CINEMÁTICA Y DINÁMICA DE ROBOTS MANIPULADORES: RESPUESTAS DE EJERCICIOS UNIDAD 02. Roger Miranda Colorado

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CINEMÁTICA Y DINÁMICA DE ROBOTS MANIPULADORES: RESPUESTAS DE EJERCICIOS UNIDAD 02. Roger Miranda Colorado"

Transcripción

1 CINEMÁTICA Y DINÁMICA DE ROBOTS MANIPULADORES: RESPUESTAS DE EJERCICIOS UNIDAD Roger Miranda Colorado de mayo de 6

2 Índice. RESPUESTAS DE EJERCICIOS UNIDAD

3 . RESPUESTAS DE EJERCICIOS UNIDAD A continuación se presentan las respuestas a los ejercicios planteados en la Unidad del libro Cinemática y Dinámica de Robots Manipuladores. Es importante tomar en cuenta que las respuestas propuestas son una posibilidad, aunque pueden existir otros métodos de solución y respuestas que pueden seguir siendo válidas. Ejercicio Indiquecuál esla diferenciaentre un punto p y un vectorp i que lorepresente. Respuesta La diferencia radica en que el punto p es un elemento libre en el espacio, mientras que el vector p i representa a dicho punto, pero requiere la definición de un sistema de referencia {i}. Ejercicio Qué se entiende por un vector libre?. Respuesta Se trata de vectores que se caracterizan por su magnitud, dirección y sentido, sin importar el lugar en que se encuentren. Ejercicio Qué condición debe de satisfacerse para que, dados un conjunto de vectores, sea posible realizar operaciones básicas (suma, resta, etc.) con ellos?. Respuesta Se debe de cumplir el requerimiento de que dichos vectores se encuentren expresados con respecto al mismo sistema de referencia. Ejercicio 4 Qué es una matriz de rotación? Respuesta 4 Se trata de una matriz que permite representar la orientación de un sistema de referencia con respecto a otro sistema de referencia. Por ejemplo, para la matriz R, ésta representa la orientación de {} con respecto a {}. En este caso, sean {x,y,z } y {x,y,z } los vectores canónicos base de los sistemas de referencia {} y {}, respectivamente. Entonces, la primera columna de R representa la orientación de x con respecto a {}, la segunda columna representa la orientación de y con respecto a {} y finalmente la tercera columna de R representa la orientación de z con respecto a {}. Lo anterior es claro si se considera la expresión de la matriz de rotación empleando el producto punto: R (x,x ) (y,x ) (z,x ) (x,y ) (y,y ) (z,y ) (x,z ) (y,z ) (z,z )

4 Ejercicio 5 Indique cuál es el procedimiento que debe de seguirse en la composición de matrices de rotación con rotaciones sucesivas, dependiendo de si estas se efectúan con respecto a un conjunto de ejes absolutos o un conjunto de ejes actuales. Respuesta 5 Si las rotaciones se realizan con respecto a ejes actuales, la composición de matrices de rotación se hace postmultiplicando las matrices de rotación correspondientes. En el caso de rotaciones con respecto a ejes absolutos, la composición de matrices de rotación se hace premultiplicando las matrices de rotación respectivas. Ejercicio 6 Indique cuáles son las representaciones mínimas que permiten parametrizar a una matriz de rotación y cuál es una representación no mínima que igualmente permite parametrizar a una matriz de rotación. Respuesta 6 Las parametrizaciones mínimas son: ángulos de Euler, Roll-Pitch-Yaw y eje ángulo. La parametrización no mínima se hace empleando los cuaterniones. Ejercicio 7 Qué es una matriz de transformación homogénea y cuál es la estructura de la misma?. Respuesta 7 Se trata de una matriz que permite representar la posición y orientación de un sistema de referencia con respecto a otro. La estructura general de la matriz de transformación homogénea, considerando los sistemas de referencia {} y {}, es: T (x,x ) (y,x ) (z,x ) a (x,y ) (y,y ) (z,y ) b (x,z ) (y,z ) (z,z ) c donde (a,b,c) T representa el origen de {}con respecto a {}. Ejercicio 8 Cuando se aplica una matriz de rotación a un vector, cambia la magnitud del mismo? Explique su respuesta. Respuesta 8 No varía debido a que sólo se cambia su orientación, mas no su longitud. Ejercicio 9 Cuando se aplica una matriz de transformación homogénea a un vector homogéneo, cambia la magnitud del mismo? Explique su respuesta. Respuesta 9 No, sólo cambia su orientación y la ubicación del punto inicial.

