltos .6 Reumen 45 Lo modelo matemático on fundamentale en lo itema de control porque no permiten hallar la repueta del itema para determinada entrada al mimo y de eta forma, predecir el comportamiento de dicho

Más detalles

Examen ordinario de Junio. Curso

Examen ordinario de Junio. Curso Examen ordinario de Junio. uro 3-4. ' punto La eñal xtco[ω tω t] tiene: a Una componente epectral a la pulación ω ω b omponente epectrale en todo u armónico. c Do componente epectrale en la pulacione ω

Más detalles

Fuente de Alimentación de Tensión

Fuente de Alimentación de Tensión 14/05/014 Fuente de Alimentación de Tenión Fuente de alimentación: dipoitivo que convierte la tenión alterna de la red de uminitro (0 ), en una o varia tenione, prácticamente continua, que alimentan a

Más detalles

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs

ANÁLISIS TEMPORAL. Conceptos generales. Dolores Blanco, Ramón Barber, María Malfaz y Miguel Ángel Salichs ANÁLISIS TEMPORAL Concepto generale 1. Régimen tranitorio y permanente. 2. Señale normalizada de entrada. 3. Repueta a ecalón de itema de tiempo continuo. 4. Relación entre la repueta temporal y la ituación

Más detalles

Práctica 1: Dobladora de tubos

Práctica 1: Dobladora de tubos Práctica : Dobladora de tubo Una máquina dobladora de tubo utiliza un cilindro hidráulico para doblar tubo de acero de groor coniderable. La fuerza necearia para doblar lo tubo e de 0.000 N en lo 00 mm

Más detalles

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00

s 4 1,65 8 f 4 = +20 cm = 50,8 cm 1,65 1,00 1,00 8 f = 20 cm = 30,8 cm 1,65 1,00 TEMA 0: ÓPTICA GEOMÉTRICA NOMBRE DEL ALUMNO: CURSO: ºBach GRUPO: ACTIVIDADES PARES DE LAS PAGINAS 320-322 2. Qué ignificado tiene la aproximación de rao paraxiale? Conite en uponer que lo rao inciden obre

Más detalles

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS MODELO MATEMÁTICO SISTEMA SE NECESITA CONOCER MODELO MATEMÁTICO CARACTERÍSTICAS DINÁMICAS DEBE REPRESENTAR BIEN NO ES ÚNICO Tenga presente que un modelo

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL

SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL SOLUCIONES DE LOS EJERCICIOS DE LA OLIMIADA DEL 1. FASE LOCAL ución ejercicio nº 1 Una plataforma circular, colocada horizontalmente, gira con una frecuencia de vuelta por egundo alrededor de un eje vertical

Más detalles

Construcción de un Sistema de Control de Frecuencia-Voltaje para un Sistema de Generación Eléctrica a Escala para el Laboratorio de Control Automático

Construcción de un Sistema de Control de Frecuencia-Voltaje para un Sistema de Generación Eléctrica a Escala para el Laboratorio de Control Automático Contrucción de un Sitema de Control de Frecuencia- para un Sitema de Generación Eléctrica a Ecala para el Laboratorio de Control Automático Jimmy Anchundia, Juan del Pozo Facultad de Ingeniería en Electricidad

Más detalles

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas

TEMA I DIAGRAMAS DE BLOQUES, FLUJOGRAMAS Y SUS OPERACIONES. Universidad de Oriente Núcleo de Anzoátegui Escuela de Ingeniería y Ciencias Aplicadas Título Univeridad de Oriente Núcleo de nzoátegui Ecuela de Ingeniería y Ciencia plicada Dpto de Computación y Sitema TEM I DIRMS DE OQUES, FUJORMS Y SUS OPERCIONES Ec. De Ing. Y C. plicada Tema I: Diag

Más detalles

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación:

GUIA DE PROBLEMAS. 1. El crecimiento de S. cerevisae sobre glucosa en condiciones anaeróbicas puede ser descripta por la siguiente ecuación: Guía de Problema GUIA DE PRBLEMA. El crecimiento de. cereviae obre glucoa en condicione anaeróbica puede er decripta por la iguiente ecuación: C6 6 + β N 0.59 C +.C + 0.06 5.74 N 0. 0.45 ( biomaa) + 0.4

Más detalles

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo.

