SISTEMAS, MATRICES Y DETERMINANTES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS, MATRICES Y DETERMINANTES"

Transcripción

1 .- Discuir, e fució del parámero a, el siguiee sisema de ecuacioes lieales x y z x y z -4 x-y ( a ) z -a-5 4x y ( a 6) z -a 8 Solució: La mariz de los coeficiees es de orde 4x y la mariz ampliada a 4 a 6 4 de orde 4x4 puede ser de rago 4. a a5 4 a 6 a a a a a5 a a6 a a 4 a 6 a 8 6 a a 6 a a a 9a (a ). Podemos disiguir res casos: a a a. Si a y a r()4>r() SISTEM INCOMPTIBLE. 4 r r ; r( ) r <úmero de icógias. SISTEM COMPTIBLE INDETERMINDO.. Si a ( ) 4 r r ; r( ) r úmero de icógias. SISTEM COMPTIBLE DETERMINDO.. Si a ( ) Uidad Docee de Maemáicas de la E.T.S.I.T.G.C.

2 .- a) Resolver el sisema lieal siguiee X B mediae el méodo x 5 de Gauss: 5 y z M R al que CI. b) Hallar C ( ) Solució: 5 a) B E siedo E f 4f E siedo E f E siedo E f f E4 6 6 siedo E4 f f 5 7 x z 5 Por ao, el sisema equivalee: y z 6, cuya solució será x-; y4; z z b) /5 /5 4/5 /5 4/5 /5 5 /5 /5 Uidad Docee de Maemáicas de la E.T.S.I.T.G.C.

3 4/5 /5 4 /5 /5 /5 /5 /5 9/5 /5 / C.- Ecorar el cojuo de marices que comua co la mariz. Solució: Buscaremos marices cuadradas X ales que XX. a a c Si X / a, b R X se iee que: b a b d a c a c a c a c c X X, dé dode b d b d a b c d b d d a a c c c resula el sisema cuya solució es da y c y las marices que a b b d c d d a comua co so de la forma X. b a 4.- La mariz es ilpoee de orde ( ) y la mariz B I. Demosrar que B - I. Solució: Ya que exise B -, se cumple IB.B - (I)(I- )I- - II álogamee se cumple: (I- ) (I)I 5.- Sea ua mariz cuadrada de orde al que I. Eoces es iverible. Solució: De la ecuació I se iee que I ( I) I y omado deermiaes e la ecuació aerior I I ( ) ± y por ao y I. Luego es ua mariz iverible. Uidad Docee de Maemáicas de la E.T.S.I.T.G.C.

4 6.- Cosideremos la ecuació maricial [I-(B) ]X-(C-I) - DX- B X, siedo,b,c,d marices cuadradas de orde e I la mariz uidad del mismo orde. i) Despejar X. ii) Qué codició ha sido ecesaria para poder despejar X? iii) Hallar X, si es posible, e cada uo de los siguiees casos. - - ) C y D ) C y D Solució: i) X B X ( C I) DX B X ( I D) X ( C I) ( ) I D ( C I) X ii) Ha sido ecesario que la mariz I-D sea iversible. iii) Caso : I D X Caso : I D o es iversible por eer deermiae ulo, luego o es posible despejar X. 7.- Si la dimesió de las marices, B, C, y D so x, x, x y x respecivamee. Calcúlese la mariz X e cada ua de las siguiees ecuacioes mariciales a) [] XBCD. [] XCB. [] XDD CC. b) Hallar el valor de X e los aparados aeriores siedo, B, C, D Solució: a) Si exise - y B - eoces, b) [] - ( D C B.[] - ( ) X ) 7/ / X CB.[] - D.. ( C) Uidad Docee de Maemáicas de la E.T.S.I.T.G.C. 4 X ( DD CC ) B 6

5 [] X [] ( ) [] (D C)B X CB X ( DD CC ) ( ). 7/ / ( DD CC ) CB 5. 8, 6 8 7/ / a 8.- Sea la mariz a a ; se pide: a ab a) Esudiar el rago de e fució de los parámeros reales a y b. b) Para b 4, cosideremos el sisema de ecuacioes lieales X B, a dode B. Discuir el sisema segú los valores del parámero a y a resolverlo para a. c) Calcular la iversa de -I para ab. Solució: a) Para resolver el cálculo del rago obeemos el valor del deermiae de : a a a a a a a(4a ab a b) e igualamos a cero ab a ab a a(4a ab a b) 4. Podemos disiguir los siguiees b ab 4 b a a casos: 4. Si a,b r(). a Uidad Docee de Maemáicas de la E.T.S.I.T.G.C. 5

6 . Si a ; co r().. Si a 4 b ; a a a 4 a a a r(). a x a b) Para b4 el sisema queda: a a y. Por el aparado aerior: a 4a z a a a Si a r() y la mariz ampliada r( ) a a el sisema a 4a a es compaible deermiado. Si a r() y la mariz ampliada r( ) <º de icógias el sisema es compaible ideermiado. El sisema para a es x z x z z X y. c) Para ab queda 6 y la mariz I 4 co 9 9 I 8 iee iversa y por adjuos eemos que: ( I) ( I) ( I) ( I) ( I) ( I) ( I) I 8 ( I) ( I) ( I) Uidad Docee de Maemáicas de la E.T.S.I.T.G.C. 6

