TANGENCIAS ENTRE CIRCUNFERENCIAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TANGENCIAS ENTRE CIRCUNFERENCIAS"

Transcripción

1 1. Cicunfeencias tangentes EXERIORES a una cicunfeencia a la dada y ente ellas. Dada la cicunfeencia debemos dibuja una cicunfeencia que sea tangente a la pimea. Después vamos a dibuja ota cicunfeencia que sea tangente a y a. 1. aa halla cicunfeencia exteioes hay que suma datos, es deci SUMAMOS LOS RADIOS. Sumanos el adio de + el adio de, y desde dibujamos una cicunfeencia concéntica a. 2. Si no tenemos ota condición, pondemos en cualquie punto de esta cicunfeencia concéntica a. 3. aa halla el punto de tangencia ente y, UNIMOS LOS CENROS mediante una ecta. Donde cota la ecta a la cicunfeencia estaá. 4. Dibuja la cicunfeencia. one el compás en el cento y abi hasta. 5. aa dibuja la cicunfeencia hay que suma + (ya la tenemos dibujada anteiomente) y suma los adios de +, después dibujamos un aco con esta medida hasta que cote a la cicunfeencia concéntica. Ese punto seá el cento. Uni con y con paa halla los puntos de tangencia y. 2. Cicunfeencias tangentes INERIORES a una cicunfeencia a la dada y ente ellas. Dada la cicunfeencia debemos dibuja una cicunfeencia que sea tangente a la pimea. Después vamos a dibuja ota cicunfeencia que sea tangente a y a. 1. aa halla cicunfeencias inteioes hay que esta datos, es deci RESAMOS LOS RADIOS. Restamos el adio de - el adio de, y desde dibujamos una cicunfeencia concéntica a. 2. Si no tenemos ota condición, pondemos en cualquie punto de esta cicunfeencia concéntica a. 3. aa halla el punto de tangencia ente y, UNIMOS LOS CENROS mediante una ecta. Donde cota la ecta a la cicunfeencia estaá. 4. Dibuja la cicunfeencia. one el compás en el cento y abi hasta. 5. aa dibuja la cicunfeencia hay que esta - (ya la tenemos dibujada anteiomente) y suma los adios de +, después dibujamos un aco con esta medida hasta que cote a la cicunfeencia concéntica. Ese punto seá el cento. Uni con y con paa halla los puntos de tangencia y. 3. Cicunfeencias tangentes EXERIORES a una cicunfeencia a la dada y que pase po un punto dado. Dada la cicunfeencia debemos dibuja una cicunfeencia que sea tangente a la pimea y que además pase po el punto (habá dos cicunfeencias y ). 1. Sumanos adios: y y con esta medida dibujamos una cicunfeencia concéntica a. 2. Desde el punto dibujamos una cicunfeencia con el adio de. 3. Donde cote esta última cicunfeencia a la cicunfeencia concéntica estaá el cento de. Como en ealidad se cota en dos puntos pondemos dos cicunfeencias y. 4. Uni los centos. Unimos con paa halla, punto de tangencia de ambas. 5. Hacemos lo mismo com y. 6. Dibuja las cicunfeencias y compoba que son tangentes a y que pasan po. 4. Cicunfeencia tangente EXERIOR a una cicunfeencia dada, que pase po un punto y po el punto de tangencia. Dada la cicunfeencia y un punto de tangencia de ella, debemos dibuja una cicunfeencia que sea tangente a la pimea po y que además pase po el punto que nos dan. 1. Lo pimeo que debemos hace es dibuja una ecta que pase po el cento de y po el punto de tangencia. En esta ecta están ODOS los centos de ODAS las cicunfeencias que son tangentes a. Nosotos buscamos solamente una: la que pase además po. Como debe de pasa po y po tenemos un poblema de geometía ya estudiado: Dibuja una cicunfeencia que pase po 2 puntos. El cento de estaá a la misma distancia de y de (tendá el mismo adio). 2. Unimos y y dibujamos la mediatiz de este segmento. 3. Donde la mediatiz cote a la ecta estaá el cento de buscado. ANGENCIAS ENRE CIRCUNFERENCIAS