CINEMÁTICA II. ) cuerpos de diferentes masas desde la misma altura, llegarán al suelo con la misma velocidad y en el mismo instante de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-3 CINEMÁTICA II CAIDA LIBRE En cinemática, la caída libre e un movimiento dónde olamente influye la gravedad. En ete movimiento e deprecia el rozamiento del cuerpo

Más detalles

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace).

Análisis y Solución de. en el dominio del tiempo y en la frecuencia (Laplace). Análii y Solución de Ecuacione Diferenciale lineale en el dominio del tiempo y en la frecuencia Laplace. Doctor Francico Palomera Palacio Departamento de Mecatrónica y Automatización, ITESM, Campu Monterrey

Más detalles

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado?

Respecto del eje de giro de la rueda, cuál de las siguientes cantidades permanece constante mientras esta desciende por el plano inclinado? CIENCIAS (BIOLOGÍA, FÍSICA, QUÍMICA) MÓDULO 3 Eje temático: Mecánica - Fluido 1. Una rueda deciende rodando por un plano inclinado que forma un ángulo α con la horizontal del modo que e ilutra en la figura

Más detalles

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad

El núcleo y sus radiaciones Clase 15 Curso 2011 Página 1. Departamento de Física Fac. Ciencias Exactas - UNLP. Paridad Paridad Curo 0 Página Eta propiedad nuclear etá aociada a la paridad de la función de onda nuclear. La paridad de un itema ailado e una contante de movimiento y no puede cambiare por un proceo interno.

Más detalles

1. Breves Apuntes de la Transformada de Laplace

1. Breves Apuntes de la Transformada de Laplace Ingeniería de Sitema. Breve Apunte de la Tranformada de Laplace Nota: Eto apunte tomado de diferente bibliografía y apunte de clae, no utituyen la diapoitiva ni la explicación del profeor, ino que complementan

Más detalles

E s t r u c t u r a s

E s t r u c t u r a s t r u c t u r a epartamento de tructura de dificación cuela Técnica Superior de Arquitectura de adrid iagrama de efuerzo de una viga quebrada uo: 4,5 k/m I AA 15/16 12-4-2016 jemplo peo propio: 4,5 k/m

Más detalles

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase :

. (3.6) 20r log j 20 log j / p log j / p Obtener la expresión del ángulo de fase : Aj j... j z z zm G( j). (3.6) r ( j) j j... j p p p n G( j) 0log G( j) db 0 log A 0 log j/ z 0 log j/ z... 0 log j/ zm 0r log j 0 log j/ p... 0 log j/ p. 4. Obtener expreión del ángulo de fae : G( j) A(

Más detalles

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9

Introducción. Acciones básicas de control. Sistemas de control versión 2003 Página 1 de 9 Introducción Sitema de control 67-22 verión 2003 Página 1 de 9 Según vimo en el capítulo I, al controlador ingrean la eñale R() (et-point) y B() (medición de la variable controlada ), e comparan generando

Más detalles

Practica No. 5 CONTROL DE SISTEMAS NO LINEALES POR REALIMENTACION DE ESTADOS

Practica No. 5 CONTROL DE SISTEMAS NO LINEALES POR REALIMENTACION DE ESTADOS Practica No. 5 CONTROL DE SISTEMAS NO LINEALES POR REALIMENTACION DE ESTADOS Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control 1. Introducción En

Más detalles

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos.

s s El radio de curvatura se calcula con la ecuación fundamental de los espejos esféricos. Modelo 04. Pregunta 4B.- Un objeto etá ituado a una ditancia de 0 cm del vértice de un epejo cóncavo. Se forma una imagen real, invertida y tre vece mayor que el objeto. a) Calcule el radio de curvatura

Más detalles

APUNTES DE LA ASIGNATURA SISTEMAS ELECTRÓNICOS DE CONTROL CURSO 2008/2009

APUNTES DE LA ASIGNATURA SISTEMAS ELECTRÓNICOS DE CONTROL CURSO 2008/2009 APUNTES DE LA ASIGNATURA SISTEMAS ELECTRÓNICOS DE CONTROL CURSO 8/9 CURSO 3º INGENIERÍA TÉCNICA DE TELECOMUNCICACIÓN SISTEMAS ELECTRÓNICOS JOSÉ CANDAU PÉREZ FCO. JAVIER GARCÍA RUIZ EDUARDO J. MOYA DE LA

Más detalles

SEGUNDO PARCIAL - Física 1 30 de junio de 2010

SEGUNDO PARCIAL - Física 1 30 de junio de 2010 Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.