5 Ejercicio Se tienen dos sistemas de referencia {} y {}. La matriz de rotación que relaciona a dichos sistemas de referencia es: R Determinar p si p (,, ) T. Respuesta Nótese que: p R p por lo que: p + Ejercicio En el ejercicio anterior, dado p (,, ) T, calcular p. Respuesta En este caso se tiene: p R p ( ) R T p por lo que: p T Ejercicio Supóngase que se parte de un sistema de referencia base y se llevan a cabo el siguiente conjunto de rotaciones sucesivas:. Rotación con respecto al eje z absoluto un ángulo α. Rotación con respecto al eje y absoluto un ángulo β. Rotación con respecto al eje z absoluto un ángulo γ 4. Rotación con respecto al eje x absoluto un ángulo δ Determinar la matriz de rotación resultante de la combinación de las operaciones anteriores. Respuesta En este caso la matriz de rotación resultante es: R R x,δ R z,γ R y,β R z,α

6 Ejercicio Supóngase que se parte de un sistema de referencia base y se llevan a cabo el siguiente conjunto de rotaciones sucesivas:. Rotación con respecto al eje x absoluto un ángulo α. Rotación con respecto al eje z actual un ángulo β. Rotación con respecto al eje y absoluto un ángulo γ 4. Rotación con respecto al eje x actual un ángulo δ 5. Rotación con respecto al eje z absoluto un ángulo ω Determinar la matriz de rotación resultante de la combinación de las operaciones anteriores. Respuesta En este caso la matriz de rotación resultante es: R R z,ω R y,γ R x,α R z,β R x,δ Ejercicio 4 Dada la matriz de rotación: R Obtener la parametrización eje-ángulo de dicha matriz de rotación. Respuesta 4 Primero se determina el ángulo θ de la siguiente manera: ( ) ( θ cos r +r +r cos ++ ) ( ) cos Entonces se determina el eje de rotación: r r k r r sinθ r r sin() ( ) por lo que la parametrización es: θ,k (,,) T 4

7 Ejercicio 5 Sea el vector v (,,) T. Empleandocuaterniones, determinar el vector resultante ω que se obtiene al rotar v con respecto al eje y un águlo ξ π/. Respuesta 5 Para realizar rotaciones empleando cuaterniones se emplea la fórmula: ω Λ N v Λ N Nótese que el ángulo de rotación es ξ π y el eje de rotación es e (,,)T i. Ahora se calcula el cuaternión normalizado Λ N : Λ N cos ξ +esin ξ + i por lo que el vector ω se obtiene de la siguiente manera: ( ) ( ) ω + i (i i +i ) i donde: (i i +i ) entonces: ( ) i i i + [ ] i + i i +i, i + i i + i + [i,i i +i ] + i i + i + ( i +i ) + 5 i i + i ( ) ( ω + i + 5 i [ + 5 i i + i + i, 5 i 5 i i + i 5 i + i i i i i + i + ) i i ] 5

8 Este resultado se puede verificar fácilmente del siguiente modo: ω R y, π v Ejercicio 6 Sean los sistemas de referencia {A}y {B}. Inicialmente dichos sistemas de referencia son coincidentes. Luego se rota {B} con respecto a x A (eje x del sistema de referencia {A}) y se traslada unidades a lo largo del eje x A, unidades a lo largo de y A y unidades a lo largo del eje z A. Determinar la matriz de transformación T A B que relaciona dichos sistemas de referencia. Respuesta 6 En este caso se tiene: T A B R x A, Ejercicio 7 En el ejercicio 6 sea p B (,,) T. Determinar p A. Respuesta 7 Se tiene que: TB A ( ) R A B o A B por lo que: P A ( ) ( ) p A p T A BP B TB A B 8 entonces: p A 8 6

9 Ejercicio 8 En el ejercicio 6 calcular T A B. Respuesta 8 La inversa está dada por: donde: por lo que: T B A ( T A B) ( ( R A B ) T ( R A B) T o A B T ( ) R A T B T ( RB) A T o A B TA B ( ) TB A + ) + Para los siguientes ejercicios considérese el cuerpo mostrado en la fig.. Figura : Variedad de sistemas de referencia sobre cuerpo tridimensional. Ejercicio 9 Para el cuerpo de la fig. determinar T. Respuesta 9 Se tiene la siguiente posible solución: T Trans (6,4,4) Rot z, π

10 Ejercicio Para el cuerpo de la fig. determinar T. Respuesta Una posible solución es: T Trans (,9,7) 9 7 Ejercicio Para el cuerpo de la fig. determinar T. Respuesta Una posible solución es: T Trans (,, 4) Rot y, π Rot z,π 4 4 Ejercicio Para el cuerpo de la fig. determinar T 4. Respuesta Una posible solución es: T 4 Trans (7,,) Rot x, π Rot z,π 7 7 Ejercicio Calcular de modo directo T transformación dicho resultado. y verificar por composición de matrices de 8

11 Respuesta De modo directo se tiene: T Trans (5,6,) Rot z, π Empleando composición de matrices de transformación se obtiene nuevamente el mismo resultado: T T T Ejercicio 4 Calcular de modo directo T transformación dicho resultado. y verificar por composición de matrices de Respuesta 4 De modo directo se tiene: T Trans (8,4,7) Rot x, π Rot z, π y empleando la composición de matrices de transformación se obtiene el mismo resultado: T TT Ejercicio 5 Calcular de modo directo T4 transformación dicho resultado. y verificar por composición de matrices de 9