7 9.- Sabiedo que las marices, X e Y so de orde 7 y que el deermiae de es igual a k, se pide: a) Calcular los deermiaes de, 4, -, -,. b) Supoiedo que -I sea iverible, resolver el sisema: X Y X Y ( ) c) Resolver la siguiee ecuació maricial siedo B, C marices de orde 7: X X C (X B) X Solució: a) k ; k ; k ; 7 7 kk 7 k ; 7 k. b) Sabemos que es iverible pues k. E el sisema muliplicamos por la mariz la primera ecuació: X Y (X Y) X Y resamos las ecuacioes X Y ( ) X Y ( ) X Y ( ) X X (X X) (I )X I X (I ). hora de la seguda ecuació: X Y Y X(I ) ( I) c) E la ecuació X X C (X B) X desarrollamos el paréesis X X C X B X agrupamos los sumados co icógias X X X X B C quedado 4X B C sacado facor comú eemos 4X (B C) y como es iverible muliplicado por la iversa de 4X (B C) 4X B C y, por úlimo, despejado X X (B C) (C B). 4 4 Uidad Docee de Maemáicas de la E.T.S.I.T.G.C. 7

8 Uidad Docee de Maemáicas de la E.T.S.I.T.G.C. 8.- Sea, se pide: a) Calcular, y dar la expresió geeral de. b) Comprobar que I. c) Obeer -. Solució: a) 6 Para geeralizar debemos cosiderar la sucesió 4.()/ eoces: ) ( uilizado la demosració por iducció: cosideramos que se cumple para y lo demosramos para : ) ( ) ( b) I 6 c) f f f f f f, luego.

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden:

Sistemas. Matrices y Determinantes 1.- Si A y B son matrices ortogonales del mismo orden: Sisemas. Marices y Deermiaes.- Si y B so marices orogoales del mismo orde: a) 2 b) B c) B 2.- Dadas dos marices iversibles y B NO se verifica e geeral que: a) ( ) ( ) b) ( B) B c) 3.- Dadas las marices

Más detalles

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución

DETERMINANTES II. Solución. 2. Calcula, aplicando la regla de Sarrus, el siguiente determinante: A = Solución DETERMINNTES II 1 0 4-1 1. Halla los deermiaes de las siguiees marices: = B = 5-1 05 B 4 1 1 10-1 0. Calcula, aplicado la regla de Sarrus, el siguiee deermiae: = 0 0 1-6 -1 0 1 0 0 0 1 00 11 6 00 1 0 0

Más detalles

EJERCICIOS DE MATRICES

EJERCICIOS DE MATRICES EJERCICIOS DE MTRICES RNGO DE UN MTRIZ 4. Calcula el rago de la mariz 4 0 0 0 Obeer ua mariz escaloada por filas Se puede cambiar el orde de las filas de la mariz: F F4 0 0 0 0 0 0 F F 4F 4 F 4 F F 0 F

Más detalles

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A

Solución. Al sistema lo definen dos matrices, A la matriz de coeficientes y A la matriz ampliada. A A A A . Resolver Solució. l sisema lo defie dos marices la mari de coeficiees la mari ampliada. rg ' rg ' ' Rago de (méodo de ramer) S..D. rg ' rg. Resolver Solució. l sisema lo defie dos marices la mari de

Más detalles

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04

SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso SOLUCIONES DE SISTEMAS, MATRICES Y DETERMINANTES Curso 03-04 SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - SOLUCIONES DE SISTEMS, MTRICES Y DETERMINNTES Curso - - Comprobr que culquier mriz cudrd M se puede expresr de form úic como sum de dos mrices, u siméric

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 1: MATRICES Y DETERMINANTES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA : MATRICES Y DETERMINANTES Juio, Ejercicio 3, Opció B Reserva 2, Ejercicio 3, Opció A Reserva 2, Ejercicio 3, Opció B Reserva 3, Ejercicio

Más detalles

i 1,2,..., m (filas) j 1,2,..., n (columnas) t

i 1,2,..., m (filas) j 1,2,..., n (columnas) t MTRICES Y DETERMINNTES Cocepos básicos Deermiaes Mariz iversa CONCEPTOS BÁSICOS MTRIZ de m filas y columas: a11 a12 a1 a21 a22 a 2 am1 am2 am i1,2,..., m (filas) Se represea por a j 1,2,..., (columas)

Más detalles

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices...

Matemáticas II Bachillerato de Ciencias y Tecnología 2º Curso MATRICES Definición. Notaciones Tipos de matrices... Maemáicas II Bachillerao de Ciecias y Tecología 2º Curso Uidad MTRICES...- Defiició. Noacioes.... - 2 -.2.- Tipos de marices.... - 2 -.3.- Operacioes co marices.... - 3 -.3..- Igualdad de marices.... -

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO DECRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO DECRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació a u

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 7 Marices EJERCICIOS PROPUESTOS y. Ejercicios resuelos.. Dadas las marices A y B idica, si es posible. A 0 0 4 B 5 0 a) Los elemeos a 4 y b 4 b) La dimesió de cada ua de ellas c) La mariz raspuesa de cada

Más detalles

Seminario de problemas. Curso Hoja 9

Seminario de problemas. Curso Hoja 9 Semiario de prolemas. Curso 05-6. Hoja 9 49. Alero, Berardo y Carla se ha coocido e ua red social. Ellos pregua a Carla cuádo es su cumpleaños; e lugar de respoderles direcamee, ella decide poerles u prolema.