Más detalles

UNIVERSIDAD DE SEVILLA

UNIVERSIDAD DE SEVILLA UNIVERSIDAD DE SEVILLA Ecuela Técnica Superior de Ingeniería Informática PRÁCTICA 4: MUESTREO DE SEÑALES Y DIGITALIZACIÓN Tecnología Báica de la Comunicacione (Ingeniería Técnica Informática de Sitema

Más detalles

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia.

Describe, en función de la diferencia de fase, qué ocurre cuando se superponen dos ondas progresivas armónicas de la misma amplitud y frecuencia. El alumno realizará una opción de cada uno de lo bloque. La puntuación máxima de cada problema e de punto, y la de cada cuetión de 1,5 punto. BLOQUE I-PROBLEMAS Se determina, experimentalmente, la aceleración

Más detalles

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2

PROBLEMA Nº1. Z 3 =80 Z 2 =20 Z 1 =40 O 2 PROLEM Nº1. El mecanimo de la figura e compone de un diferencial que tranmite el movimiento a un tren de engranaje epicicloidal mediante un tornillo in fin. El brazo de ete tren de engranaje e el elabón

Más detalles

ÓPTICA GEOMÉTRICA. ; 2s s 40 + =

ÓPTICA GEOMÉTRICA. ; 2s s 40 + = ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto

Más detalles

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de

Se comprime aire, inicialmente a 17ºC, en un proceso isentrópico a través de una razón de Ejemplo 6-9 Se comprime aire, inicialmente a 7ºC, en un proceo ientrópico a travé de una razón de preión de 8:. Encuentre la temperatura final uponiendo calore epecífico contante y calore epecífico variable,

Más detalles

Un automóvil que tiene una masa de 1000 kg se estrella en un muro de ladrillo en una prueba de seguridad. La defensa se comporta como un resorte de

Un automóvil que tiene una masa de 1000 kg se estrella en un muro de ladrillo en una prueba de seguridad. La defensa se comporta como un resorte de Un automóil que tiene una maa de 1000 kg e etrella en un muro de ladrillo en una prueba de eguridad. La defena e comporta como un reorte de contante de fuerza 5 10 6 N/m y e comprime 3.16 cm cuando el

Más detalles

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables

Realizabilidad de Precompensadores en Sistemas Lineales Multivariables Congreo Anual 2 de la Aociación de México de Control Automático. Puerto Vallarta, Jalico, México. Realizabilidad de Precompenadore en Sitema Lineale Multivariable E. Catañeda, J. Ruiz-León CINVESTAV-IPN,

Más detalles

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p)

f s1 Para no entrar en ninguna banda prohibida, las nuevas especificaciones que tendremos en cuenta serán y. (+1p) . Obtenga la función de tranferencia de un filtro pao de banda que cumpla la iguiente epecificacione: a) Banda paante máximamente plana en f 45, khz con atenuación A p db. b) Banda de rechazo máximamente

Más detalles

05/04/2011 Diana Cobos

05/04/2011 Diana Cobos Diana Cobo a cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad o auto en un autolavado 2 En general, a nadie le guta eperar. Cuando

Más detalles

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández. Noviembre, 2014

Hidrodinámica. Elaborado por: Ing. Enriqueta Del Ángel Hernández.  Noviembre, 2014 Hidrodinámica Elaborado por: Ing. Enriqueta Del Ángel Hernández Noviembre, 01 http://www.uaeh.edu.mx/virtual HIDRODINÁMICA Etudia el comportamiento del movimiento de lo fluido; en í la hidrodinámica e

Más detalles

Construcción de un Circuito Controlador de Movimiento del Motor de un Transductor Sectorial Mecánico Utilizado en Ecografía, mediante Control PID

Construcción de un Circuito Controlador de Movimiento del Motor de un Transductor Sectorial Mecánico Utilizado en Ecografía, mediante Control PID Contrucción de un Circuito Controlador de Movimiento del Motor de un Tranductor Sectorial Mecánico Utilizado en Ecografía, mediante Control PID Manuel Baquerizo A. (1), Miguel Yapur A. (2) Facultad de

Más detalles

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8.

