Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Qué es la estadística? presentación, análisis e interpretación de datos numéricos con e fin de realizar una toma de decisión más efectiva."

Transcripción

1 Estadístca Alguos Coceptos

2 Itroduccó Qué es la estadístca? La estadístca, e geeral, es la ceca que trata de la recoplacó, orgazacó presetacó, aálss e terpretacó de datos umércos co e f de realzar ua toma de decsó más efectva E qué áreas se aplca la estadístca? Actualmete se aplca e todas las áreas del saber, por ejemplo e Socología, Educacó,, Pscología,, Admstracó,, Ecoomía,, Medca,, Cecas Polítcas,, etre otras Ejemplos de su aplcacó so: E Admstracó de Empresas: la estadístca se utlza para evaluar u producto ates de comercalzarlo E Ecoomía: para medr la evolucó de los precos medate úmeros ídce o para estudar los hábtos de los cosumdores a través de ecuestas de presupuestos famlares

3 Etapas de u estudo estadístco U aálss estadístco se lleva a cabo sguedo las etapas habtuales e el llamado método cetífco cuyas etapas so: Plateameto del problema: cosste e defr el objetvo de la vestgacó y precsar el uverso o poblacó Recogda de la formacó: cosste e recolectar los datos ecesaros relacoados al problema de vestgacó 3 Aálss descrptvo: cosste e resumr los datos dspobles para etraer la formacó relevate e el estudo 4 Ifereca estadístca: cosste e supoer u modelo para toda la poblacó partedo de los datos aalzados para obteer coclusoes geerales 5 Dagóstco: cosste e verfcar la valdez de los supuestos del modelo que os ha permtdo terpretar los datos y llegar a coclusoes sobre la poblacó 3

4 Esquema de las etapas de u estudo estadístco AREA DE INTERES DATOS ORGANIZAR Y RESUMIR Tema de Ivestgacó -Atecedetes Prevos -Objetvos -Pregutas de Ivestgacó -Posbles Hpótess -Udad de Aálss -Poblacó -Varables INTERPRETACIÓN Poblacó o Muestra? Poblacó ESTADÍSTICA DESCRIPTIVA (Tablas, Gráfcos, Meddas Descrptvas, etc Muestra INFERENCIA ESTADÍSTICA CONCLUSIONES INFORMACIÓN Probabldad 4

5 Ejemplos de alguos problemas a estudar Se quere estudar s e certo colectvo este dscrmacó salaral debda al seo de la persoa empleada Se quere determar el perfl de los trabajadores e térmos de codcoes ecoómcas y socales e dferetes comudades 3 Se quere estudar el cosumo de las persoas de ua zoa determada e cuato a vestuaro, almetacó, oco y vveda 4 Se quere determar las tallas estádar e vestuaro para mujeres españolas 5 Se quere determar el tempo que dedca al trabajo y a la famla los trabajadores de dsttas empresas del país 6 Se quere determar el perfl socodemográfco de los estudates de ua Uversdad 7 Se quere estudar el gasto e teléfoo móvl mesual de los estudates de ua Uversdad, y s éste tee algua relacó co su edad d uotras característcas t 5

6 Alguos coceptos VARIABLE: es lo que se va a medr y represeta ua característca de la UNIDAD DE ANÁLISIS QUIÉNES VAN A SER MEDIDOS?: Los sujetos u objetos o Udades de Aálss de ua Poblacó o ua Muestra POBLACIÓN : Es el total de udades de aálss que so tema de estudo MUESTRA: Es u cojuto de udades dd de aálss ál proveetes de ua poblacó 6

7 Poblacó: Las persoas que trabaja e empresas de comucacó Muestra Muestra: 60 trabajadores de empresas de comucacó Udad de aálss: Trabajador de empresa de comucacó Varables: seo, edad, d salaro, Nº de horas de trabajo, etc 7

8 EJEMPLO Problema de Ivestgacó: Se quere establecer el perfl de las dustras de coserva e fucó de alguas característcas Udad de Aálss: Idustra de Coserva Poblacó: Idustras de Coservas del país Varables -Tpo de Idustra:sese clasfca e dustra tpo A, B, CoD (cualtatva omal -Nº de Empleados: se refere al úmero de empleados e las líeas de produccó (cuattatva dscreta - Superfce: se refere a los metros cuadrados (udad de medda dspobles para las áreas de produccó (cuattatva cotua - Calfcacó: calfcacó realzada por ua sttucó públca sobre cumplmeto de certos estádares (Muy Be, Be, Regular, Mal (cualtatva ordal Datos 8 Idustra º Tpo Nº Empleados Superfce Calfcacó A ,6 Muy Be B 50 00,4 Be 99 D ,3 Mal 300 C , Regular