Más detalles

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE

EL MÉTODO MATEMÁTICO PARA LAS SERIES VARIABLES CON GRADIENTE GEOMÉTRICO CRECIENTE Mg. Marco oio Plaza Vidaurre EL MÉTODO MTEMÁTICO PR LS SERIES VRIBLES CON GRDIENTE GEOMÉTRICO CRECIENTE El resee documeo desarrolla e dealle el méodo de ecuacioes e diferecia fiia, y su alicació e la maemáica

Más detalles

MATRICES 1. CONCEPTO DE MATRIZ

MATRICES 1. CONCEPTO DE MATRIZ MTRICES 1. CONCEPTO DE MTRIZ Ua mariz defiida sobre u cuero comuaivo K es ua ordeació recagular de elemeos a K e filas y columas, e la que cada elemeo a de la mariz esá siuado e la fila i y e la columa

Más detalles

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8

Métodos Numéricos - cap. 7. Ecuaciones Diferenciales PVI 1/8 Méodos Numéricos - cap. 7. Ecuacioes Difereciales PVI /8 Ecuacioes Difereciales Ordiarias (EDO Ua Ecuació Diferecial es aquella ecuació que coiee difereciales o derivadas de ua o más fucioes. Ua Ecuació

Más detalles

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1)

ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO 1 (NOVALES 2.1) ESTADÍSTICA II SOLUCIÓN-PRÁCTICA 7: SERIES DE TIEMPO EJERCICIO (NOVALES.) Cosideremos P P e g. Dado que dicha fució es coiua y que exise y so coiuas las derivadas de odos los órdees, podemos aplicar Taylor

Más detalles

Qué es la Cinética Química?

Qué es la Cinética Química? Tema 4. La velocidad de Cambio Químico I. Velocidad de reacció.. Ecuació de velocidad y orde de reacció. 3. álisis de los daos ciéicos: ecuacioes iegradas de ciéicas secillas. 4. Ciéicas complejas.. Velocidad

Más detalles

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1

ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Enrique úñez Rincón 1 ALEPH SUB CERO SERIE DE DIVULGACIÓ ℵ 0 008 II ℵ 0 ECUACIO ES DIFERE CIALES E EL CO TEXTO DEL MATLAB Carlos Erique úñez Ricó Los maemáicos, e lugar de simplemee uilizar u méodo que parece fucioar, quiere

Más detalles

CURSO CONVOCATORIA:

CURSO CONVOCATORIA: PRUEBAS DE ACCESO A LA UNIVERSIDAD CURSO 6-7 - CONVOCATORIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES - Cada alumo debe elegir sólo ua de las pruebas (A o B) y, dero de ella, sólo debe respoder (como

Más detalles

Sistemas, matrices y determinantes

Sistemas, matrices y determinantes .- Dd l mriz Sisems, mrices y deermies æ ö, hllr ls mrices ç è ø ) B ( + I )(( - I) -, b) C (I - )..- Comprobr que culquier mriz cudrd se puede expresr de form úic como sum de dos mrices, u siméric y or

Más detalles

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS

TALLER 06 (AJUSTE POR MÍNIMOS CUADRADOS hp://www.maemaicaaplicada.ifo 1 de 8 Maizales, 23 de Mao de 2014 Para los siguiees problemas aplicar el procedimieo para grado uo grado dos; deermiado cual reprearía el mejor ajuse a los daos aporados.

Más detalles

También podemos clasificar las ondas según el medio donde se propaguen:

También podemos clasificar las ondas según el medio donde se propaguen: FísicaGua MOVIMIENTO ONDULATORIO CONCEPTO DE ONDA: Ua oda es ua propagació de ua perurbació que se produce e u lugar deermiado e u momeo dado, ésa se rasmie e ua o arias direccioes e el espacio, se eiede

Más detalles

2. MATRICES Y DETERMINANTES

2. MATRICES Y DETERMINANTES Marices y Deermiaes 2. MTRICES Y DETERMINNTES SUMRIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRIC 1.- Marices. 2.- Operacioes co Marices. 3.- Equivalecia de Marices. Trasformacioes Elemeales de Marices.

Más detalles

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas

Sistemas de Ecuaciones Lineales. M. en I. Gerardo Avilés Rosas Sistemas de Ecuacioes Lieales M. e I. Gerardo Avilés Rosas Octubre de 206 Tema 5 Sistemas de Ecuacioes Lieales Objetivo: El alumo formulará, como modelo matemático de problemas, sistemas de ecuacioes lieales

Más detalles

Regresión Lineal Simple

Regresión Lineal Simple REGRESIÓN LINEAL Regresió Lieal Simple Plaeamieo El comporamieo de ua magiud ecoómica puede ser explicada a ravés de ora F( Si se cosidera que la relació puede ser de ipo lieal, la formalizació vedría

Más detalles

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:......

Un sistema de m ecuaciones lineales con n incógnitas es un conjunto de m igualdades del tipo:...... 1. Sistemas de m ecuacioes lieales co icógitas U sistema de m ecuacioes lieales co icógitas es u cojuto de m igualdades del tipo: a11x 1 a1 x... a1 x b1 a1x1 ax... ax b (1)... am1x1 amx... amx bm Los úmeros

Más detalles

1) Considera el sistema de ecuaciones:

1) Considera el sistema de ecuaciones: SESIÓN 4: Álgebra lieal umérica ) Cosidera el sistema de ecuacioes: x + aa aa y a) Calcula las matrices iterativas de los métodos de Jacobi y Gauss-Seidel. b) Para qué valores de a coverge el método de

Más detalles

2.- ESPACIOS VECTORIALES. MATRICES.