12 Respuesta 5 De modo directo se tiene la posible solución: T 4 Trans (8,6,) Rot y, π Rot x,π y nuevamente empleando las matrices de transformación se obtiene el mismo resultado: T4 T T Ejercicio 6 Diseñe un algoritmo en Matlab que permita graficar una señal, por ejemplo una señal sinusoidal. Nótese que debido a que esta gráfica se muestra con respecto al plano xy, el eje z se encuentra apuntando hacia afuera de la pantalla donde se muestre dicha señal. Posteriormente realice las siguientes operaciones:. Realice la rotación de dicha señal un ángulo determinado, por ejemplo θ 5, con respecto al eje z. Realice un programa en el cual de manera automática se indique un ángulo de rotación y un incremento. El programa debe de tomar la señal y rotarla hasta alcanzar el ángulo introducido, donde cada paso de cada iteración corresponderá a los incrementos con la magnitud introducida. Nótese que al realizar el programa anterior en el paso se debe de visualizar un tipo de animación, como si la señal se encontrara en movimiento continuo. Claramente se verá mejor dicha animación conforme se reduzca el incremento programado. Respuesta 6 Una posible solución se obtiene empleando el programa Rotación ( y ) incluido en la web. Ejercicio 7 Diseñe un algoritmo en Matlab que permita graficar una señal en tres dimensiones. Posteriormente realice las siguientes operaciones:

13 . Realice la rotación de dicha señal un ángulo determinado, por ejemplo θ, con respecto al eje y. Realice un programa en el cual de manera automática se indique un ángulo de rotación y un incremento. El programa debe de tomar la señal y rotarla hasta alcanzar el ángulo introducido, donde cada paso de cada iteración corresponderá a los incrementos con la magnitud introducida.. Ahora modifique el programa para introducir de modo adicional un vector que corresponda a una traslación del origen o. El programa debe de tomar de modo directo la señal y comenzar a rotar y desplazarse hacia las nuevas coordenadas establecidas. Nótese que al realizar el programa anterior en el paso se debe de visualizar una animación, como si la señal se encontrara en movimiento continuo, pero en este caso no sólo se debe de observar el movimiento rotacional, sino también el traslacional. Claramente se verá mejor dicha animación conforme se reduzca el incremento programado. Respuesta 7 Una posible solución se obtiene empleando el programa Traslación incluido en la web. Ejercicio 8 Repita el ejercicio 6 empleando cuaterniones. Respuesta 8 Puede resolverse el problema empleando el programa de repuesta del ejercicio 6, pero sustituyendo la matriz de rotación usual por la matriz de rotación con cuaterniones. Ejercicio 9 Repita el ejercicio 7 empleando cuaterniones. Respuesta 9 Puede resolverse el problema empleando el programa de respuesta del ejercicio 7, pero empleando la matriz de rotación con cuaterniones.

TEMA 4. Geometría, cinemática y dinámica

TEMA 4. Geometría, cinemática y dinámica TEMA 4. Geometría, cinemática y dinámica 76 Índice: Geometría, cinemática y dinámica Geometría oordenadas propias y del mundo Representación de la posición. Tipos de coordenadas Matrices de rotación Representación

Más detalles

2 Transformaciones en 3D

2 Transformaciones en 3D 2 Transformaciones en 3D La manera más fácil de conseguir las transformaciones básicas (traslación, rotación, escalación, en general las transformaciones afines) es utilizando matrices de transformación.

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles

Tema 1: Simetría y teoría de grupos.

Tema 1: Simetría y teoría de grupos. La simetría puede ayudar a determinar los modos de vibración en una molécula. 2.- Ejemplo amoníaco..- Se fijan sistemas de coordenadas sobre cada uno de los átomos: 2.- Para N átomos en una molécula existen

Más detalles

Dr. Roberto Carlos García Gómez

Dr. Roberto Carlos García Gómez Dr. Roberto Carlos García Gómez La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. La cinemática se interesa por la descripción analítica del movimiento espacial

Más detalles

ANALISIS CINEMATICO DIRECTO E INVERSO

ANALISIS CINEMATICO DIRECTO E INVERSO ANALISIS CINEMATICO DIRECTO E INVERSO Cinematica directa x=f(q) [x,y,z] Articulaciones Posicion de la Herramienta Cinematica Inversa q=f -1 (x) El analisis cinematico inverso nos permite calcular la posicion

Más detalles

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA

CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA CAPITULO 1 INTRODUCCION AL ANALISIS DE TENSIONES Y DEFORMACIONES DE UNA ESTRUCTURA Con el propósito de seleccionar los materiales y establecer las dimensiones de los elementos que forman una estructura

Más detalles

Transformaciones Isométricas

Transformaciones Isométricas Transformaciones Isométricas I o Medio Profesor: Alberto Alvaradejo Ojeda Índice 1. Transformación Isométrica 3 1.1. Traslación..................................... 3 1.2. Ejercicios.....................................