9 TABLAS DE FRECUENCIA EJEMPLO Problema de Ivestgacó: Se quere establecer el perfl de las dustras de coserva e fucó de alguas característcas Udad de Aálss: Idustra de Coserva Poblacó: Idustras de Coservas del país Tpo de Frecueca Frecueca Porcetaje Frec FrecRelatva Frec Absol Frec Relat Idustra Absoluta (F j Relatva (f j (% Calfcacó Absoluta (F j (f j o % Acum (FAA j Acum (fra j o % A Muy Be B Be C Regular D Total ( 9 Numero de Empleados <00 Frec Absoluta (F j FrecRelatva (f j o % Frec Absol Acum (FAA j Mal 300 (o00 00 Total 300 (o 00 Frec Relat Acum (fra j o % [00-50[ [ ] 300 (o 00% Total 300 (o 00% Superfce Frec (mt Absoluta (F j (4 (3 ( S f Frec FrecRelatva Frec Absol Frec Relat (f j o % Acum (FAA j Acum (fra j o % <00 [00-400[ [ ] 300 (o 00% Total 300 (o 00%

10 Elemetos de ua tabla de frecueca cuado la varable es cotua ( [L I ; L S [ Itervalo Cetro de clase Ampltud F f FAA fra I c a [L I ; L S [ I c a [L Ik ; L Sk ] I k c k a k Total c j (L Ij +L Sj / a j (L Sj L Ij 0

11 Tpos de gráfcos Gráfco de Sectores Crculares (de Torta Dstrbucó de las udades de aálss de acuerdo a varable Dstrbucó de las udades de aálss de acuerdo a varable D 0% A 0% C D A 40% B 0% 0% 30% C 40% B 30% Dstrbucó de las udades de aálss de acuerdo a varable D 0% A 0% C 40% B 30%

12 Tpos de gráfcos Gráfco de Barras Numero de udades de aálss Proporcó de udad de aálss de acuerdo a varable de acuerdo a varable Nº varable D C B A varable 0 A B C D varable Porcetaje de udad de aálss de acuerdo a varable D C B A % udad de aálss 0 0, 0,4 0,6 0,8 Proporcó de udad de aálss -Este tpo de gráfco se utlza geeralmete para represetar la frecueca de las categorías de ua varable cualtatva -Cuado ua varable es cuattatva se puede utlzar este tpo de gráfco sólo s la varable se ha trasformada e categorías -Hay dsttas versoes de estos gráfcos (por ejemplo e Ecel, y e alguos casos so muy útles para descrbr el comportameto de ua varable e dsttos grupos

13 Tpos de gráfcos 3 Hstograma Dstrbucó b ó de los hjos de trabajadores de la empresa de acuerdo a edad Nº recueca Fr N edad Ejemplo E el gráfco se puede observar el úmero de hjos, de meor edad (7-8 años, las de mayor edad (3-44 años; y además que la mayoría de hjos de los trabajadores está etre los 0 y años 3 4 Hstograma - Permte la represetacó de la frecueca de ua varable Cuattatva - El eje se refere a la varable -El eje y se refere a la frecueca (Nº, % -Cada barra represeta la frecueca de la varable e la poblacó e estudo (o la muestra -El hstograma se puede costrur desde los datos de la tabla de frecueca de la varable e estudo 3

14 Tpos de gráfcos 4 Polígoo de Frecueca Frecue ca edad Nº Dstrbucó de los hjos de trabajadores de la ae empresa pesa de acuerdo a edad edad 3 4 -Esta represetacó se basa e el Hstograma -Sólo es úl útl para varables bl cuattatvas -El eje se refere a la varable -El eje y se refere a la frecueca (Nº, % -Los putos que permte la uó de las líeas represeta el cetro de clase (o marca de clase 4

15 Tpos de gráfcos 5 Dagrama de Caja Edad de las persoas que se realzaro agoplastía etre 980 y Edad 90 -Permte detfcar gráfcamete la 80 medaa, los cuartles y 3 70 (percetles 5 y 75, mímo y mámo de ua varable 60 -Sólo es útl para varables 50 cuattatvas -El eje permte detfcar la 40 poblaco e estudo 30 -El eje y represeta los valores de la varable e estudo N 584 Mujeres 473 Hombres 5

16 Tpos de gráfcos 6 Otros Número de alumos matrculados e la Carrera A segú año de greso Número de alumos matrculados e la Carrera B segú año de greso Nº de alum os Nº de alum os año de greso año de greso Número de alumos matrculados e las Carreras segú año de greso Nº de alumos año de greso Carrera A Carrera B Nº de alu umos Carrera B año greso Carrera A

17 Notacó Notacó Notacó Notacó Varables Cuattatvas varable dvduo varable e el valor de la,, varable y dvduo varable e el de la valor y dvduo varable e el valor de la y costates :,, c b a c c c c + + L + + c c c c L b b b b ( ( ( + + L ( ( b a b a b a b a ( ( ( L ( ( + + L ( ( ( y y y L ( ( ( y y y + + L 7 ( ( ( y y y + +

18 Meddas de poscó o tedeca cetral Meddas de tedeca cetral -Meda Artmétca (Promedo -Medaa -Moda 8

19 Meda Artmétca o Promedo La meda artmétca o smplemete meda, que deotaremos por X, es el úmero obtedo al dvdr la suma de todos los valores de la varable etre el umero total de observacoes, y se df defe por la sguete epresó 9

20 Meda Artmétca o Promedo S los datos está agrupados e tervalos, la epresó de la meda artmétca, es la msma, pero utlzado la marca de clase (X 0