2 5. Cicunfeencias tangentes EXERIORES a dos cicunfeencias dadas. Dadas las cicunfeencias y debemos dibuja una cicunfeencia (en el ejecicio dibujamos dos y ) que sea tangente común EXERIOR a y a. aa ello deducimos que el adio de seá el mismo hasta la cicunfeencia como hasta la cicunfeencia. Recoda el ejecicio nº 1 de esta lámina. SUMAMOS DAOS, SUMAMOS LOS RADIOS. 1. Sumamos los adios de y de. Desde el cento de dibujamos una cicunfeencia concéntica con esta medida. 2. Realizamos la misma opeación con y, los sumamos y dibujamos una cicunfeencia desde. 3. Donde se coten las dos cicunfeencias concénticas auxiliaes dibujadas estaá el cento de. Como se cotan en dos puntos, pondemos y. 4. UNIMOS CENROS paa halla los puntos de tangencia. 5. Donde cote la ecta con la cicunfeencia estaá. Donde cote la ecta con estaá, Haemos lo mismo con paa halla y. 6. aa dibuja pone el compás en el cento y abilo hasta. Al dibuja la cicunfeencia ésta debe de pasa po. No debe quedase cota ni cota a. Se puede ectifica el cento paa pone el compás si el ejecicio no coincide con y. Cicunfeencia + Cento Cicunfeencia + Cento 6. Cicunfeencias tangentes INERIORES a dos cicunfeencias dadas. Dadas las cicunfeencias y debemos dibuja una cicunfeencia (en el ejecicio dibujamos dos y ) que sea tangente común INERIOR a y a. aa ello deducimos que el adio de seá el mismo hasta la cicunfeencia como hasta la cicunfeencia. Recoda el ejecicio nº 2 de esta lámina. RESAMOS DAOS, RESAMOS LOS RADIOS. 1. Restamos los adios de y de. Desde el cento de dibujamos una cicunfeencia concéntica con esta medida. 2. Realizamos la misma opeación con y, los estamos y dibujamos una cicunfeencia desde. 3. Donde se coten las dos cicunfeencias concénticas auxiliaes dibujadas estaá el cento de. Como se cotan en dos puntos, pondemos y. 4. UNIMOS CENROS paa halla los puntos de tangencia. ene en cuenta que en este ejecicio la ecta se ROLONGA hasta cota. 5. Donde cote la ecta con la cicunfeencia estaá. Donde cote la ecta con estaá, Haemos lo mismo con paa halla y. 6. aa dibuja pone el compás en el cento y abilo hasta. Al dibuja la cicunfeencia, ésta debe de pasa po. No debe quedase cota ni cota a. Se puede ectifica el cento paa pone el compás si el ejecicio no coincide con y. Cicunfeencia - Cento Cicunfeencia - Cento ANGENCIAS ENRE CIRCUNFERENCIAS

3 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES INERIORES a la dada y ente ellas. R = 10 mm R = 10 mm R = 32 mm R = 23 mm 3.- Dibuja las cicunfeencias de = 12 mm., ANGENES a la dada y que pase po el UNO. 4.- Cicunfeencias tangentes a ota de = 18 mm. dada, que pase po un punto exteio y po un punto de tangencia. R = 18 mm El adio de la cicunfeencia que se busca se sabá cuando se acabe el ejecicio. 5.- Halla las cicunfeencias tangentes COMUNES EXERIORES de = 12 mm., a las cicunfeencias dadas y. = 10 mm = 15 mm - = 40 mm 6.- Halla las cicunfeencias tangentes COMUNES INERIORES de = 35 mm., a las cicunfeencias dadas y. = 10 mm = 15 mm - = 30 mm ANGENCIAS ENRE CIRCUNFERENCIAS

4 1. Recta tangente a la cicunfeencia po un punto. Dada la cicunfeencia debemos dibuja una ecta que sea tangente a ella po el punto de tangencia. Como veíamos al pincipio del tema en el esumen de tangencias, la máxima de tangentes ente ectas y cicunfeencias es: el adio de la cicunfeencia es pependicula a la ecta tangente. aa halla los puntos de tangencia ente ectas y cicunfeencias hay que dibuja una pependicula desde el cento de la cicunfeencia hasta la ecta. Como lo que tenemos nosotos en el ejecicio es el punto de tangencia, habá que hace exactamente lo contaio: dibuja una pependicula al adio de la cicunfeencia. 1. Dibuja el adio de la cicunfeencia que pase po el punto. 2. Dibuja una ecta pependicula al adio po el punto. 3. Repasa más oscuo o bien en colo igual de fino. 2. Dibuja una cicunfeencia de adio que sea tangente a la ecta dada po. Este ejecicio es exactamente al contaio que el nº1 anteio. Lee toda la teoía inicial del ejecicio poque es exactamente igual. 1. Dibuja una ecta pependicula a la ecta po el punto de tangencia. 2. Desde el punto pone el compás con la medida del adio que debemos dibuja. 3. Dibuja un aco que cote a la ecta pependicula: éste seá el cento de la cicunfeencia buscada. 4. one el compás en y abilo hasta y dibuja la cicunfeencia. 3. Dibuja las ectas tangentes a una cicunfeencia desde un punto exteio. Esta es una constucción específica de tangencias: 1. Uni el punto con el cento de la cicunfeencia. 2. Dibuja la mediatiz de 01 paa halla el punto medio (). 3. Con cento en dibuja una cicunfeencia que pasa po y po. 4. Esta cicunfeencia cota a en los puntos de tangencia y. 5. Uni mediante ectas con y. 6. aa compoba que las ectas son tangentes a la cicunfeencia, dibuja los adio de hasta y y compoba que foman ángulos de 90º. 4.- Dibuja la cicunfeencia de adio 15 mm. que sea tangente a las ectas que se cotan dadas. 4. Dibuja una cicunfeencia de adio que sea tangente a dos ectas que se cotan. El adio de la cicunfeencia que buscamos seá el mismo tanto desde t como de s, las dos ectas que se cuzan. o lo tanto: 1. Dibuja paalelas desde s y desde t con el adio de la cicunfeencia buscada. 2. Donde se coten las dos paalelas: cento de la cicunfeencia. 3. Desde dibuja pependiculaes a t y a s paa halla los puntos y de tangencia. 4. one el compás en y abilo hasta y dibuja la cicunfeencia. 5. La cicunfeencia debe de pasa po y. t s ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS

5 5. Dibuja las RECAS tangentes comunes EXERIORES a dos cicunfeencias dadas. 1. Uni y mediante una ecta. 2. Halla el punto medio de (). 3.Dibuja una cicunfeencia auxilia que pase po y, le llamaemos. 4. aa este ejecicio se RESAN los adios de cicunfeencia y, y con esa medida se dibuja una cicunfeencia concéntica a (es deci, con la medida que nos da de esta - se dibuja una cicunfeencia poniendo el compás en : es la cicunfeencia oja). ambién se puede ealiza este punto 4 de foma gáfica: Se toma con el compás la medida del adio de y se señala en el adio de, desde el exteio hacia el inteio. Desde el cento se dibuja una cicunfeencia que pase po esa maca. 5. La pimea cicunfeencia auxilia que pasa po y cota a ésta última (la oja -) en los puntos M y N. 6. asa líneas o adios de po M y po N hasta que coten a la cicunfeencia. Los puntos de cote seán y espectivamente. 7. Dibuja una paalela a po el cento de la cicunfeencia dada hasta que la cote: seá el punto. 8. Dibuja una paalela a po el cento de la cicunfeencia dada hasta que la cote: seá el punto. 9. Uni con. Uni y con ectas. M = Este ejecicio está basado en el ejecicio 3 de ectas tangentes desde un punto a una cicunfeencia dada. N 6. Halla las RECAS tangentes comunes INERIORES a las dos cicunfeencias dadas. Este ejecicio es básicamente igual al anteio peo con la difeencia que paa ectas INERIORES los adios y se SUMAN. 1. Uni y mediante una ecta 2. Halla el punto medio de (). 3.Dibuja una cicunfeencia auxilia que pase po y, le llamaemos. 4. aa este ejecicio se SUMAN los adios de cicunfeencia y, y con esa medida se dibuja una cicunfeencia concéntica a (es deci, con la medida que nos da de SUMAR + se dibuja una cicunfeencia poniendo el compás en : es la cicunfeencia oja). ambién se puede ealiza este punto 4 de foma gáfica: Se toma con el compás la medida del adio de y se señala en el adio de, hacia el exteio de la cicunfeencia. Desde el cento se dibuja una cicunfeencia que pase po esa maca. M 5. La pimea cicunfeencia auxilia que pasa po y cota a ésta última (la oja -) en los puntos M y N. 6. asa líneas o adios de po M y po N hasta que coten a la cicunfeencia. Los puntos de cote seán y espectivamente. 7. Dibuja una paalela a po el cento de la cicunfeencia dada hasta que la cote: seá el punto. N 8. Dibuja una paalela a po el cento de la cicunfeencia dada hasta que la cote: seá el punto. 9. Uni con. Uni y con ectas. ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO. Láminas resueltas del TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO Láminas esueltas del EMA 4. ANGENCIAS. Depatamento de Ates lásticas y Dibujo 1.- Dibuja 2 cicunfeencias adio 10 mm. que sean ANGENES EXERIORES a la dada y ente ellas. 2.- Dibuja

Más detalles

B - CIRCUNFERENCIAS TANGENTES A UNA RECTA O A OTRA CIRCUNFERENCIA

B - CIRCUNFERENCIAS TANGENTES A UNA RECTA O A OTRA CIRCUNFERENCIA GRUPOS DE ANGENCIAS A - RECAS ANGENES A CIRCUNFERENCIAS A1- Recta tangente en de ella (1). eoemas fundamentales A2- Recta tangente a aco de cento O desconocido en del aco (1).eoemas fundamentales. A3-

Más detalles

TEMA 3. TANGENCIAS 3º ESO

TEMA 3. TANGENCIAS 3º ESO EMA 3. ANGENCIAS 3º ESO 1 ANGENCIAS: Dos o más figuas geométicas son tangentes cuando únicamente tienen UN UNO EN COMÚN. Los casos que nosotos vamos a estudia son ente cicunfeencias o ente cicunfeencias

Más detalles

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS

1. Realiza las siguientes operaciones con segmentos. 1º a+2b-c. 2º a+c-b. 3º 3a+c-b NOMBRE: Nº 1ºESO 1.3. OPERACIONES CON SEGMENTOS 1.3. OPERCIONES CON SEGMENTOS 1. Realiza las siguientes opeaciones con segmentos a b c 1º a+2b-c 1º 2º a+c-b 2º 3º 3a+c-b 3º TEM 1 - Opeaciones con segmentos página 3 1.3.2. TEOREM DE TLES 1. Divide el

Más detalles

CUADRILÁTEROS. Cuadrado y Rectángulo.