Solución: a) A dicha distancia la fuerza centrífuga iguala a la fuerza de rozamiento, por lo que se cumple: ω r= m mg 0, 4 9,8. C.- Una plataforma gira alrededor de un eje vertical a razón de una vuelta por egundo. Colocamo obre ella un cuerpo cuyo coeficiente etático de rozamiento e 0,4. a) Calcular la ditancia máxima al eje de

Más detalles

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010

Medidas de Variación o Dispersión. Dra. Noemí L. Ruiz 2007 Derechos de Autor Reservados Revisada 2010 Medida de Variación o Diperión Dra. Noemí L. Ruiz 007 Derecho de Autor Reervado Reviada 010 Objetivo de la lección Conocer cuále on la medida de variación y cómo e calculan o e determinan Conocer el ignificado

Más detalles

Instituto de Física Facultad de Ingeniería Universidad de la República

Instituto de Física Facultad de Ingeniería Universidad de la República Intituto e Fíica Faculta e Ingeniería Univeria e la República VERSIÓN Solucione por verión, al final. PRIMER PARCIAL - Fíica General 8 e Mayo e 006 g = 9,8 m/ Pregunta Un equiaor e lanza por una rampa

Más detalles

Filtros de Elementos Conmutados

Filtros de Elementos Conmutados Filtro de Elemento onmutado Ing. A. amón arga Patrón rvarga@inictel.gob.pe INITEL Introducción En un artículo anterior dearrollamo una teoría general para el filtro activo de variable de etado. e detacó

Más detalles

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA

Física P.A.U. ÓPTICA GEOMÉTRICA 1 ÓPTICA GEOMÉTRICA íica P.A.U. ÓPTICA GEOMÉTRICA ÓPTICA GEOMÉTRICA INTRODUCCIÓN MÉTODO. En general: Se dibuja un equema con lo rayo. Se compara el reultado del cálculo con el equema. 2. En lo problema de lente: Se traza

Más detalles

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2

Estructura de la Materia Grupo 21, Semestre Prof. Isidoro García Cruz EJERCICIOS 2 Etructura de la Materia Grupo 1, Semetre 013- Prof. Iidoro García Cruz EERCICIOS 1. a) Predecir el numero de ubcapa que hay en la cuarta capa, para n4. b) Epecifique la deignación de cada una de ea ubcapa.

Más detalles

Sistemas Lineales 2 - Práctico 8

Sistemas Lineales 2 - Práctico 8 Sistemas Lineales 2 - Práctico 8 Estabilidad Interna y Estabilidad de sistemas realimentados 2 do semestre 203 ) El esquema de la figura muestra un sistema electro-mecánico movido por un motor eléctrico

Más detalles

Práctica Tiro Parabólico

Práctica Tiro Parabólico página 1/5 Práctica Tiro Parabólico Planteamiento Deeamo etimar la velocidad en un intante determinado de un ólido que cae por una pendiente, bajo la hipótei de movimiento uniformemente acelerado (m.u.a.)

Más detalles

Comportamiento del nivel de líquido en un sistema de dos tanques en serie

Comportamiento del nivel de líquido en un sistema de dos tanques en serie Comportamiento del nivel de líquido en un itema de do tanque en erie Marcela Echavarria R., Gloria Lucía Orozco C., Alan Didier Pérez Á. Abtract Se deea conocer el comportamiento del nivel de un itema

Más detalles

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS

CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS CHOQUES, EXPLOSIONES Y DEFORMACIONES EN SÓLIDOS En tipo de problema, y de forma general, aplicaremo la conervación del momento angular repecto al eje fijo i lo hay (la reacción del eje, por muy grande

Más detalles

La Matriz de Transición

La Matriz de Transición Caítulo La Matriz de Tranición. Reueta natural de un itema E la reueta que deende olamente de la condicione iniciale, e obtiene cuando la entrada al itema u (t) e hace igual a cero, analíticamente viene

Más detalles

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL

Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL Ejercicios III SISTEMAS AUTOMÁTICOS Y DE CONTROL 1. Determina el diagrama de bloques del sistema automático de control de líquido de la figura. Determina de nuevo el diagrama de bloques suponiendo que

Más detalles

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N.