2.- ESPACIOS VECTORIALES. MATRICES. 2.- ESPACIOS VECTORIALES. MATRICES. 2.1. -ESPACIOS VECTORIALES Sea u cojuto V, etre cuyos elemetos (a los que llamaremos vectores) hay defiidas dos operacioes: SUMA DE DOS ELEMENTOS DE V: Si u, v V, etoces

Más detalles

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n =

85.- Sea B j (t) la función polinómica: n j. Demostrar que: iii) Solución: Consideremos la identidad: (t+x) n = Hoa Problemas Aálisis II /9 85.- Sea la fució oliómica: N R Demosrar que: i ii iii iv Solució: Cosideremos la ideidad: R N. Derivado e ambos miembros reseco de mulilicado desués or se obiee: - Derivado

Más detalles

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos

El siguiente tema sugerido para tratar en clases es el método de integración por partes veamos de donde surge y algunos ejemplos propuestos Méodos y écicas de iegració El siguiee ema sugerido para raar e clases es el méodo de iegració por pares veamos de dode surge y alguos ejemplos propuesos ( º ) Méodo de Iegració por pares:. dv u. v u =

Más detalles

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto

UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS. Prof. J.L.Cotto UNIVERSIDAD INTERAMERICANA DE PUERTO RICO DEPARTAMENTO DE ADMINISTRACIÓN DE EMPRESAS MAEC 2140: Méodos Cuaiaivos Prof. J.L.Coo DISCUSION Y EJEMPLOS SOBRE EL TEMA FUNCIONES EXPONENCIALS El valor del diero

Más detalles

EJERCICIOS DE RECURRENCIA

EJERCICIOS DE RECURRENCIA EJERCICIOS DE RECURRENCIA (co alguas solucioes) Resolver la recurrecia = 5 6 =, = y tambié ésta: = =, = Resolvamos la primera E primer lugar otamos que es ua recurrecia lieal, pues pasado todos los térmios

Más detalles

Sucesiones de números reales

Sucesiones de números reales Sucesioes de úmeros reales Sucesioes Ejercicio. Prueba que si x

Más detalles

Curso: 3 E.M. ALGEBRA 8

Curso: 3 E.M. ALGEBRA 8 Colegio SSCC Cocepció - Depto. de Matemáticas Uidad de Apredizaje: POLINOMIOS Capacidades/Destreza/Habilidad: Racioamieto Matemático/ Aplicació / Calcular, Resolver Valores/ Actitudes: Respeto, Solidaridad,

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN 2 1+ x dx INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla de itegrar que la primera.

Más detalles

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11

IES IGNACIO ALDECOA 1 AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 10/11 IES IGNACIO ALDECOA AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO 0/ TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como

Más detalles

Los números complejos

Los números complejos Los úmeros complejos Los úmeros complejos Forma biómica Defiició z = a + bi, o bie, z = (a, b) siedo a la parte real y b la parte imagiaria. a = r cos α b = r se α Opuesto z = a bi Cojugado z = a bi Represetació

Más detalles

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN

INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Matemáticas II - º Bachillerato INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN Método de itegració por cambio de variable Cosiste e sustituir por ua fució adecuada para que la epresió resultate sea más secilla

Más detalles

Tema 2: Sistemas. 2.1 Introducción

Tema 2: Sistemas. 2.1 Introducción Tema : Sisemas Tema : Sisemas. Iroducció U sisema respode co uas deermiadas señales a la acció de oras. x() sisema y ( ) = T x( ) Ejemplo Tiempo coiuo: sisema mecáico () dy b d y() T{ } { } d y() dy()

Más detalles

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER.

t T 1 Y Y T Y = T Y = 3 [ T Y m EJERCICIOS DE FORMAS DE ONDA y DESARROLLOS EN SERIE DE FOURIER. EJERCICIOS DE FORMAS DE ONDA DESARROLLOS EN SERIE DE FOURIER. EJERCICIO. Hallar el valor eficaz,, e las foras e oa repreaas e la figura. RESOLUCIÓN: Los valores eficaces e las res foras e oa so iguales.

Más detalles

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X

SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X SOLUCIONES RACIONALES DE LA ECUACIÓN X Y = Y X Jorge E. Heráez, Eih C. e Heráez Uiversia e Paamá, Cero Regioal Uiversiario De Veraguas, Deparameo e Maemáica. RESUMEN E el presee rabajo esuiamos la ecuació

Más detalles

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1

y i 0 1 x i 2 2 y i media 2 Varianza 2 i 1 Para calcular el los valores que maximizan L derivamos e igualamos a cero 2 y i 0 1 x i 0 # i 1 Demostracioes de Regresió Simple. Estimació La distribució de y es y i N 0 x i, Estimació Máximo Verosímil La fució de verosimilitud, sabiedo que y i es ua variable ormal será L exp y i 0 x i ya que la

Más detalles

PRIMITIVA E INTEGRACIÓN INDEFINIDA

PRIMITIVA E INTEGRACIÓN INDEFINIDA Tema Cálculo de primiivas Maemáicas II º Bachillerao TEMA CÁLCULO DE PRIMITIVAS. - PRIMITIVA E INTEGRACIÓN INDEFINIDA PRIMITIVA DE UNA FUNCIÓN f(): F() es ua primiiva de f() si F () = f() Ejemplos: fució:

Más detalles

RELACIONES DE RECURRENCIA

RELACIONES DE RECURRENCIA Uidad 3 RELACIONES DE RECURRENCIA 60 Capítulo 5 RECURSIÓN Objetivo geeral Coocer e forma itroductoria los coceptos propios de la recurrecia e relació co matemática discreta. Objetivos específicos Coocer