21 Medaa Dada ua dstrbucó de frecuecas co los valores ordeados de meor a mayor, llamamos medaa y la represetamos por Me, al valor de la varable, que deja a su zquerda el msmo úmero de frecuecas que a su derecha Calculo de la medaa: Varara segú el tpo de dato M E ( k S es mpar M E ( k + ( k + S es par ( k dato del cetro

22 Moda La moda es el valor de la varable que más veces se repte, y e cosecueca, e ua dstrbucó de frecuecas, es el valor de la varable que vee afectada por la máma frecueca de la dstrbucó E dstrbucoes o agrupadas e tervalos se observa la columa de las frecuecas absolutas, y el valor de la dstrbucó al que correspode la mayor frecueca será la moda A veces aparece dstrbucoes de varables co más de ua moda (bmodales, trmodales, etc, e cluso ua dstrbucó de frecuecas que presete ua moda absoluta y ua relatva Datos: Cualtatvos y Cuattatvos Moda M "el dato que más se repte" M o

23 Moda E el caso de estar la varable agrupada e tervalos de dstta ampltud, se defe el tervalo modal, y se deota por ( L -, L ], como aquel que posee mayor desdad de frecueca ( h ; la desdad de frecueca se defe como Ua vez detfcado el tervalo modal procederemos al cálculo de la moda, a través de la fórmula: E el caso de teer todos los tervalos la msma ampltud, el tervalo modal será el que posea ua mayor frecueca absoluta ( y ua vez detfcado este, empleado la fórmula: 3

24 Meddas de poscó o cetral (Cuatles Cuatles Los cuatles so aquellos valores de la varable, que ordeados de meor a mayor, dvde a la dstrbucó e partes, de tal maera que cada ua de ellas cotee el msmo úmero de frecuecas Los cuatles más coocdos so: a Cuartles ( Q : So valores de la varable que dvde a la dstrbucó e 4 partes, cada ua de las cuales egloba el 5 % de las msmas Se deota de la sguete forma: Q es el prmer cuartl que deja a su zquerda el 5 % de los datos; Q es el segudo cuartl que dj deja a su zquerda el 50% de los datos, y Q3 es el tercer cuartl que deja a su zquerda el 75% de los datos (Q Me b Decles ( D: So los valores de la varable que dvde a la dstrbucó e las partes guales, cada ua de las cuales egloba el 0 % de los datos E total habrá 9 decles (Q D5 Me c Cetles o Percetles ( P : So los valores que dvde a la dstrbucó e 00 partes guales, cada ua de las cuales egloba el % de las observacoes E total habrá 99 percetles (Q D5 Me P50 4

25 Percetles, Decles o Cuartles Percetl, Decl o Cuartl: correspode al valor que toma la varable (cuattatva, cuado los datos está ordeados de Meor a Mayor Percetles, Decles o Cuartles -Percetl (ejemplo: 5, 50, 75 -Decl (ejemplo: 4, 5, 8 -Cuartl (ejemplo:,, 3 5

26 Percetles, Decles o Cuartles El Percetl va de a 00 El percetl 5 (5/00: es el valor de la varable que reúe al meos el 5% de los datos Ejemplo: S N80, el 5% de 80 es 0; por lo tato, se busca el dato que este e la poscó 0 S N85, el 5% de 85 es,5; por lo tato se busca el dato que este e la poscó El Decl va de a 0 El Decl 4 (4/0: es el valor de la varable ab que reúe e al meos el 40% de los datos Ejemplo: S N80, el 40% de 80 es 3; por lo tato, se busca el dato que este e la poscó 3 S N85, el 40% de 85 es 34; por lo tato se busca el dato que este e la poscó 34 El Cuartl va de a 4 El Cuartl 3 (3/4: es el valor de la varable que reúe al meos el 75% de los datos Ejemplo: S N80, el 75% de 80 es 60; por lo tato, se busca el dato que este e la poscó S N85, el 75% de 85 es 63,75; por lo tato se busca el dato que este e la poscó 6

27 Meddas de dspersó Meddas de Dspersó -Rago -Varaza -Desvacó Estádar 7

28 Recorrdo o Rago Se defe como la dfereca etre el mámo y el mímo valor de la varable: R ma( m( 8

29 Varaza La varaza mde la mayor o meor dspersó de los valores de la varable respecto a la meda artmétca Cuato mayor sea la varaza mayor dspersó estrá y por tato meor represetatvdad dd tedrá dá la meda artmétca La varaza se epresa e las msmas udades que la varable aalzada, pero elevadas al cuadrado s ( ( 9

30 Desvacó Típca o Estadar Se defe como la raíz cuadrada co sgo postvo de la varaza s s 30

31 Comparacó etre Varables Se refere al comportameto de las varables cuattatvas e u grupo Por ejemplo: S se tee u cojuto de persoas a las que se les mde Estatura, Peso, Edad: Etre estas varables cuál preseta mayor varacó? Coefcete de Varacó cv s 3

32 Meddas de forma Además de la poscó y la dspersó de los datos, otras meddas de terés e ua dstrbucó de frecuecas so: - Asmetría - Kurtoss o Aputameto 3