TEORÍA DE CIRCUITOS II 4 Año Ingeniería Electrónica F.R.T. U.T.N. TEORÍ E RUTOS 4 ño ngeniería Electrónica F.R.T. U.T.N. Teoría de lo uadripolo olaboración del alumno Juan arlo Tolaba efinición: Un cuadripolo e una configuración arbitraria de elemento de circuito, que

Más detalles

TEMA 3: ESTADÍSTICA BIDIMENSIONAL

TEMA 3: ESTADÍSTICA BIDIMENSIONAL TEMA 3: ESTADÍSTICA BIDIMENSIONAL INTRODUCCIÓN: En curo anteriore e ha etudiado como manejar e interpretar dato que proporcionaba una variable. Ahora vamo a ver cómo lo hacemo i hacemo a cada encuetado,

Más detalles

Avisos para el cálculo y la selección del amortiguador apropiado

Avisos para el cálculo y la selección del amortiguador apropiado Aortiguadore idráulico Avio para el cálculo y la elección del aortiguador apropiado Para deterinar el aortiguador DICTATOR para u aplicación, bata con lo aortiguadore de ipacto y de aceite con ontaje fijo

Más detalles

TRIEDRO DE FRENET. γ(t) 3 T(t)

TRIEDRO DE FRENET. γ(t) 3 T(t) TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de

Más detalles

Filtros Activos. Filtros Pasivos

Filtros Activos. Filtros Pasivos Filtro Activo Joé Gómez Quiñone Filtro Paivo vi R k vo C n H ( w) r w c Joé Gómez Quiñone Función de Tranferencia Joé Gómez Quiñone Ventaja Filtro Paivo Barato Fácile de Implementar Repueta aproximada

Más detalles

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA

QUÍMICA COMÚN NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA QUÍMICA COMÚN QC- NÚMEROS CUÁNTICOS Y CONFIGURACIÓN ELECTRÓNICA REPRESENTACIÓN DE LOS ELECTRONES MEDIANTE LOS NÚMEROS CUÁNTICOS Como conecuencia del principio de indeterminación e deduce que no e puede

Más detalles

Práctica 4 Control de posición y velocidad de un motor de corriente continua

Práctica 4 Control de posición y velocidad de un motor de corriente continua Práctica 4 Control de posición y velocidad de un motor de corriente continua Maqueta de control de posición y velocidad Practicas de Regulación Automática Maqueta de control de posición y velocidad Caja

Más detalles

ANÁLISIS Y SIMULACIÓN DE LA PRUEBA DE IMPACTO TIPO CHARPY MEDIANTE ELEMENTOS FINITOS

ANÁLISIS Y SIMULACIÓN DE LA PRUEBA DE IMPACTO TIPO CHARPY MEDIANTE ELEMENTOS FINITOS ANÁLISIS Y SIMULACIÓN DE LA PRUEBA DE IMPACTO TIPO CHARPY MEDIANTE ELEMENTOS FINITOS RESUMEN En la actualidad en la indutria de nuetro paí on poco utilizada la herramienta computacionale en el dieño mecánico,

Más detalles

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un

Más detalles

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS

PARA MEJORAR CARACTERÍSTICAS DE DISEÑO EN FILTROS BICUADRÁTICOS EL USO DE LOS SFG PARA MEJORAR ARATERÍSTIAS DE DISEÑO EN FILTROS BIUADRÁTIOS - Lui Abraham Sánchez Gapariano, Joé Joel García Delgado, Arturo Prieto Fuenlabrada 3, Alejandro Díaz Sánchez,3 Intituto Nacional

Más detalles

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I

C U R S O: FÍSICA COMÚN MATERIAL: FC-02 CINEMÁTICA I C U R S O: FÍSICA COMÚN MATERIAL: FC-2 CINEMÁTICA I La Cinemática etudia el movimiento de lo cuerpo, in preocupare de la caua que lo generan. Por ejemplo, al analizar el deplazamiento de un automóvil,