Más detalles

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1

Nota: Los coeficientes de los términos equidistantes son b. Contado de derecha a izquierda: iguales. + 1 (x + a) 0 1 (x + a) 1 1 1 Biomio de Newto I Itroducció al Biomio de Newto (para expoete etero y positivo ZZ + ) Teorema Sea: x; a 0 y ZZ + (x + a) = Desarrollado los iomios: C x -.a 0 (x + a) 1 = x + a (x + a) = x + xa + a (x +

Más detalles

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado

= A, entonces A = 0. Y si A es una matriz. y comprobar el resultado. ,, ;,, es el mismo que el generado EJERCICIOS. APLICACIONES DE LOS DETERMINANTES. 1. Calcular el siguiene deerminane de orden n: 1 n n n n n n n n n n n n n. Demosrar que si A es una mariz al que n n, se verifica lo anerior? A = A, enonces

Más detalles

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B

OPCIÓN A MATEMÁTICAS 2º BACHILLERATO B MTEMÁTICS º BCHILLERTO B -5-11 OPCIÓN 1.- 1 Dadas las funciones f( x) = x x+, gx ( ) = x+ 1 a) Esboza sus gráficas y calcula su puno de core b) Señala el recino limiado por las gráficas de ambas funciones

Más detalles

Series infinitas de números reales. Series convergentes

Series infinitas de números reales. Series convergentes Series ifiitas de úmeros reales. Series covergetes Series ifiitas de úmeros reales. Series covergetes Las sucesioes de úmeros reales se itrodujero co la iteció de poder cosiderar posteriormete sus sumas

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN PARCIAL. SEGUNDA EVALUACIÓN. ÁLGEBRA MATERIA: MATEMÁTICAS II OPCIÓN A Examen Parcial Álgebra Maemáicas II Curso 9- I E S TENE SN SESTIÁN DE LOS REYES EMEN PRCIL SEGUND EVLUCIÓN ÁLGER Curso 9- -III- MTERI: MTEMÁTICS II INSTRUCCIONES GENERLES Y VLORCIÓN El examen consa de

Más detalles

Procesado digital de imagen y sonido

Procesado digital de imagen y sonido ema a zabal zazu Uiversidad del País Vasco Deparameo de Arquiecura Tecología de Compuadores upv ehu Tema 3_ Sisemas Procesado digial de image soido Defiició Descripció: Erada Salida Diagramas de bloques

Más detalles

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx

Una ecuación diferencial lineal de orden superior general tendría la forma. (1) dx dx .7 Ecuacioes difereciales lieales de orde superior 6.7 Ecuacioes difereciales lieales de orde superior Ua ecuació diferecial lieal de orde superior geeral tedría la forma d y d y dy a( ) a ( )... a ( )

Más detalles

TALLER DE MATEMÁTICAS DESIGUALDADES

TALLER DE MATEMÁTICAS DESIGUALDADES TALLER DE MATEMÁTICAS DESIGUALDADES NOTAS Es bie sabido que e el cojuto de los úmeros reales existe ua relació de orde atural : se dice que x < y cuado y x es u úmero positivo Co esta relació, el cojuto

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Series Programa de Acceso Iclusivo, Equidad y Permaecia PAIEP Uiversidad de Satiago de Chile Series Sea {a } N ua sucesió de úmeros reales, etoces a la expresió a + a 2 + a 3 + + a + se le deomia serie ifiita

Más detalles

INTERÉS SIMPLE COMO FUNCIÓN LINEAL.

INTERÉS SIMPLE COMO FUNCIÓN LINEAL. INTERÉS SIMPLE COMO FUNCIÓN LINEAL. EJERCICIOS PROPUESTOS. 1.- Grafica las fucioes Moto e Iterés: a) C = + 0, co C e miles de pesos ; : meses y R. Para graficar estar fucioes, debemos dar valores a, por

Más detalles

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012

Tema 2: Análisis gráfico y estadístico de relaciones. Universidad Complutense de Madrid Febrero de 2012 Tema 2: Aálisis gráfico y esadísico de relacioes Uiversidad Compluese de Madrid Febrero de 202 Aálisis gráfico y descripivo de ua variable (I) Daos de series emporales: Rea per c pia EEUU Cosumo per c

Más detalles

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2

L lim. lim. a n. 5n 1. 2n lim. lim. lim. 1 Calcula: Solución: a) 2 Calcula: L L a Dada ua sucesió que tiede a idica a partir de qué térmio se cumple la codició que se idica: a a Si a a Si 7 Si a partir del térmio 9 Si Hallar: d) 7 a partir del térmio 97 d) Deduce los

Más detalles

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente:

Un numero en una sucesión: a n. Ejemplo: Qué termino de la sucesión. a n. Gráficamente: CONCEPTOS PREVIOS: Es u cojuto de úmeros que obedece a ua ley de formació. E geeral es ua fució del tipo : f:n R + 4 0 Ejemplo : a 64 3... 3 SUCESION CRECIENTE: a ; a > a SUCESION DECRECIENTE: + ; a+ a

Más detalles

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013

XXVI CONGRESO NACIONAL DE ACTUARIOS. El Margen de Riesgo. Solvencia II. México. Por: Pedro Aguilar B. Septiembre 2013 El Marge de Riesgo México Por: Pedro Aguilar B. paguilar@csf.gob.mx paguilar@ifiium.com.mx Sepiembre 2013 Coeido 1. Aspecos Geerales sobre Marge de Riesgo 2. La Problemáica 3. Plaeamieo de ua Posible Solució