Más detalles

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 3. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja. Beatriz Graña Otero 5 de Diciembre de 8 B.G.O. 47.- Sobre el R-espacio vectorial E de dimensión 4, sea la métrica cuya matriz asociada a la base B = {e, e, e, e 4

Más detalles

CINEMÁTICA DEL ROBOT

CINEMÁTICA DEL ROBOT CINEMÁTICA DEL ROBOT Cinemática Directa Cinemática Inversa Matriz Jacobiana 1 Problema cinemático del robot Cinemática del robot: Estudio de su movimiento con respecto a un sistema de referencia: Descripción

Más detalles

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x

dx = x El tensor x/ X se denomina tensor gradiente de la deformación F = x Capítulo 2 Cinemática El desarrollo de las expresiones contenidas en este capítulo se lleva a cabo en un sistema de referencia general cartesiano {I 1 I 2 I 3 }. La notación es, con algunas diferencias,

Más detalles

Puntos y Vectores. 16 de Marzo de 2012

Puntos y Vectores. 16 de Marzo de 2012 Geometría en Puntos y Vectores Universidad Autónoma Metropolitana Unidad Iztapalapa 16 de Marzo de 2012 Introducción En Geometría analítica plana las relaciones y las propiedades geométricas se expresan

Más detalles

Problema Cinemático Directo

Problema Cinemático Directo Problema Cinemático Directo Parámetros Denavit-Hartenberg Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg notación Craig Denavit-Hartenberg

Más detalles

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x?

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x? Guía N 3 Nombre: Curso: 1 Medio A-B-C-D Unidad Geometría Fecha: Profesora: Odette Castro M. Contenidos: Transformaciones isométricas en el plano cartesiano Simetría Axial 1. Dibuja la figura simétrica,

Más detalles

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R

Álgebra Lineal. Tema 12. Geometría de las transformaciones lineales en R Álgebra Lineal Tema 12. Geometría de las transformaciones lineales en R Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE

Más detalles

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA)

Parte II - Prácticas 8 a 9. Álgebra A 62 ÁLGEBRA A 62 (INGENIERÍA) Parte II - Prácticas 8 a 9 Álgebra A 62 Ingeniería 2015 CICLO BÁSICO COMÚN UBA ÁLGEBRA A 62 (INGENIERÍA) Práctica 8 Introducción a las transformaciones lineales Definiciones y propiedades Transformaciones

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

Desarrollo multipolar del potencial.

Desarrollo multipolar del potencial. c Rafael R. Boix y Francisco Medina Desarrollo multipolar del potencial. Consideremos un cuerpo cargado que ocupa una región volumétrica. Sea ρ(r ) la densidad volumétrica de carga del cuerpo cargado.

Más detalles

ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO.

ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. ESTADO DE ESFUERZO. EL TENSOR DE ESFUERZO Y EL ELIPSOIDE DE ESFUERZO. Cualquier punto del interior de la Tierra está sometido a un complejo sistema de esfuerzos. Esto es debido a que sobre él actúa el

Más detalles

P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2)

P xx ( r) P xy ( r) P xz ( r) P xy ( r) P yy ( r) P yz ( r) P xz ( r) P yz ( r) P zz ( r) d S = ds ˆn( r) (2) EL TENSOR DE PRESIONES La discusión siguiente se centra en el tensor de presiones; sin embargo, los conceptos matemáticos pueden ser extendidos a otras clases de tensores. El tensor de presiones es un

Más detalles

Análisis II Análisis matemático II Matemática 3.

Análisis II Análisis matemático II Matemática 3. Análisis II Análisis matemático II Matemática 3. 2do. cuatrimestre de 2015 Práctica 2 - Integrales de superficie. Definición.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto

Más detalles

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES

TSTC. Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Dpt. Teoría de la Señal, Telemática y Comunicaciones Tema 2 CINEMÁTICA DE MANIPULADORES Secciones 1. Introducción. 2. Coordenadas y Transformaciones Homogéneas. 3. Problema Cinemático Directo. Método de

Más detalles

Dinámica del Sólido Rígido

Dinámica del Sólido Rígido Dinámica del Sólido Rígido El presente documento de clase sobre dinámica del solido rígido está basado en los contenidos volcados en la excelente página web del curso de Física I del Prof. Javier Junquera

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente.

01/07/2009. Ecuaciones dinámicas del motor. Fig. 1 circuito equivalente del motor de CD con excitación independiente. Control de Máquinas Eléctricas Primavera 2009 1. Análisis vectorial de sistema trifásicos 1. Campo magnético 2. Devanado trifásico 3. Vector espacial de un sistema de corrientes 4. Representación gráfica

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago

Programa de Acceso Inclusivo, Equidad y Permanencia. PAIEP, Universidad de Santiago Guía de vectores. Vectores En matemática, un vector es una herramienta geométrica utilizada para representar una magnitud física definida en un sistema de referencia que se caracteriza por tener módulo

Más detalles

Cambio de coordenadas

Cambio de coordenadas Capítulo Cambio de coordenadas Problema Tenemos 3 puntos P, P y P 3, la idea es representar P en términos de esos puntos y de otros tres Q,Q y Q 3. El problema, es cómo ven P P P 3 a P y cómo Q Q Q 3 a

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ ω P r ω α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime Teoría

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

III. Análisis de marcos

III. Análisis de marcos Objetivo: 1. Efectuar el análisis de estructuras de marcos. 1. Introducción. Aquellas estructuras constituidas de vigas unidimensionales conectadas en sus extremos de forma pivotada o rígida son conocidas