33 Coefcete de Asmetría de Fsher CA 3 s ( Segú sea el valor de CA, dremos que la dstrbucó es asmétrca a derechas o postva, a zquerdas o egatva, o smétrca, o sea: S CA0 s la dstrbucó es smétrca alrededor de la meda S CA<0 0 s la dstrbucó es asmétrca a la zquerda S CA>0 s la dstrbucó es asmétrca a la derecha 3 33

34 Coefcete de Aputameto o Kurtoss Se refere al grado de aputameto que tee ua dstrbucó; para determarlo, emplearemos el coefcete de curtoss de Fsher CAp ( s 4 4 S CAp0 la dstrbucó se dce ormal (smlar a la dstrbucó ormal de Gauss y recbe el ombre de mesocúrtca S CAp>0, la dstrbucó es más putaguda que la ateror y se llama leptocúrtca, (mayor cocetracó de los datos e toro a la meda S CAp<0 la dstrbucó es más plaa y se llama platcúrtca 34

35 Otras meddas o Coefcetes Ejemplos Hstogramas co dstta asmetría y aputameto ,0,0 3,0 4,0 5,0 6,0 7,0 Desv típ,67 Meda 3,9 N 30,00 0 -,0 0,0,0,0 Desv típ,64 Meda 0,0 N 30,00 0,0,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 Desv típ,4 Meda 5, N 8,00 V V4 V5 35

36 Otras meddas o Coefcetes Ejemplos Datos Hstograma Meddas descrptvas Meda 3,9 Medaa 4 Moda 4 Desvacó estádar,67 Varaza de la muestra, kurtoss -0, Desv típ,77 Meda 5,4 0 N 66,00,0,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 V Coefcete de asmetría -0,0 Rago 6 Mímo Mámo 7 Cueta 30 36

37 Meda, Desvacó típca, Coefcetes de Asmetría y Aputameto t para datos Agrupados (tabla de frecuecas Tabla de frecueca (para varable cuattatva Cetro Itervalo de clase Ampltud F f FAA fra I c a I c a M M I k c k a k Total Sea c j la marca de clase (o cetro de clase y f j la frecueca relatva de la clase j, dode j,,,k La Meda para datos agrupados es gual a la suma de los productos de las marcas de clase por sus frecuecas relatvas, de la forma: Meda c c k j M k c j f f f j M f k La Desvacó típca agrupados esta dada por: s c k j ( c j c para f j datos 3 El Coefcete de Asmetría para datos agrupados esta dado por: CA c k j ( c j 4 El Coefcete de aputameto para datos agrupados esta dada d por: CAp c k j ( c j s 3 c 4 c c s 3 c 4 f f j j 37

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES.

VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. CONTENIDOS. VARIABLES ESTADÍSTICAS UNIDIMENSIONALES. Itroduccó a la Estadístca descrptva. Termología básca: poblacó, muestra, dvduo, carácter. Varable estadístca: dscretas y cotuas. Orgazacó de datos.

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA A. MEDIDAS DE TENDENCIA CENTRAL B. MEDIDAS DE VARIABILIDAD C. MEDIDAS DE FORMA RESUMEN: A. MEDIDAS DE TENDENCIA CENTRAL So estadígrafos de poscó que so terpretados como valores

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Estadística descriptiva

Estadística descriptiva Estadístca descrptva PARAMETROS Y ESTADISTICOS Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca Meddas de tedeca cetral: Moda, Medaa, Meda

Más detalles

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por:

Si los cerdos de otro granjero tienen los siguientes pesos: 165, 182, 185, 168, 170, 173, 180, 177. Entonces el diagrama de puntos está dado por: Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 65 Uversdad de los Ades Escuela de Estadístca. Mérda -Veezuela Meddas de Dspersó Además de obteer la formacó que reúe las meddas de tedeca cetral

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN

NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN UNIVERSIDAD DE CHILE VICERRECTORÍA DE ASUNTOS ACADÉMICOS DEPARTAMENTO DE EVALUACIÓN, MEDICIÓN Y REGISTRO EDUCACIONAL NOCIONES BÁSICAS DE ESTADÍSTICA UTILIZADAS EN EDUCACIÓN SANTIAGO, septembre de 2008

Más detalles

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos

4. SEGUNDO MÓDULO. 4.1 Resumen de Datos 4. SEGUNDO MÓDULO 4. Resume de Datos E estadístca descrptva, a partr de u cojuto de datos, se busca ecotrar resumes secllos, que permta vsualzar las característcas esecales de éstos. E ua expereca, u dato

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

5.3 Estadísticas de una distribución frecuencial

5.3 Estadísticas de una distribución frecuencial 5.3 Estadístcas de ua dstrbucó frecuecal 5.3. Meddas de tedeca cetral Meddas de tedeca cetral Las meddas de tedeca cetral so descrptores umércos que proporcoa ua dea de los valores de la varable, alrededor

Más detalles

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN

CONTENIDO MEDIDAS DE POSICIÓN MEDIDAS DE DISPERSIÓN OTRAS MEDIDAS DESCRIPTIVAS INTRODUCCIÓN INTRODUCCIÓN CONTENIDO DEFINICIÓN DE ESTADÍSTICA ESTADÍSTICA DESCRIPTIVA CONCEPTOS BÁSICOS POBLACIÓN VARIABLE: Cualtatvas o Categórcas y Cuattatvas (Dscretas y Cotuas) MUESTRA TAMAÑO MUESTRAL DATO DISTRIBUCIONES

Más detalles

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada.