CUADRILÁTEROS. Cuadrado y Rectángulo. ibuja un NTÁN cuando nos dan el RI. 1. ibuja una cicunfeencia de adio el que nos dan.. ibuja dos diámetos pependiculaes (ojo que pasen po el cento de la cicunfeencia). 3. ibuja la mediatiz de uno de los

Más detalles

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO

La recta n forma un ángulo de 60 (trazar con reglas) con la recta r. Qué ángulos forma la recta n con la recta s? NOMBRE: Nº 1ºESO 1. OCBULRIO BÁSICO 1. Dibuja las siguientes ectas siguiendo las instucciones: La ecta vetical es pependicula a las ectas s y q. La distancia ente estas dos ectas es de 20mm. o La ecta n foma un ángulo

Más detalles

TANGENCIAS (Julio Catalán)

TANGENCIAS (Julio Catalán) NGENIS (Julio atalán) Los poblemas de tangencia que pueden pesentase son innumeables y van desde los muy sencillos a los más complejos, ecuiéndose paa su solución a pocedimientos muy distintos: desde los

Más detalles

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO ÉCNICO BACHILLERAO EMA 4. ANGENCIAS Depaameno de Aes lásicas y Dibujo EMA 4. ANGENCIAS. Los OBJEIVOS geneales que se peende logen los alumnos al acaba el ema son: Conoce las popiedades en las que

Más detalles

A) TRAZADO DE RECTAS TANGENTES

A) TRAZADO DE RECTAS TANGENTES ecta tangente a una cicunfeencia que paan po un punto (pc). a) El punto etá en la cicunfeencia. (1 olución) A) TAZAD DE ECTAS TANGENTES ecta tangente a do cicunfeencia de ditinto adio (cc). a) Tangente

Más detalles

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS

TANGENCIAS ENTRE RECTAS Y CIRCUNFERENCIAS ANGENCIAS ENRE RECAS Y CIRCUNFERENCIAS 1 RECA Y CIRCUNFERENCIA ANGENES. Una ecta y una cicunfeencia on tangente cuano tienen un único punto en común, llamao punto e tangencia. Ente una ecta y una cicunfeencia

Más detalles

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción:

A B. Teniendo en cuenta que el lado de un pentágono regular es la sección aurea de su diagonal, se tiene la siguiente construcción: 1. Dibuja el pentágono egula de diagonal 120 mm. D E O G AF/2 A B F Pate pimea: Dibujo del pentágono. Teniendo en cuenta que el lado de un pentágono egula es la sección auea de su diagonal, se tiene la

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia

GEOMETRÍA. 1. Sin resolver el sistema, determina si la recta 2x 3y + 1 = 0 es exterior, secante ó tangente a la circunferencia Puebas de Acceso a la Univesidad GEOMETRÍA Junio 94.. Sin esolve el sistema detemina si la ecta x y + = 0 es exteio secante ó tangente a la cicunfeencia (x ) + (y ) =. Razónalo. [5 puntos]. Dadas las ecuaciones

Más detalles

Tangencias y enlaces. Aplicaciones.

Tangencias y enlaces. Aplicaciones. DIBUJ Tangencias y Enlaces TEA 38: Tangencias y enlaces. Aplicaciones. Esquema:.- Intoducción. Email: pepaadoes@aakis.es Web: http://www.pepaadoesdeoposiciones.com.- Tazados de ectas tangentes...- Posiciones

Más detalles

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 9: FORMAS GEOMÉTRICAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 9: FORMAS GEOMÉTRICAS. Pime Cuso de Educación Secundaia Obligatoia. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 09: FORMAS GEOMÉTRICAS. 1. Ideas Elementales de Geometía

Más detalles

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas.

a) Estudiar su posición relativa en el espacio. b) Calcular las distancias entre ellas. c) Trazar una recta que corte perpendicularmente a ambas. º-Halla a y b paa que las ectas siguientes sean paalelas: x+ay - z s 4x y +6 z a ; b- x+y +bz º-Dadas las ectas de ecuaciones x z - y - (x, y,z) (,0,)+ (,,-) a) Estudia su posición elativa en el espacio.