Más detalles

Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19

Contenido. Omar De la Peña-Seaman IFUAP Mecánica Clásica M.C. Física 1/19 19 Contenido 1. Cuerpo rígido II: ecuaciones de movimiento 1.1 Movimiento compuesto: traslación + rotación 1.2 Tensor de inercia y momento de inercia 1.3 Ejes principales y momentos principales de inercia

Más detalles

INSTITUTO TECNOLÓGICO DE VERACRUZ ANTORCHA Y LUZ DE FUEGO PERMANENTE

INSTITUTO TECNOLÓGICO DE VERACRUZ ANTORCHA Y LUZ DE FUEGO PERMANENTE INSTITUTO TECNOLÓGICO DE VERACRUZ ANTORCHA Y LUZ DE FUEGO PERMANENTE INGENIERIA MECATRONICA INGENIERIA MECATRONICA REPRESENTACION DE DENAVIT-HARTENBERG CADENAS CINEMATICAS CNIEMATICA DIRECTA CATEDRATICO:

Más detalles

Cinemática del Robot

Cinemática del Robot Cinemática del Robot La cinemática del robot estudia el movimiento del mismo con respecto a un sistema de referencia. En primer término, la cinemática se interesa por la descripción analítica del movimiento

Más detalles

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán.

Vectores. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Instituto Politécnico Nacional Escuela Superior de Ingeniería Mecánica y Eléctrica. Unidad Culhuacán. Vectores Autor: Ing. Jonathan Alejandro Cortés Montes de Oca. Vectores En el campo de estudio del Cálculo

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones

Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Rotaciones en MatLab mediante Matrices de Rotación y Cuaterniones Carlos Alberto Edo Solera ÍNDICE: 1.- Rotaciones mediante cuaterniones 2.- Álgebra de cuaterniones. 3.- Cuaterniones con MatLab. 1.- Rotaciones

Más detalles

TRANSFORMACIONES LINEALES II. Computación Gráfica

TRANSFORMACIONES LINEALES II. Computación Gráfica TRANSFORMACIONES LINEALES II Computación Gráfica Rotaciones Transformación lineal que preserva producto punto entre vectores. Transforma bases de mano derecha a bases de mano derecha. En D, cada rotación

Más detalles

Ejercicios recomendados: Cálculo III

Ejercicios recomendados: Cálculo III Ejercicios recomendados: Cálculo III Cátedra de MA 1003 II ciclo 2017 Los ejemplos que siguen están tomados del libro: Claudio Pita Ruiz Cálculo Vectorial Prentice-Hall Hispanoamericana México 1995 Ejemplos

Más detalles

Transformaciones geométricas en 2D y 3D (Parte II)

Transformaciones geométricas en 2D y 3D (Parte II) Transformaciones geométricas en 2D y 3D (Parte II) Contenido Conmutatividad en transformaciones geométricas Tranformaciones básicas en 3D: rotación, traslación y escalamiento Otras tranformaciones 3D:

Más detalles

Trabajo Práctico N 5: ESPACIOS VECTORIALES

Trabajo Práctico N 5: ESPACIOS VECTORIALES Trabajo Práctico N 5: ESPACIOS VECTORIALES Ejercicio 1: Determine si los siguientes conjuntos con las operaciones definidas en cada caso son o no espacios vectoriales. Para aquellos que no lo sean, indique

Más detalles

UNIVERSIDAD DON BOSCO VICERRECTORÍA DE ESTUDIOS DE POSTGRADO

UNIVERSIDAD DON BOSCO VICERRECTORÍA DE ESTUDIOS DE POSTGRADO UNIVERSIDAD DON BOSCO VICERRECTORÍA DE ESTUDIOS DE POSTGRADO MAESTRÍA EN MANUFACTURA INTEGRADA POR COMPUTADORA ROBÓTICA INTEGRADA A LA MANUFACTURA Catedrático: Mg Manuel Napoleón Cardona Gutiérrez GUÍA

Más detalles

Cinemática del sólido rígido

Cinemática del sólido rígido Cinemática del sólido rígido Teoría básica para el curso Cinemática del sólido rígido, ejercicios comentados α δ B B A A P r B AB A α O Ramírez López-Para, Pilar Loizaga Garmendia, Maider López Soto, Jaime

Más detalles

Tema 1: Simetría y teoría de grupos.

Tema 1: Simetría y teoría de grupos. Ejemplos y aplicaciones de la simetría: QUIRALIDAD. La quiralidad no es solo un concepto ligado a la química orgánica donde se asocia a la presencia del carbono asimétrico: QUIRALIDAD. El experimento En

Más detalles

M.C. Cynthia Guerrero

M.C. Cynthia Guerrero Algoritmo 2-6-1: Representación D-H 0. Numere las articulaciones de la 1 a la n comenzando con la base () y terminando con la herramienta, en el orden yaw, pitch y roll. 1. Asigne un sistema coordenado

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

PRÁCTICA DEMOSTRATIVA N

PRÁCTICA DEMOSTRATIVA N PRÁCTICA DEMOSTRATIVA N 1 (VECTORES) Ing. Francisco Franco Web: http://mgfranciscofranco.blogspot.com/ Fuente de información: Trabajo de grado de Mónica A. Camacho D. y Wilson H. Imbachi M. Ingeniería