MEDIA ARITMÉTICA. Normalmente se suele distinguir entre media aritmética simple y media aritmética ponderada. MEDIDAS DE POSICIÓN També llamadas de cetralzacó o de tedeca cetral. Srve para estudar las característcas de los valores cetrales de la dstrbucó atededo a dsttos crteros. Veamos su sgfcado co u ejemplo:

Más detalles

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos

ESTADÍSTICA. Unidad didáctica 11 1. ESTADÍSTICA: CONCEPTOS BÁSICOS. 1.1. Caracteres y variables estadísticos Udad ddáctca ESTADÍSTICA. ESTADÍSTICA: COCEPTOS BÁSICOS La Estadístca surge ate la ecesdad de poder tratar y compreder cojutos umerosos de datos. E sus orígees hstórcos, estuvo lgada a cuestoes de Estado

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA Estadístca Estadístca Descrptva. ESTADÍSTICA DESCRIPTIVA. Itroduccó.. Coceptos geerales. 3. Frecuecas y tablas. 4. Grácos estadístcos. 4. Dagrama de barras. 4. Hstograma. 4.3 Polgoal de recuecas. 4.4 Dagrama

Más detalles

Tema 2: Distribuciones bidimensionales

Tema 2: Distribuciones bidimensionales Tema : Dstrbucoes bdmesoales Varable Bdmesoal (X,Y) Sobre ua poblacó se observa smultáeamete dos varables X e Y. La dstrbucó de frecuecas bdmesoal de (X,Y) es el cojuto de valores {(x, y j ); j } 1,, p;

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

Cálculo y EstadísTICa. Primer Semestre.

Cálculo y EstadísTICa. Primer Semestre. Cálculo y EstadísTICa. Prmer Semestre. EstadísTICa Curso Prmero Graduado e Geomátca y Topografía Escuela Técca Superor de Igeeros e Topografía, Geodesa y Cartografía. Uversdad Poltécca de Madrd Capítulo

Más detalles

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD

NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD NOTAS SOBRE ESTADÍSTICA APLICADA A LA CALIDAD 1. CONCEPTO DE ESTADÍSTICA : Es la ceca que estuda la terpretacó de datos umércos. a) Proceso estadístco : Es aquél que a partr de uos datos umércos, obteemos

Más detalles

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL.

RENTABILIDAD DE LA CUOTA DE CAPITALIZACIÓN INDIVIDUAL. Supertedeca de Admstradoras de Fodos de Pesoes CIRCULAR Nº 736 VISTOS: Las facultades que cofere la ley a esta Supertedeca, se mparte las sguetes struccoes de cumplmeto oblgatoro para todas las Admstradoras

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09

Métodos Estadísticos Aplicados a la Ingeniería Examen Temas 1-4 Ingeniería Industrial (E.I.I.) 23/4/09 Métodos Estadístcos Aplcados a la Igeería Exame Temas -4 Igeería Idustral (E.I.I.) 3/4/09 Apelldos y ombre: Calfcacó: Cuestó..- Se ha calculado el percetl 8 sobre las estadístcas de sestraldad e el sector

Más detalles

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes

Ejercicios Resueltos de Estadística: Tema 1: Descripciones univariantes Ejerccos Resueltos de Estadístca: Tema : Descrpcoes uvarates . Los datos que se da a cotuacó correspode a los pesos e Kg. de ocheta persoas: (a) Obtégase ua dstrbucó de datos e tervalos de ampltud 5, sedo

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

I n t r o d u c i ó n A l a E s t a d í s t i c a 1

I n t r o d u c i ó n A l a E s t a d í s t i c a 1 Estadístca I t r o d u c ó A l a E s t a d í s t c a INTRODUCCIÓN: La Estadístca descrptva es ua parte de la Estadístca cuyo objetvo es examar a todos los dvduos de u cojuto para luego descrbr e terpretar

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

Aproximación a la distribución normal: el Teorema del Límite Central

Aproximación a la distribución normal: el Teorema del Límite Central Aproxmacó a la dstrbucó ormal: el Teorema del Límte Cetral El teorema del límte cetral establece que s se tee varables aleatoras, X, X,..., X, depedetes y co détca dstrbucó de meda µ y varaza σ, a medda

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo:

Práctica 11. Calcula de manera simbólica la integral indefinida de una función. Ejemplo: PRÁCTICA SUMAS DE RIEMAN Práctcas Matlab Práctca Objetvos Calcular tegrales defdas de forma aproxmada, utlzado sumas de Rema. Profudzar e la compresó del cocepto de tegracó. Comados de Matlab t Calcula