Más detalles

TEMA 3. TANGENCIAS 3º ESO

TEMA 3. TANGENCIAS 3º ESO EM 3. NGENCIS 3º ESO Departamento de rtes lásticas y Dibujo 1 NGENCIS: Dos o más figuras geométricas son tangentes cuando únicamente tienen UN UNO EN COMÚN. Los casos que nosotros vamos a estudiar son

Más detalles

Propiedades fundamentales de las tangencias

Propiedades fundamentales de las tangencias Las Tangencias Dos elementos son tangentes cuano tienen un punto en común enominao punto e tangencia. Estos elementos son cicunfeencias (o acos e cicunfeencia, en algunos casos cuvas conicas también) y

Más detalles

TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1.

TANGENCIAS Tangencias como aplicación de los conceptos de potencia e inversión TEMA5. Objetivos y orientaciones metodológicas. 1. ANGNIAS angencia como aplicación de lo concepto de potencia e inveión A5 DIBUJ GÉI bjetivo y oientacione metodológica l objetivo de ete tema e hace aplicación de lo concepto de potencia e inveión en la

Más detalles

Unidad 12: Posiciones y Métrica en el espacio.

Unidad 12: Posiciones y Métrica en el espacio. Unidad 12: Poicione y Mética en el epacio. 1) Poicione elativa en el epacio: a) De un punto con ecta y plano: a1) Un punto A petenece a una ecta i cumple u ecuacione geneale, en cao contaio e dice que

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas

BLOQUE II. Geometría. 10. Elementos en el plano 11. Triángulos 12. Los polígonos y la circunferencia 13. Perímetros y áreas LOQUE II Geometía 0. Elementos en el plano. Tiángulos. Los polígonos y la cicunfeencia. Peímetos y áeas 0 Elementos en el plano. Elementos básicos en el plano Dibuja una ecta y contesta a las siguientes

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A.

1 Halla la mediatriz del segmento AB. 2 Traza la recta perpendicular a la recta r por el punto A. 1 Halla la mediatiz del segmento. 2 Taza la ecta pependicula a la ecta po el punto. 3 Taza la pependicula a la ecta desde el punto. uál es la distancia del punto a la ecta? 4 Dibuja dos ectas pependiculaes

Más detalles

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO

SISTEMA DIÉDRICO II Paralelismo, perpendicularidad y distancias Verdaderas magnitudes lineales TEMA 9 PARALELISMO SSTEMA ÉRCO Paalelismo, pependiculaidad y distancias Vedadeas magnitudes lineales Objetivos y oientaciones metodológicas TEMA 9 Esta unidad temática es fundamental y, a la vez, su explicación se puede

Más detalles

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial

RECTAS EN EL PLANO. r datos, podemos dar la ecuación de dicha recta de varias P o Ecuación vectorial RECTAS EN EL PLANO Ecuación de la ecta La ecuación de una ecta puede dase de difeentes fomas, que veemos a continuación. Conocidos un punto P(p 1, p ) y un vecto de diección d = (d 1, d ) (o sea, un vecto

Más detalles

UNIDAD 4: CIRCUNFERENCIA CIRCULO:

UNIDAD 4: CIRCUNFERENCIA CIRCULO: UNIDD 4: CIRCUNFERENCI CIRCULO: CONTENIDO: I. CONCEPTO DE CIRCUNFERENCI: Es una cuva ceada y plana cuyos puntos equidistan de un punto llamado cento. Una cicunfeencia se denota con la expesión: O C, y

Más detalles

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r

Matemáticas 4º ESO Fernando Barroso Lorenzo GEOMETRÍA ANALÍTICA. r r Fenando Baoso Loenzo GEOMETRÍA ANALÍTICA 1. Dados los vectoes cuyas coodenadas son u = ( 10, 2) y v = (13, 2), calcula el módulo u 43 u 298621 del vecto esultante de la siguiente combinación lineal w =

Más detalles

Tema 6 Puntos, rectas y planos en el espacio

Tema 6 Puntos, rectas y planos en el espacio Tema 6 Puntos, ectas planos en el espacio. Punto medio. Los puntos A (,, ) B (-,, -) son vétices de un paalelogamo cuo cento es el punto M (,, ). Halla Los otos dos vétices las ecuaciones del lado AB.

Más detalles

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula.

Junio 2010 OPCIÓN A. A vemos que se diferencian en el cuadrado de la matriz unitaria. Dado que en este caso. por ser la matriz nula. Junio OPCÓN Poblema. a) Si obsevamos los desaollos de ) ( y ) ( vemos que se difeencian en el cuadado de la matiz unitaia. Dado que en este caso se veifica: ) ( ) ( ) ( ) ( + + ) ( ) ( ) ( b) b.) Paa que

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Ejercicios. 100 Capítulo 8 Construcciones geométricas

Ejercicios. 100 Capítulo 8 Construcciones geométricas jecicios 1. a. Taza la ecta (MN). b. Taza la semiecta [N). c. Taza el segmento [Q]. d. Taza el segmento []. e. Taza la ecta (). f. Taza la semiecta [).. 7. () [] [) (G) G () [) [) () [] [] [) (G) H 8.