Más detalles

Diseño y Realización de un Prototipo de Vehículo Auto-Balanceado

Diseño y Realización de un Prototipo de Vehículo Auto-Balanceado Diseño y Realización de un Prototipo de Vehículo Auto-Balanceado V. Madero, J. A. Correa, F. Gordillo, F. Salas, J. Aracil Dpto. Ingeniería de Sistemas y Automática Universidad de Sevilla 11 de Abril de

Más detalles

S.E.P. S.E.I.T. D.G.I.T. CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO. cenidet

S.E.P. S.E.I.T. D.G.I.T. CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO. cenidet S.E.P. S.E.I.T. D..I.T. CENTRO NACIONAL DE INVESTIACIÓN Y DESARROLLO TECNOLÓICO cenidet CONTROL DIFUSO PARA LA OPERACIÓN DE UN SISTEMA DE ENERACIÓN DE ENERIA ELÉCTRICA BASADO EN CELDAS DE COMBUSTIBLE TIPO

Más detalles

6 La transformada de Laplace

6 La transformada de Laplace CAPÍTULO 6 La tranformada de Laplace 6. efinición de la tranformada de Laplace 6.. efinición y primera obervacione En la gran mayoría de lo itema de interé para la fíica y la ingeniería e poible (al meno

Más detalles

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SEGUNDA SESIÓN DE PRÁCTICAS

FUNDAMENTOS FÍSICOS DE LA INGENIERIA SEGUNDA SESIÓN DE PRÁCTICAS DEPARTAMETO DE FÍSICA APLICADA ESCUELA TÉCICA SUPERIOR DE IGEIEROS AGRÓOMOS Y DE MOTES UIVERSIDAD DE CÓRDOBA FUDAMETOS FÍSICOS DE LA IGEIERIA SEGUDA SESIÓ DE PRÁCTICAS 3.- Coeiciente de rozamiento FUDAMETOS

Más detalles

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN

7 FUNCIÓN DE TRANSFERENCIA SISTEMAS DE PRIMER ORDEN DINÁMIA ONTROL DE PROESOS 7 FUNIÓN DE TRANSFERENIA SISTEMAS DE PRIMER ORDEN Introucción Trabajar en el omio e Laplace no olamente e útil para la reolución matemática e ecuacione o que e preta epecialmente

Más detalles

Resolución de problemas de equilibrio

Resolución de problemas de equilibrio Reolución de problema de equilibrio Conideramo olamente fuerza actuando en un plano La condicione de equilibrio on: (1) F = 0, F = 0 τ = i 0 j. 1 Ditribución de peo de un auto Nian 40SX 53% de u peo obre

Más detalles

Problemas de Física I

Problemas de Física I Problemas de Física I DINÁMICA DEL SÓLIDO RÍGIDO (1 er Q.:prob impares, 2 ndo Q.:prob pares) 1. (T) Dos partículas de masas m 1 y m 2 están unidas por una varilla de longitud r y masa despreciable. Demostrar

Más detalles

2. Arreglo experimental

2. Arreglo experimental Efecto fotoeléctrico Diego Hofman y Alejandro E. García Roelli Departamento de Fíica, Laboratorio 5,Facultad de Ciencia Exacta y Naturale, Univeridad de Bueno Aire A lo largo de ete trabajo e etudió el

Más detalles

01) Tiempo y Distancia. 0103) Distancia

01) Tiempo y Distancia. 0103) Distancia Página 1 01) Tiempo y Ditancia 0103) Ditancia Dearrollado por el Profeor Rodrigo Vergara Roja Página 2 A) Ditancia Aociamo la idea de ditancia a do ituacione epecífica Cuando queremo aber qué tan grande

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA INGENIERÍA DE CONTROL PRACTICA N 9 ANÁLISIS DE SISTEMAS DE CONTROL POR LUGAR GEOMÉTRICO DE LAS RAÌCES OBJETIVO Hacer uo del

Más detalles

Universidad de Castilla La Mancha Junio Opción A

Universidad de Castilla La Mancha Junio Opción A 637 70 113 Univeridad de Catilla La Mancha Junio 01 Opción A 1 Junio 01 Problema 1.- Un planeta extraolar gira en torno a una etrella cuya maa e igual al 30% de la maa del Sol. La maa del planeta e 3.

Más detalles