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

Manual de Estadística

Manual de Estadística Maual de Estadístca Pag Maual de Estadístca Davd Ruz Muñoz Edtado por eumed et 004 ISBN: 84-688-653-7 Maual de Estadístca Pag ÍNDICE Capítulo I: Capítulo II: Capítulo III: Capítulo IV: Capítulo V: Capítulo

Más detalles

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I

ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I COLEGIO DE BACHILLERES ESTADÍSTICA DESCRIPTIVA E INFERENCIAL I FASCÍCULO. MEDIDAS DE TENDENCIA CENTRAL Autores: Jua Matus Parra COLEGIO DE BACHILLERES Colaboradores Asesoría Pedagógca Revsó de Cotedo Dseño

Más detalles

TEMA 4: VALORACIÓN DE RENTAS

TEMA 4: VALORACIÓN DE RENTAS TEMA 4: ALORACIÓN DE RENTAS 1. Cocepto y valor facero de ua reta 2. Clasfcacó de las retas. 3. aloracó de Retas dscretas. Temporales. 4. aloracó de Retas dscretas. Perpetuas. 5. Ejerccos tema 4. 1. Cocepto

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio!

Este documento es de distribución gratuita y llega gracias a www.cienciamatematica.com El mayor portal de recursos educativos a tu servicio! Este documeto es de dstrbucó gratuta y llega gracas a Ceca Matemátca www.cecamatematca.com El mayor portal de recursos educatvos a tu servco! Isttuto Tecológco de Apzaco Departameto de Cecas Báscas INSTITUTO

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA H. Helam Estadístca -/5 ITRODUCCIÓ. COCEPTO DE ETADÍTICA ETADÍTICA DECRIPTIVA La estadístca es la rama de las matemátcas que estuda los eómeos colectvos recogedo, ordeado y clascado y smplcado los datos

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión

Ejercicios Resueltos de Estadística: Tema 2: Descripciones bivariantes y regresión Eerccos Resueltos de Estadístca: Tema : Descrpcoes bvarates regresó . E u estudo de la egurdad e Hgee e el Trabao se cotrastó la cdeca del tabaqusmo e la gravedad de los accdetes laborales. Cosderado ua

Más detalles

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.

TEMA 2: PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES. TEMA : PARÁMETROS ESTADÍSTICOS. CÁLCULO, SIGNIFICADO Y PROPIEDADES.. INTRODUCCIÓN Hasta ahora hemos vsto cómo se puede resumr los datos obtedos del estudo de ua muestra (o ua poblacó) e ua tabla estadístca

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA

Tema I. Estadística descriptiva 1 Métodos Estadísticos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos LECCIONES DE ESTADÍSTICA Tema I. Estadístca descrptva Métodos Estadístcos Feómeos determístcos TEMA I. ESTADÍSTICA DESCRIPTIVA Llamados també causales,

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

LECCIONES DE ESTADÍSTICA

LECCIONES DE ESTADÍSTICA LECCIONES DE ESTADÍSTICA Estos aputes fuero realzados para mpartr el curso de Métodos Estadístcos y umércos e el I.E.S. A Xuquera I de Potevedra. Es posble que tega algú error de trascrpcó, por lo que

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

TEMA 2: LOS NÚMEROS COMPLEJOS

TEMA 2: LOS NÚMEROS COMPLEJOS Matemátcas º Bachllerato. Profesora: María José Sáche Quevedo TEMA : LOS NÚMEROS COMPLEJOS. LOS NÚMEROS COMPLEJOS Relacó etre los úmeros complejos y los putos del plao. Afjo de u úmero complejo. Cojugado

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

LOS NÚMEROS COMPLEJOS

LOS NÚMEROS COMPLEJOS LOS NÚMEROS COMPLEJOS por Jorge José Osés Reco Departameto de Matemátcas - Uversdad de los Ades Bogotá Colomba - 00 Cuado se estudó la solucó de la ecuacó de segudo grado ax bx c 0 se aaló el sgo del dscrmate

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente.

Serie de Gradiente (Geométrico y Aritmético) y su Relación con el Presente. Sere de radete (eométrco y rtmétco) y su Relacó co el resete. Certos proyectos de versó geera fluos de efectvo que crece o dsmuye ua certa catdad costate cada período. or eemplo, los gastos de matemeto

Más detalles

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna

3 = =. Pero si queremos calcular P (B) 2, ya que si A ocurrió, entonces en la urna arte robabldad codcoal rof. María. tarell - robabldad codcoal.- Defcó Supogamos el expermeto aleatoro de extraer al azar s reemplazo dos bolllas de ua ura que cotee 7 bolllas rojas y blacas. summos que

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti

Frecuencia absoluta Les gusta 28 No les gusta 12 Total 40. Posibles resultados. Revisoras: Raquel Caro y Nieves Zuasti 116 Capítulo 7: Estadístca. Azar y probabldad TEORÍA. Matemátcas 4º de ESO 1. ESTADÍSTICA 1.1. Muestras. Estudos estadístcos S queremos hacer u estudo estadístco teemos que: a) Recoger los datos b) Descrbr