Más detalles

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio

( ) TEMA V. 1. Ecuaciones del plano. Tema 5 : Rectas y planos en el espacio TEMA V. Ecuaciones del plano. Ecuaciones de la ecta. Haz de planos 4. Incidencia de planos y ectas 5. Ángulos en el espacio 6. Condiciones de pependiculaidad 7. Distancias en el espacio. Ecuaciones del

Más detalles

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2...

mediatrices de cada lado se cortan en un B, C..., etc, son iguales. el mismo centro y es tangente a los lados del polígono en 1, 2... POLÍONOS RULRS Polígono (vaios ángulos), es la figua plana limitada po vaios ánulos, los tiángulos y los cuadiláteos estudiados hasta ahoa son polígonos de y ángulos, espectivamente. Un polígono seá egula

Más detalles

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1

Tema 7 Geometría en el espacio Matemáticas II 2º Bachillerato 1 Tema Geometía en el espacio Matemáticas II º Bachilleato ÁNGULOS EJERCICIO 5 : λ Dados las ectas : λ, s : λ calcula el ángulo que foman: a) s b) s π el plano π : ; i j k a) Hallamos el vecto diecto de

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

Generalidades y ángulos en la circunferencia. II Medio 2016

Generalidades y ángulos en la circunferencia. II Medio 2016 Genealidades y ángulos en la cicunfeencia II Medio 2016 pendizajes espeados Identifica los elementos de una cicunfeencia y un cículo. Calcula áeas y peímetos del cículo, del secto cicula y del segmento

Más detalles

TANGENCIAS ENTRE CIRCUNFERENCIAS

TANGENCIAS ENTRE CIRCUNFERENCIAS 1 CICUNFEENCIAS ANGENES ENE SÍ Dos circunferencias son tangentes cuando tienen un único punto en común, llamado punto de tangencia. Entre dos circunferencias existen cinco posiciones relativas. POSICIONES

Más detalles

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.:

Campo eléctrico. 3 m. respectivamente. Calcular el campo eléctrico en el punto A (4,3). Resp.: Campo eléctico 1. Calcula el valo de la fueza de epulsión ente dos cagas Q 1 = 200 µc y Q 2 = 300 µc cuando se hallan sepaadas po una distancia de a) 1 m. b) 2 m. c) 3 m. Resp.: a) 540 N, b) 135 N, c )

Más detalles

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio

Matemáticas II Hoja 6: Puntos, rectas y planos en el espacio Pofeso: Miguel Ángel Baeza Alba (º Bachilleato) Matemáticas II Hoja 6: Puntos, ectas y planos en el espacio Ejecicio : a) Halla el punto de cote ente el plano 6x y + z y la ecta que pasa po el punto P

Más detalles

XLIX Olimpiada Matemática Española

XLIX Olimpiada Matemática Española XLIX Olimpiada Matemática Española Fase Local Melilla 1 de eneo de 01 Poblema 1 Escibimos en fila, peo no necesaiamente en oden, los númeos enteos desde el 1 al 01. Calculamos las medias de cada dos númeos

Más detalles

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA

( ) CIRCUNFERENCIA UNIDAD VIII VIII.1 DEFINICIÓN DE CIRCUNFERENCIA CIRCUNRNCIA UNIA III III. INICIÓN CIRCUNRNCIA Una cicunfeencia se define como el luga geomético de los puntos P, que equidistan de un punto fijo en el plano llamado cento. La distancia que eiste de cualquiea

Más detalles

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r

de perfil, y se halla la tercera proyección tanto del punto P como de la recta r. La proyección r corta a los planos de proyección en H r Actividad SISTEMA IÉRICO II TEMA 9 Paa eolve eta actividad, emo de tene en cuenta lo iguiente: o ecta on paalela en el epacio, i u poyeccione obe lo do plano de poyección también lo on.. Sea el punto P(-P

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Tema 6 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO

EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO EJERCICIOS DE GEOMETRÍA ANALITICA DEL ESPACIO Detemina la posición elativa de las siguientes paejas de planos a) 8 ' 4 6 6 b) 6 7 ' 4 c) ' 6 7 d) 4 7 Dado el plano que contenga al punto A(-,, 4), detemina

Más detalles

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z

2λ λ. La ecuación del plano que buscamos es p: 5x 2y + 2z Poducto escala 060 Halla la ecuación de la ecta que cota a y s pependiculamente. x = 1 x = 6 µ : y = 11+ s: y = + µ z = 1+ z = + µ Hallamos un punto P y un punto Q s de modo que el vecto PQ sea pependicula

Más detalles

18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior.