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL

APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Vectores y escalares. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 2 ÁLGEBRA VECTORIAL Las magnitudes escalares son aquellas magnitudes físicas que

Más detalles

ROBÓTICA. Especialidad: Electrónica M.C. Ignacio Dávila Ríos

ROBÓTICA. Especialidad: Electrónica M.C. Ignacio Dávila Ríos Instituto Tecnológico de Saltillo ROBÓTICA Especialidad: Electrónica Ríos Enero-Junio 211 Unidad II Morfología 2.1 Introducción 2.2 Estructura mecánica 2.3 Estructura cinemática 2.4 Tipos de articulaciones

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales FUNDAMENTOS DE LA IMAGEN DIGITAL Transformaciones geométricas DEFINICIONES Las transformaciones geométricas son funciones que mapean un punto del espacio a uno nuevo se pueden

Más detalles

Estática. M = r F. donde r = OA.

Estática. M = r F. donde r = OA. Estática. Momento de un vector respecto de un punto: Momento de una fuerza Sea un vector genérico a = AB en un espacio vectorial V. Sea un punto cualesquiera O. Se define el vector momento M del vector

Más detalles

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo:

en el espacio queda caracterizado por un par de puntos A y B, o bien por su módulo, dirección y sentido junto con el origen, siendo: TEMA 10: VECTORES EN EL ESPACIO. 10.1 Vectores fijos y libres en el espacio vectorial. 10. Operaciones con vectores libres. Bases del espacio vectorial. 10.3 Producto escalar. Módulo y ángulo de vectores.

Más detalles

Apéndice A. Vectores: propiedades y operaciones básicas.

Apéndice A. Vectores: propiedades y operaciones básicas. Vectores 145 Apéndice A. Vectores: propiedades y operaciones básicas. Una clasificación básica de las distintas propiedades físicas medibles, establece que estas pueden dividirse en dos tipos: a) Aquellas

Más detalles

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base.

1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. EJERCICIOS PROPUESTOS 1. Espacios vectoriales. Sistemas de ecuaciones. 1. Determina cuáles de los siguientes conjuntos son subespacios vectoriales. Para aquellos que lo sean, halla una base. (a) S = {

Más detalles

Unidad 6. Objetivos. Equilibrio, momento de una fuerza. Al término de la unidad, el alumno:

Unidad 6. Objetivos. Equilibrio, momento de una fuerza. Al término de la unidad, el alumno: Unidad 6 Equilibrio, momento de una fuerza Objetivos Al término de la unidad, el alumno: Definir e identificar los brazos de palanca que se generan por la aplicación de fuerzas que se aplican sobre algunos

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

SIMETRÍA INFINITA. nt = kt

SIMETRÍA INFINITA. nt = kt SIMETRÍA INFINITA Al considerar el cristal como un medio periódico en el cual un grupo de átomos (el motivo) se repite en las tres dimensiones del espacio, de manera que entre dos puntos homólogos de dos

Más detalles

2.- Funciones de variable compleja.

2.- Funciones de variable compleja. 2.- Funciones de variable compleja. a) Introducción. Definición de función de variable compleja. b) Mapeos o transformaciones. c) Límites y continuidad de una función. d) Límites y punto al infinito. La

Más detalles

Matrices. Operaciones con matrices.

Matrices. Operaciones con matrices. Matrices. Operaciones con matrices. Ejercicio. Dadas las matrices ( ) ( ) 4 A = B = ( ) C = D = 4 5 ( ) 4 E = F = seleccione las que se pueden sumar y súmelas. Ejercicio. Dadas las matrices ( ) ( ) A =

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 19 de Junio de 2004 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen Final. 9 de Junio de 4 Primera parte Ejercicio. Un depósito subterráneo de gasolina tiene forma de cilindro elíptico con semieje orizontal a

Más detalles

Tema 3: Transformaciones Geométricas

Tema 3: Transformaciones Geométricas J. Ribelles SIE020: Síntesis de Imagen y Animación Institute of New Imaging Technologies, Universitat Jaume I Contenido Introducción 1 Introducción 2 Traslación Escalado Rotación 3 4 5 6 Introducción Por

Más detalles

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales.

SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. SOLUCIONES A LA AUTOEVALUACIÓN - Espacios Vectoriales. A) Soluciones a las Cuestiones C-1) a) Sí, por ejemplo el eje X, formado por los vectores de la forma (λ, 0), que se identificarían con el número

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería

Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Grado en Ingeniería Aeroespacial Física I Segunda prueba de control, Enero 2016. Curso 2015/16 Nombre: DNI: Este test se recogerá

Más detalles

Departamento de Matemática

Departamento de Matemática Departamento de Matemática Isometría, origen griego Igual Medida (ISO = misma METRÍA A = medir) Una trasformación Isométrica produce cambios en una figura que no alteran su tamaño Traslación Rotación Simetría

Más detalles

47 Capítulo 5. CONVERSIÓN DE COORDENADAS COORDENADAS

47 Capítulo 5. CONVERSIÓN DE COORDENADAS COORDENADAS 47 Capítulo 5. CONVERSIÓN DE COORDENADAS Capítulo 5. CONVERSIÓN DE COORDENADAS Tal y como se ha descrito en el apartado anterior (4.2.8), la función print_ob devuelve la posición en coordenadas cartesianas