Más detalles

Técnicas básicas de calidad

Técnicas básicas de calidad Téccas báscas de caldad E esta udad aprederás a: Idetfcar las téccas báscas de caldad Aplcar las herrametas báscas de caldad Utlzar la tormeta de deas Crear dsttos tpos de dagramas Usar hstogramas y gráfcos

Más detalles

-Métodos Estadísticos en Ciencias de la Vida

-Métodos Estadísticos en Ciencias de la Vida -Métodos Estadístcos e Cecas de la Vda Regresó Leal mple Regresó leal smple El aálss de regresó srve para predecr ua medda e fucó de otra medda (o varas). Y = Varable depedete predcha explcada X = Varable

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Inferencia Estadística de Matemáticas Aplicadas a las Ciencias Sociales II Solucoes de los ejerccos de Selectvdad sobre Ifereca Estadístca de Matemátcas Aplcadas a las Cecas Socales II Atoo Fracsco Roldá López de Herro * Covocatora de 006 Las sguetes págas cotee las solucoes

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

MS Word Editor de Ecuaciones

MS Word Editor de Ecuaciones MS Word Edtor de Ecuacoes H L. Mata El Edtor de ecuacoes de Mcrosoft Word permte crear ecuacoes complejas seleccoado símbolos de ua barra de herrametas y escrbedo varables y úmeros. medda que se crea ua

Más detalles

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma

Tema 1: Estadística Descriptiva Unidimensional Unidad 2: Medidas de Posición, Dispersión y de Forma Estadístca Tema 1: Estadístca Descrptva Undmensonal Undad 2: Meddas de Poscón, Dspersón y de Forma Área de Estadístca e Investgacón Operatva Lceso J. Rodríguez-Aragón Septembre 2010 Contendos...............................................................

Más detalles

ANGEL FRANCISCO ARVELO LUJAN

ANGEL FRANCISCO ARVELO LUJAN ANGEL FRANCISCO ARVELO LUJAN Agel Fracsco Arvelo Lujá es u Profesor Uverstaro Veezolao e el área de Probabldad y Estadístca, co más de 0 años de expereca e las más recoocdas uversdades del área metropoltaa

Más detalles

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO

CURSO PROBABILIDAD Y ESTADISTICAS FMS175 PROFESOR RODOLFO TORO DEPARTAMENTO DE FISICA Y MATEMATICAS UNIVERSIDAD NACIONAL ANDRES BELLO CURO PROBABILIDAD Y ETADITICA FM75 PROFEOR RODOLFO TORO DEPARTAMETO DE FIICA Y MATEMATICA UIVERIDAD ACIOAL ADRE BELLO EL MÉTODO CIETÍFICO La Estadístca, costtuye así, ua dscpla cetífca extremadamete ampla

Más detalles

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1

INTRODUCCIÓN AL ANÁLISIS DE ENCUESTAS COMPLEJAS 1 63 ITRODUCCIÓ AL AÁLISIS DE ECUESTAS COMPLEJAS MARCELA PIZARRO BRIOES ISTITUTO ACIOAL DE ESTADÍSTICA (IE CHILE Para presetarse e el Taller Regoal del MECOVI: La Práctca del Muestreo para el Dseño de las

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

2 - TEORIA DE ERRORES : Calibraciones

2 - TEORIA DE ERRORES : Calibraciones - TEORIA DE ERRORES : Calbracoes CONTENIDOS Errores sstemátcos.. Modelo de Studet. Curvas de Calbracó. Métodos de los Mímos Cuadrados. Recta de Regresó. Calbracó de Istrumetos OBJETIVOS Explcar el cocepto

Más detalles

2.2 Distribuciones de frecuencias unidimensionales.

2.2 Distribuciones de frecuencias unidimensionales. Itroduccó a la Estadístca Empresaral Capítulo - Aálss de ua varable CAPITULO - AALISIS DE UA VARIABLE Itroduccó E este capítulo se dará u cojuto de strumetos que permtrá el aálss descrptvo de ua varable

Más detalles

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA

TEXTO DE PROBLEMAS DE INFERENCIA ESTADÍSTICA UNIVERIDAD NACIONAL DEL CALLAO VICERECTORADO DE INVETIGACIÓN FACULTAD DE CIENCIA ECONÓMICA TETO DE PROBLEMA DE INFERENCIA ETADÍTICA AUTOR: JUAN FRANCICO BAZÁN BACA (Resolucó Rectoral 940-0-R del -9-) 0-09-

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis

Tema 3. Estadísticos univariados: tendencia central, variabilidad, asimetría y curtosis Tema. Estadístcos unvarados: tendenca central, varabldad, asmetría y curtoss 1. MEDIDA DE TEDECIA CETRAL La meda artmétca La medana La moda Comparacón entre las meddas de tendenca central. MEDIDA DE VARIACIÓ

Más detalles

CIRO MARTINEZ BENCARDINO

CIRO MARTINEZ BENCARDINO CIRO MARTINEZ BENCARDINO Nacdo e Covecó (Norte de Satader - Colomba). Ecoomsta de la Uversdad Jorge Tadeo Lozao de Bogotá, D.C. Bo-estadístca (Uversdad de los Ades, Bogotá, D.C.). Téccas Estadístcas (CIENES-Satago