Más detalles

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1

AMPLIACIÓN DE MATEMÁTICAS 4º ESO CURSO 1 /1 AMPLIACIÓN DE MATEMÁTICAS º ESO CURSO / TEMA : SUCESIONES DE NÚMEROS REALES Se llama sucesió a u cojuto de úmeros dispuestos uo a cotiuació de otro. Podemos cosiderar ua sucesió como ua fució que asiga

Más detalles

FUNCIONES EXPONENCIALES

FUNCIONES EXPONENCIALES 1 FUNCIONES EXPONENCIALES Las fucioes epoeciales iee muchas aplicacioes, e especial ellas describe el crecimieo de muchas caidades de la vida real. Defiició.-La fució co domiio odos los reales y defiida

Más detalles

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática

Guía Semana 9 1. RESUMEN. Universidad de Chile. Ingeniería Matemática 1. RESUMEN Igeiería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo e Varias Variables 08-1 Igeiería Matemática Guía Semaa 9 Teorema de los multiplicadores de Lagrage

Más detalles

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series.

R. Urbán Introducción a los métodos cuantitativos. Notas de clase Sucesiones y series. R. Urbá Itroducció a los métodos cuatitativos. Notas de clase Sucesioes y series. SUCESIONES. Ua sucesió es u cojuto umerable de elemetos, dispuestos e u orde defiido y que guarda ua determiada ley de

Más detalles

1. Relaciones de recurrencia homogéneas con coeficiente

1. Relaciones de recurrencia homogéneas con coeficiente 1. Relacioes de recurrecia homogéeas co coeficiete costate 1. Demuestra que la sucesió {a } es ua solució de la recurrecia a = a 1 + 2a 2 + 2 9 si a) a = + 2 b) a = 5( 1) + 2 c) a = 3( 1) + 2 + 2 d) a

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMS DE ECUCIONES LINELES Tem : SISTEMS DE ECUCIONES LINELES. Ídice:. Epresió mricil de u sisem de ecucioes lieles.. Méodos de resolució... Resolució por el méodo de l mri ivers... Méodo de Guss...

Más detalles

6. ECUACIONES DE RECURRENCIA.

6. ECUACIONES DE RECURRENCIA. 6. ECUACIONES DE RECURRENCIA. 6.1. Itroducció. Las relacioes de recurrecia puede cosiderarse como técicas avazadas de coteo. Resuelve problemas cuya solució o puede obteerse usado variacioes, permutacioes,

Más detalles

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad

Cinética Química. Objetivos. la velocidad de las reacciones químicas. los factores de los cuales depende la velocidad Ciéica Química Objeivos Esudiar la velocidad de las reaccioes químicas los facores de los cuales depede la velocidad los mecaismos a ravés de los cuales ocurre las reaccioes que se esudia plicacioes Síesis

Más detalles

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos.

SERIES NUMÉRICAS. SECCIONES A. Series de términos no negativos. B. Ejercicios propuestos. CAPÍTULO IX. SERIES NUMÉRICAS SECCIONES A. Series de térmios o egativos. B. Ejercicios propuestos. 40 A. SERIES DE TÉRMINOS NO NEGATIVOS. Dada ua sucesió {a, a 2,..., a,... }, se llama serie de térmio

Más detalles

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A

Sobrantes de 2004 (Septiembre Modelo 3) Soluciones Germán-Jesús Rubio Luna OPCIÓN A OPCIÓN A EJERCICIO 1_A (3 putos) Ua pastelería elabora dos tipos de trufas, dulces y amargas Cada trufa dulce lleva 20 g de cacao, 20 g de ata y 30 g de azúcar y se vede a 1 euro la uidad Cada trufa amarga

Más detalles

Un Método de Continuación para Programación Lineal. Parte I: Fundamentos Teóricos

Un Método de Continuación para Programación Lineal. Parte I: Fundamentos Teóricos U Méodo de Coiuació para Programació Lieal. Pare I: Fudameos Teóricos Domigo de Guzmá Soria Marí, dsoria@es-eco.uc3m.es Docorado e Igeiería Maemáica, Deparameo de Esadísica Ecoomería, Uiversidad Carlos

Más detalles

Teorema del binomio y su demostración por inducción matemática

Teorema del binomio y su demostración por inducción matemática Teorema del biomio y su demostració por iducció matemática Objetivos. Demostrar el teorema del biomio usado la iducció matemática y la fórmula recursiva para los coeficietes biomiales. Requisitos. Coeficietes

Más detalles

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS

INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES ORDINARIAS Ua ecuació diferecial es ua ecuació que cotiee las derivadas de ua o más variables depedietes co respecto de ua ó mas variables idepedietes. Clasificació

Más detalles

Hoja de Problemas Tema 3. (Sucesiones y series)

Hoja de Problemas Tema 3. (Sucesiones y series) Depto. de Matemáticas Cálculo (Ig. de Telecom.) Curso 23-24 Hoja de Problemas Tema 3 (Sucesioes y series) Sucesioes de úmeros reales. Sea {a } N, {b } N sucesioes de úmeros reales. Demostrar o refutar

Más detalles

SISTEMAS DE ECUACIONES LINEALES.