Más detalles

Guía Nº 2 Transformaciones Isométricas

Guía Nº 2 Transformaciones Isométricas Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta

Más detalles

CINEMÁTICA INVERSA DE ROBOTS INDUSTRIALES

CINEMÁTICA INVERSA DE ROBOTS INDUSTRIALES I EMETRE DE 00 CINEMÁTICA INVERA DE ROBOT INDUTRIALE GERMÁN ANDRÉ RAMO FUENTE * 1. Introducción El uso de robots en ambientes industriales, y más precisamente en procesos de manufactura, ha generado toda

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Tema 2 Campo de velocidades del sólido rígido

Tema 2 Campo de velocidades del sólido rígido Mecánica Clásica Tema Campo de velocidades del sólido rígido EIAE 5 de septiembre de 011 Velocidad de un punto del sólido. Deducción matricial.................................. Tensor velocidad angular......................................................

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

DINÁMICA ROTACIONAL. El torque o momento de la fuerza esta dado por la expresión:

DINÁMICA ROTACIONAL. El torque o momento de la fuerza esta dado por la expresión: DINÁMICA ROTACIONAL I OBJETIVO: Estudio del movimiento rotacional de un cuerpo rígido (Verificación de la segunda Ley de Newton para un sistema rotacional) II INTRODUCCION: En la figura 1 se muestra un

Más detalles

Fundamentos matemáticos básicos de la realidad virtual

Fundamentos matemáticos básicos de la realidad virtual Fundamentos matemáticos básicos de la realidad virtual José Ignacio Ronda Prieto Grupo de Tratamiento de Imágenes, ETSIT, UPM jir@gti.ssr.upm.es Fundamentos matemáticos básicos de la realidad virtual 1

Más detalles

CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

CINEMÁTICA 2. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CINEMÁTICA 2 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CAMPO DE VELOCIDADES El campo de velocidad está constituido

Más detalles

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales

PROBLEMAS RESUELTOS ÁLGEBRA LINEAL Tema 3. Transformaciones Lineales PROLEMS RESUELTOS ÁLGER LINEL Tema. Transformaciones Lineales SUTEM: MTRICES SOCIDS UN TRNSFORMCIÓN Problema : Sean P P los espacios vectoriales de lo polinomios de grado menor o igual a dos menor o igual

Más detalles

Estéreo dinámico. Estéreo dinámico

Estéreo dinámico. Estéreo dinámico Estéreo dinámico 1 Vectores locales de desplazamiento Dada una secuencia de imagenes Tomadas a intervalos Movimiento absoluto: movimiento independiente de la cámara Movimiento relativo: movimiento debido

Más detalles

PRÁCTICA Relaciones Espaciales En Robótica. Aplicación en el simulador VirtualRobot

PRÁCTICA Relaciones Espaciales En Robótica. Aplicación en el simulador VirtualRobot Departamento de Ingeniería de Sistemas y Automática Universidad Politécnica de Valencia FACULTAD DE INFORMÁTICA PRÁCTICA Relaciones Espaciales En Robótica. Aplicación en el simulador VirtualRobot Martin

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 11 de abril de 2011 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 34 Índice General 1 Cinemática Directa 2 Cadena

Más detalles

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2

a ij x i x j = [x] t B A+At ) t = At +(A t ) t = At +A x i x j + a ij + a ji x j x i = s ij x i x j + s ji x j x i 2 68 Matemáticas I : Álgebra Lineal Tema 7 Formas cuadráticas Aunque, pueda parecernos que vamos a estudiar un nuevo concepto, un caso particular de las formas cudráticas ya ha sido estudiado, pues el cuadrado

Más detalles

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es:

Álgebra lineal y Geometría II. Métricas y formas cuadráticas. 1. La matriz de la métrica T 2 ((x, y, z), (x, y, z )) = xx + yy + 3zz 2xz 2zx es: Álgebra lineal y Geometría II Gloria Serrano Sotelo Departamento de MATEMÁTICAS ÁLGEBRA LINEAL Y GEOMETRÍA. 0 FÍSICAS Métricas y formas cuadráticas.. La matriz de la métrica T ((x, y, z), (x, y, z )) =

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

1. Breve resumen de optimización sin restricciones en varias variables.

1. Breve resumen de optimización sin restricciones en varias variables. MATEMÁTICAS EMPRESARIALES G.A.D.E. CURSO 202/203 Práctica 2: Aplicaciones a la Optimización. En esta práctica se introducen las herramientas que nos ofrece el programa Mathematica para optimizar funciones

Más detalles

p = p 2 r 1 r r A = p 3

p = p 2 r 1 r r A = p 3 Unidad 5 Transformaciones 5. Introducción Un fabricante elabora cuatro tipos de productos distintos, de los cuales cada uno requiere tres tipos de materiales. Se identifican los cuatro productos como P,

Más detalles

CURVAS Y SUPERFICIES. RELACIÓN 2

CURVAS Y SUPERFICIES. RELACIÓN 2 CURVAS Y SUPERFICIES. RELACIÓN 2 SUPERFICIES EN EL ESPACIO Curso 2015-16 1. Demostrar que las siguientes cuádricas reales son superficies. Obtener una parametrización de cada una de ellas. En cada caso,