18. TANGENCIAS Características generales Rectas tangentes a una circunferencia desde un punto exterior. 18. TANGENCIAS 18.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O,

Definición 39. Circunferencia de centro en O y radio r en un plano π. Figura 141. Podemos definir este conjunto por comprensión así: C O, 9.1 NOCIONES BÁSICAS Definición 9. Cicunfeencia de cento en O y adio en un plano π. Es el conjunto (luga geomético) de todos los puntos de un plano un punto dado O, llamado cento, una distancia., que equidistan

Más detalles

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES

VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES VECTORES 7.1 LOS VECTORES Y SUS OPERACIONES DEFINICIÓN Un vecto es un segmento oientado. Un vecto AB queda deteminado po dos puntos, oigen A y extemo B. Elementos de un vecto: Módulo de un vecto es la

Más detalles

6: PROBLEMAS METRICOS

6: PROBLEMAS METRICOS Unidad 6: PROBLEMAS METRICOS 6.1.- DIRECCIONES DE RECTAS Y PLANOS Los poblemas afines tatan de incidencias (ve si un punto está contenido en una ecta o en un plano y ve si una ecta está contenida en un

Más detalles

UN CACHITO DE LA ALHAMBRA

UN CACHITO DE LA ALHAMBRA UN CACHITO DE LA ALHAMBRA Se llama mosaico a todo ecubimiento del plano mediante piezas llamadas teselas que no pueden supeponese, ni puede deja huecos sin ecubi y en el que los ángulos que concuen en

Más detalles

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 )

COLEGIO ESTRADA DE MARIA AUXILIADORA CIENCIA, TRABAJO Y VALORES: MI PROYECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (10 ) COLEGIO ESTRADA DE MARIA AUILIADORA CIENCIA, TRABAJO VALORES: MI PROECTO DE VIDA NIVELACION DE MATEMATICAS GRADO DECIMO (0 ) Fecha: Nombe del estudiante: N O T A La nivelación es en foma de talle donde

Más detalles

TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS

TRAZADOS ELEMENTALES DE RECTAS TANGENTES A CIRCUNFERENCIAS EMA 5 - ANGENCIAS, ENLACES Y CURVAS ÉCNICAS RAZADS ELEMENALES DE RECAS ANGENES A CIRCUNFERENCIAS 1. aza la eca angene a la cicunfeencia de ceno po el puno de ella, así como las ecas angenes paalelas a

Más detalles

EJERCICIOS DEL TEMA VECTORES

EJERCICIOS DEL TEMA VECTORES EJERCICIOS DEL TEMA VECTORES 1) Considea el vecto w, siguiente: w Dibuja, en cada caso uno de los siguientes casos, un vecto v, que sumado con u dé como esultado w : a) b) c) d) u u u u 2) A la vista de

Más detalles

A continuación obligamos, aplicando el producto escalar, a que los vectores:

A continuación obligamos, aplicando el producto escalar, a que los vectores: G1.- Se sabe que el tiángulo ABC es ectángulo en el vétice C, que petenece a la ecta intesección de los planos y + z = 1 e y 3z + 3 = 0, y que sus otos dos vétices son A( 2, 0, 1 ) y B ( 0, -3, 0 ). Halla

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

ECUACIONES DE LA RECTA

ECUACIONES DE LA RECTA Temas 6 y 7 Rectas y planos en el espacio- Matemáticas II º Bachilleato TEMA 6 y 7 - RECTAS Y PLANOS EN EL ESPACIO ECUACIONES DE LA RECTA Paa halla la ecuación de una ecta en el espacio necesito: Dos puntos

Más detalles

2.4 La circunferencia y el círculo

2.4 La circunferencia y el círculo UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula

Más detalles

IV. Geometría plana. v v2 2. u v = u v cos α

IV. Geometría plana. v v2 2. u v = u v cos α Talle de Matemáticas 16 IV. Geometía plana IR 2 = {(x, y)/x, y IR} puede identificase con el espacio de vectoes libes del plano utilizando la base canónica: v =(v 1,v 2 )=v 1 (1, 0) + v 2 (0, 1) = v 1

Más detalles

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u

z a3 Ecuaciones continuas de la recta: eliminando el parámetro de (2) = = u u u Geometía. Puntos, ectas y planos en el espacio. Poblemas méticos en el espacio Pedo Casto Otega. Coodenadas o componentes de un vecto Sean dos puntos ( a, a ) y ( ) uuu uuu vecto son: = ( b a, b a, b a

Más detalles

21.3. Rectas tangentes exteriores a dos circunferencias.

21.3. Rectas tangentes exteriores a dos circunferencias. 21. TANGENCIAS 21.1. Características generales. Tangencia entre recta y circunferencia: una recta t es tangente a una circunferencia de centro O en un punto T cuando es perpendicular en T al radio OT.