SISTEMAS DE ECUACIONES LINEALES. SISTEMS DE ECUCIONES LINELES. SISTEMS DE ECUCIONES LINELES. U sistema de ecuacioes lieales es u cojuto de m ecuacioes co icógitas de la forma: a x + a2 x2 + a3 x3 + + a x b a2 x + a22 x2 + a23 x3 + + a2

Más detalles

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal

Tema II: Interpolación. Polinomios de Lagrange Diferencias Divididas Interpolación Lineal Poliomios de Lagrage Dierecias Divididas Iterpolació Lieal Deiició: es el cálculo de valores para ua ució tabulada, e putos que o se tiee Posició X =?? 4 7 78 48 8 Tiempo Supogamos la cúbica de la siguiete

Más detalles

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero

MATEMÁTICAS 3º ESO - SUCESIONES. Una sucesión es un conjunto de números dados ordenadamente de modo que se puedan numerar: primero, segundo, tercero ucesioes Ua sucesió es u cojuto de úmeros dados ordeadamete de modo que se pueda umerar: primero, segudo, tercero Ejemplos: a), 3, 5, 7, 9, b), 4, 9, 6, 25, 36 c) 2, 4, 8, 6, 32, 64 e llama térmios a los

Más detalles

Fourier. Series de Fourier

Fourier. Series de Fourier Series de Fourier. Fucioes Periódicas oeido. Serie rigoomérica de Fourier 3. ompoee de direca, fudameal y armóicos 4. Orogoalidad de las fucioes seo y coseo 5. álculo de los coeficiees de la Serie de Fourier

Más detalles

CAPÍTULO I. Conceptos Básicos de Estadística

CAPÍTULO I. Conceptos Básicos de Estadística CAPÍTULO I Coceptos Básicos de Estadística Capítulo I. Coceptos Básicos de Estadística. CAPÍTULO I CONCEPTOS BÁSICOS DE ESTADÍSTICA Para realizar estudios estadísticos es ecesario registrar la ocurrecia

Más detalles

ECUACIONES DIFERENCIALES Problemas de Valor Frontera

ECUACIONES DIFERENCIALES Problemas de Valor Frontera DIVISIÓN DE CIENCIAS FÍSICAS Y MATEMÁTICAS DPTO. TERMODINÁMICA Y FENÓMENOS DE TRANSFERENCIA MÉTODOS APROXIMADOS EN ING. QUÍMICA TF-33 ECUACIONES DIFERENCIALES Problemas de Valor Frotera Esta guía fue elaborada

Más detalles

TRABAJO DE GRUPO Series de potencias

TRABAJO DE GRUPO Series de potencias DPTO. MATEMÁTICA APLICADA FACULTAD DE INFORMÁTICA (UPM) TRABAJO DE GRUPO Series de potecias CÁLCULO II (Curso 20-202) MIEMBROS DEL GRUPO (por orde alfabético) Nota: Apellidos Nombre Este trabajo sobre

Más detalles

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para

M arcelo, de vez en vez, usa una reata de 10 m de largo y 2 cm de grueso para GEOMETRÍA, TRIGONOMETRÍA Y SERIES Tema 4 Series uméricas M arcelo, de vez e vez, usa ua reata de 10 m de largo y cm de grueso para medir el cotoro de los terreos que fumiga. Para que la reata que usa o

Más detalles

ECUACIONES DIFERENCIALES PARCIALES

ECUACIONES DIFERENCIALES PARCIALES TEMA 4 ECUACIONES DIFERENCIAES PARCIAES 4 INTRODUCCIÓN E ese ema se verá procedimieos para resolver ecuacioes e derivadas parciales que surge co frecuecia e prolemas dode aparece viracioes, poeciales y

Más detalles

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES

4. VARIABLES ALEATORIAS Y SUS PROPIEDADES 4. VARIABLES ALEATORIAS Y SUS PROPIEDADES Dr. hp://mah.uprm.edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ 4. Variables Aleaorias Ua variable aleaoria es ua fucio que asume sus

Más detalles

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14

PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 14 GUIA DE TRABAJO PRACTICO Nº 4 PAGINA Nº 80 GUIAS DE ACTIVIDADES Y TRABAJOS PRACTICOS Nº 4 OBJETIVOS: Lograr que el Alumo: Resuelva correctamete aritmos y aplique sus propiedades. Resuelva ecuacioes epoeciales.

Más detalles

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.

9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras. Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como

Más detalles

ALGEBRA VECTORIAL Y MATRICES.

ALGEBRA VECTORIAL Y MATRICES. ALGEBRA VECTORIAL Y MATRICES. Cosideraremos como ua matriz cuadrada de orde. Determiate es el valor umérico úico asociado a toda matriz cuadrada. Propiedades de los determiates Las propiedades más importates

Más detalles

Apéndice Números Complejos

Apéndice Números Complejos Aédice Números Comlejos 1 Números comlejos. Geeralidades. Oeracioes co úmeros comlejos Potecia y raíz de úmeros comlejos. 4 Fució exoecial y forma exoecial. E.U.Politécica de Sevilla. Fudametos Matemáticos

Más detalles

Introducción a las medidas de dispersión.

Introducción a las medidas de dispersión. UNIDAD 8: INTERPRETEMOS LA VARIABILIDAD DE LA INFORMACION. Itroducció a las medidas de dispersió. Como su ombre lo idica, las medidas de dispersió so parámetros que os idica qué ta dispersos está los datos.