Más detalles

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS

ANÁLISIS ESTADÍSTICO DEL CONTROL DE CALIDAD EN LAS EMPRESAS UNIVERIDAD de VALLADOLID ECUELA de INGENIERÍA INDUTRIALE INGENIERO TÉCNICO INDUTRIAL, EPECIALIDAD EN MECÁNICA PROYECTO FIN DE CARRERA ANÁLII ETADÍTICO DEL CONTROL DE CALIDAD EN LA EMPREA Autor: Galca Adrés,

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados

Análisis Estadístico de Mediciones de la Velocidad del Viento Utilizando la Técnica de Valores Desviados Smposo de Metrología 008 Satago de Querétaro, Méxco, al 4 de Octubre Aálss Estadístco de Medcoes de la Velocdad del Veto Utlzado la Técca de Valores Desvados E. Cadeas, a W. Rvera b a Uversdad Mchoacaa

Más detalles

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información

MATEMÁTICA. Unidad 4. Resolvamos desigualdades. variabilidad de la información MATEMÁTICA Udad 4 Resolvamos desgualdades Iterpretemos la varabldad de la formacó Objetvos de la Udad: Propodrás solucoes a problemas relacoados co desgualdades leales y cuadrátcas; y represetarás los

Más detalles

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI

C URVA DE L ORENZ C OEFICIENTE DE D ESIGUALDAD DE G INI TESIS DESARROLLO REIONAL C URVA DE L ORENZ C OEFICIENTE DE D ESIUALDAD DE INI D OCUMENTO A UXILIAR N DANIEL CAUAS - 5 JUN 203 LA CURVA DE LORENZ La curva de Lorez (Corado Lorez 905), es u recurso gráfco

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A

PRIMERA PRUEBA DE TÉCNICAS CUANTITATIVAS III. 14-Abril-2015. Grupo A PRIMERA PRUEBA DE TÉCICAS CUATITATIVAS III. 14-Abrl-015. Grupo A OMBRE: DI: 1. Se quere hacer u estudo sobre gasto e ropa e ua comarca dode el 41% de los habtates so mujeres. (1 puto) Se decde tomar ua

Más detalles

Nociones de Estadística

Nociones de Estadística Químca Aalítca Prof. Aa Galao Jméez Nocoes de Estadístca Las medcoes tee sempre asocadas u error expermetal (herete a la resolucó del equpameto empleado, a errores aleatoros y/o a errores sstemátcos).

Más detalles

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas...

1. Concepto y origen de la estadística Conceptos básicos Tablas estadísticas: recuento Representación de graficas... TEMA. ESTADÍSTICA DESCRIPTIVA.. Concepto y orgen de la estadístca..... Conceptos báscos..... Tablas estadístcas: recuento..... Representacón de grafcas.... 6.. Varables cualtatvas... 6.. Varables cuanttatvas

Más detalles

Media es la suma de todas las observaciones dividida por el tamaño de la muestra.

Media es la suma de todas las observaciones dividida por el tamaño de la muestra. Estadístcos Los estadístcos son valores calculados con los datos de una varable cuanttatva y que mden alguna de las característcas de la dstrbucón muestral. Las prncpales característcas son: tendenca central,

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

Bolsa Nacional de Valores, S.A. San José, Costa Rica

Bolsa Nacional de Valores, S.A. San José, Costa Rica SELECCIÓN DE CARTERAS DE INVERSIÓN (TEORÍA DEL PORTAFOLIO) RODRIGO MATARRITA VENEGAS * Bolsa Nacoal de Valores, S.A. Sa José, Costa Rca By ow t s evdet that MPT (moder Portfolo Theory), the theory frst

Más detalles

Estudio y optimización del algoritmo de ordenamiento Shellsort

Estudio y optimización del algoritmo de ordenamiento Shellsort Estudo y optmzacó del algortmo de ordeameto Sellsort Bejam Bustos Departameto de Cecas de la Computacó, Uversdad de Cle bebustos@dcc.ucle.cl Resume Este estudo aalza, e forma empírca, el desempeño del

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos

1. El valor central o típico de los datos 2. La dispersión de los datos 3. La forma de la distribución de los datos Aputes de Métodos Estadístcos I Prof. Gudberto J. Leó R. I- 47 Meddas Descrptvas Numércas Frecuetemete ua coleccó de datos se puede reducr a ua o uas cuatas meddas umércas secllas que resume al cojuto

Más detalles

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve?

Cuándo empezó la Estadística? 1.1. El concepto de Estadística. Qué es y para qué sirve? 1.1. El cocepto de Estadístca. Qué es y para qué srve? La Estadístca se ocupa de la recoleccó, agrupacó, presetacó, aálss e terpretacó de datos. A meudo se llama estadístcas a las lstas de estos datos,

Más detalles

MEDIDAS DE TENDENCIA CENTRAL. _ xi

MEDIDAS DE TENDENCIA CENTRAL. _ xi EDIDAS DE TENDENCIA CENTRAL. EDIA ARITÉTICA. Es la medida más coocida y tambié es llamada promedio se obtiee sumado todos los valores de la muestra o població, dividida etre el total de elemetos que cotiee

Más detalles