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

En esta sección se presenta la integral triple para funciones de tres variables, funciones del tipo

En esta sección se presenta la integral triple para funciones de tres variables, funciones del tipo 5. INTEGRALES TRIPLES En esta sección se presenta la integral triple para funciones de tres variables, funciones del tipo f:, tal como se hizo en la sección anterior para las integrales dobles. Así como

Más detalles

Cálculo de Geodésicas en Superficies de Revolución

Cálculo de Geodésicas en Superficies de Revolución Cálculo de Geodésicas en Superficies de Revolución Superficies de Revolución Sea S R 3 la superficie de revolución obtenida al girar una curva regular del plano XZ que no corte al eje Z alrededor del mismo.

Más detalles

EXAMEN JUNIO PP 1A SEMANA

EXAMEN JUNIO PP 1A SEMANA EXAMEN JUNIO PP A SEMANA XAVI AZNAR Ejercicio. Defina semejanza, razón de semejanza y movimento asociado a una semejanza. Ejercicio. En el espacio vectorial V 3 (R) sea q la forma cuadrática cuya expresión

Más detalles

Seminario de problemas-bachillerato. Curso Hoja 6

Seminario de problemas-bachillerato. Curso Hoja 6 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 6 37. Dada una cuerda AB de una circunferencia de radio 1 y centro O, se considera la circunferencia γ de diámetro AB. Sea P es el punto de γ más

Más detalles

Fundamentos matemáticos básicos de la realidad virtual

Fundamentos matemáticos básicos de la realidad virtual Fundamentos matemáticos básicos de la realidad virtual José Ignacio Ronda Prieto Grupo de Tratamiento de Imágenes, ETSIT, UPM jir@gti.ssr.upm.es Fundamentos matemáticos básicos de la realidad virtual 1

Más detalles

Ejemplos Desarrollados

Ejemplos Desarrollados Universidad de Santiago de Chile Departamento de Ingeniería Mecánica Mecánica de Medios Continuos Eugenio Rivera Mancilla Ejemplos Desarrollados 1. Una placa rectangular homogénea, de masa m, cuyas aristas

Más detalles

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G.

Instituto Nacional Dpto. De Física Prof.: Aldo Scapini G. Nombre: Curso: Movimiento Circunferencial Uniforme. (MCU) Caracteristicas 1) La trayectoria es una circunferencia 2) La partícula recorre distancia iguales en tiempos iguales Consecuencias 1) El vector

Más detalles

Sistema axonométrico. Con el estudio de esta Unidad nos proponemos alcanzar los siguientes objetivos:

Sistema axonométrico. Con el estudio de esta Unidad nos proponemos alcanzar los siguientes objetivos: UNIDAD 9 Sistema axonométrico E l sistema axonométrico se divide en ortogonal y oblicuo según sea la dirección de proyección. La axonometría ortogonal puede ser isométrica, dimétrica o trimétrica según

Más detalles

Análisis de imágenes digitales

Análisis de imágenes digitales Análisis de imágenes digitales REPRESENTACIÓN Y DESCRIPCIÓN Rasgos morfológicos RASGOS GEOMÉTRICOS El área y perímetro de un objeto son dos rasgos primarios que se utilizan cuando el tamaño de las regiones

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero

Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero Ejercicios resueltos de Álgebra, hoja 2. Beatriz Graña Otero 11 de Diciembre de 2008 2 B.G.O. 104.- Determina si los siguientes subconjuntos del espacio vectorial correspondiente son subvariedades afines:

Más detalles

Matemáticas Aplicadas

Matemáticas Aplicadas Matemáticas Aplicadas para Diseño de Videojuegos 5. Matrices y Geometría Vectorial Contenidos Vectores Componente de un vector. Vectores unitarios. Módulo, suma y producto escalar. Gráficos vectoriales.

Más detalles

Guía de Ejercicios Sistemas Gráficos

Guía de Ejercicios Sistemas Gráficos Guía de Ejercicios Sistemas Gráficos - 2016 Ejercicios de Transformaciones ET1 La escena de la figura 2 está compuesta a partir de los 3 modelos de la izquierda (barra, rueda y balde). El sistema gira

Más detalles

TEMAS DE FÍSICA I VECTORES Profr. Abelardo Rodríguez Soria et al TRIMESTRE 11 P

TEMAS DE FÍSICA I VECTORES Profr. Abelardo Rodríguez Soria et al TRIMESTRE 11 P TEMAS DE FÍSICA I VECTORES Profr. Abelardo Rodríguez Soria et al TRIMESTRE 11 P PRELIMINARES. Un vector se representa gráficamente en el papel mediante una flecha. La longitud de la flecha representa la

Más detalles

ROBÓTICA I. Cinemática Directa

ROBÓTICA I. Cinemática Directa Cinemática Directa M. C. Jorge Luis Barahona Avalos 2 de mayo de 2012 Universidad Tecnológica de la Mixteca Instituto de Electrónica y Mecatrónica 1 / 42 Índice General 1 Cinemática Directa 2 Cadena Cinemática

Más detalles