Más detalles

1. Sucesiones y series numéricas

1. Sucesiones y series numéricas ITINFORMÁTICA GESTIÓN BOLETÍN DE PROBLEMAS CÁLCULO INFINITESIMAL CURSO 00- Sucesioes y series uméricas Escribir ua expresió para el -ésimo térmio de la sucesió: +, + 3 4, + 7 8, + 5 6, 3, 3 4, 3 4 5, c),,

Más detalles

5. 2. PROBLEMAS NO HOMOGÉNEOS.

5. 2. PROBLEMAS NO HOMOGÉNEOS. 5 PROBEMAS NO HOMOGÉNEOS UNIVERSIDAD DE CONCEPCIÓN 5 PROBEMAS DE DIFUSIÓN NO HOMOGENEOS a o homogeeidad puede darse ao e la EDP como e las CC Si las CC so o homogéeas, eoces o podemos cosruir u SS Nuesro

Más detalles

Soluciones hoja de matrices y sistemas

Soluciones hoja de matrices y sistemas Soluciones hoja de marices y sisemas 8 9 - iscuir, en función del arámero a, el siguiene sisema de x y z x y z - ecuaciones lineales x - y ( a ) z - a - x y ( a ) z - a 8 La mariz de los coeficienes es

Más detalles

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas.

Sesión No. 6. Contextualización. Nombre: Funciones exponenciales y logarítmicas y el uso de las MATEMÁTICAS. progresiones aritméticas y geométricas. Matemáticas Sesió No. 6 Nombre: Fucioes expoeciales y logarítmicas y el uso de las progresioes aritméticas y geométricas. Cotextualizació Las fucioes expoeciales y logarítmicas se les cooce como trascedetes,

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecuacioes Difereciales de Primer Orde Defiició lasificació de las Ecuacioes Difereciales Ua ecuació diferecial es aquélla que cotiee las derivadas o difereciales de ua o más variables depedietes

Más detalles

Universidad Diego Portales Facultad de Ingeniería. Laboratorio Nº 11. Números Complejos

Universidad Diego Portales Facultad de Ingeniería. Laboratorio Nº 11. Números Complejos Uiversidad Diego Portales Facultad de Igeiería Istituto de Ciecias Básicas Asigatura: Álgebra Laboratorio Nº Números Complejos Coteidos Álgebra de úmeros complejos Resolució de ecuacioes complejas Forma

Más detalles

Apellidos y Nombre: Aproximación lineal. dy f x dx

Apellidos y Nombre: Aproximación lineal. dy f x dx INGENIERÍA DE TELECOMUNICACIÓN HOJA 0 Aproximació lieal Defiició (Diferecial).- Sea y = f ( x) ua fució derivable e u itervalo abierto que cotiee al úmero x, - La diferecial de x es igual al icremeto de

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 8 Deerminanes. Ejercicio resuelo. EJERCICIOS PROPUESTOS. Calcula el valor de los siguienes deerminanes. 8 4 5 0 0 6 c) 4 5 4 8 6 4 8 4 5 0 6+ 0 0+ 5 00 5 6 0+ 000 0 48 0 6 ( ) ( ) ( ) ( ) ( ) 4 5 5 + 4

Más detalles

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43

SOLUCIONES DE LAS ACTIVIDADES Págs. 23 a 43 TEMA. SUCESIONES DE NÚMEROS. LOGARITMOS SOLUCIONES DE LAS ACTIVIDADES Págs. a a 8 + ( ); Y fialmete: a 7 8 + (7 ) 86 0 7 + 0. S 0 Págia 7 [ ( 7 + 9 5) ] 95. a) 6 : pero 0 : 6,6 o es PG b) 6 : ( ) : 6 :

Más detalles

Series de números reales

Series de números reales Tema 6 Series de úmeros reales 6. Series de úmeros reales. Defiició 6. Sea {a } ua sucesió de úmeros reales y cosideremos la sucesió {S }, defiida por S = a + a + + a, para cada IN, que llamaremos sucesió

Más detalles

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema.

CAPITULO 2. La importancia básica de pronóstico es de ser un eslabón que se une a la etapa de Planificación y Control de un sistema. CAPITULO PRONOSTICOS Hacer u proósico, es hacer u proceso de esimació de u acoecimieo fuuro, a parir de ua iformació de ipo hisórica, ormalmee de ipo maemáica, y/o de ipo referecial de apreciacioes, esimacioes

Más detalles

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene:

y = c n x n : Sustituyendo en la ecuación de partida obtenemos n=0 Si escribimos todas las potencias con el mismo exponente se obtiene: Ejercicio. Obteer los cuatro primeros térmios o ulos de la solució e forma de serie de potecias de x del problema de valores iiciales < (x + )y y = y() = : y () = Solució Como os pide que resolvamos u

Más detalles

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones

Unidad 1: Las Ecuaciones Diferenciales y Sus Soluciones Uidad : Las Ecuacioes Difereciales y Sus Solucioes. Itroducció. Tato e las ciecias como e las igeierías se desarrolla modelos matemáticos para compreder mejor los feómeos físicos. Geeralmete, estos modelos

Más detalles

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2...

Vectores y matrices. x 1. x 2. x n. vector columna. X x 1, x 2,...,x n vector fila. a 11 a a 1m. a 21 a a 2m... a n1 a n2... Vectores y matrices x 1 X x 2. x vector columa X x 1, x 2,...,x vector fila a 11 a 12... a 1m A a 21 a 22... a 2m............ a 1 a 2... a m Matriz traspuesta a 11 a 21... a 1 A a 12 a 22... a 2............

Más detalles