Más detalles

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio

Puntos, rectas y planos en el espacio. Problemas métricos en el espacio 1. Estudia la posición elativa de las ectas y s: x = 2t 1 x + 3y + 4z 6 = 0 : ; s : y = t + 1 2x + y 3z + 2 = 0 z = 3t + 2 Calcula la distancia ente ambas ectas (Junio 1997) Obtengamos un vecto diecto

Más detalles

REPARTIDO III CIRCUNFERENCIA

REPARTIDO III CIRCUNFERENCIA Pof.: Lucia Tafenabe Ecuación Geneal REPRTIDO III IRUNFERENI B B cento, Ecuación de la icunfeencia conociendo cento (α, β) adio. adio B MN ( - α) ( - β) Deteminación de la ecuación de la cicunfeencia conociendo:

Más detalles

2º de Bachillerato Óptica Física

2º de Bachillerato Óptica Física Física TEMA 4 º de Bacilleato Óptica Física.- Aveigua el tiempo que tadaá la luz oiginada en el Sol en llega a la Tiea si el diámeto de la óbita que ésta descibe alededo del Sol es de 99350000 Km. Y en

Más detalles

Ángulos en la circunferencia

Ángulos en la circunferencia MT-22 Clase Ángulos en la cicunfeencia pendizajes espeados Identifica los elementos de un cículo y una cicunfeencia. Calcula áeas y peímetos del secto y segmento cicula. Reconoce tipos de ángulos en la

Más detalles

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO

EJERCICIOS TEMA 9: ELEMENTOS MECÁNICOS TRANSMISORES DEL MOVIMIENTO EJECICIOS TEMA 9: ELEMENTOS MECÁNICOS TANSMISOES DEL MOVIMIENTO 1. Dos uedas de ficción gian ente sí sin deslizamiento. Sabiendo que la elación de tansmisión vale 1/5 y que la distancia ente ejes es de

Más detalles

2. CURVAS EN EL SISTEMA POLAR

2. CURVAS EN EL SISTEMA POLAR 2. CURVAS EN EL SISTEMA POLAR Objetivo: El alumno obtendá ecuaciones en foma pola de cuvas en el plano y deteminaá las caacteísticas de éstas a pati de su ecuación en foma pola. Contenido: 2.1 Sistema

Más detalles

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro

Arista Los polígonos que limitan al poliedro se llaman caras. Tetraedro Cubo Octaedro Dodecaedro Icosaedro OBJETIVO 1 CLASIICAR POLIEDROS NOMBRE: CURSO: ECHA: POLIEDROS Un poliedo es un cuepo geomético que está limitado po cuato o más polígonos. Aista Los polígonos que limitan al poliedo se llaman caas. Caa

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

RECTAS EN EL ESPACIO.

RECTAS EN EL ESPACIO. IES Pade Poeda (Guadi UNI 9 GEOETRÍ FÍN RETS EN EL ESPIO EUIONES E L RET Una ecta queda deteminada po Un punto ( a a a Un ecto de diección ( ( ; se le llama deteminación lineal de la ecta Si X ( es un

Más detalles

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2.

. Desarrollando esta ecuación vectorial, obtenemos: a = 3. : a = 2, b =, c = 0, y para w : a = 0, b =, c = -2. 1 Sean los vectoes: v 1 ( 1, 1, 1) v (,, ) y v (, 1, ) Compueba que foman una base de V. Halla las coodenadas especto de dicha base de los vectoes u ( 1,, ) y w ( 1,, 1). Paa ve si son linealmente independientes

Más detalles

9 Cuerpos geométricos

9 Cuerpos geométricos 865 _ 045-056.qxd 7/4/07 1:0 Página 45 Cuepos geométicos INTRODUCCIÓN Los cuepos geométicos están pesentes en múltiples contextos de la vida eal, de aí la impotancia de estudialos. Es inteesante constui

Más detalles

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso

GUIA DE TRABAJO Materia: Matemáticas. Tema: Geometría 18 Explorando la esfera-1. Fecha: Profesor: Fernando Viso GUIA DE TRABAJO Mateia: Matemáticas. Tema: Geometía 18 Exploando la esfea-1. Fecha: Pofeso: Fenando Viso Nombe del alumno: Sección del alumno: CONDICIONES: Tabajo individual. Sin libos, ni cuadenos, ni

Más detalles

Selectividad Septiembre 2009 SEPTIEMBRE 2009

Selectividad Septiembre 2009 SEPTIEMBRE 2009 Selectividad Septiembe 9 OPCIÓN A PROBLEMAS SEPTIEMBRE 9 1.- Sea la función f () =. + 1 a) Halla el dominio, intevalos de cecimiento y dececimiento, etemos elativos, intevalos de concavidad y conveidad,

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PROUTO ESLR a b a1 b1 + a b + a b (uando sepamos las coodenadas de a y b). a b a b cosx (uando queamos halla el ángulo que foman a y b). uando los vectoes son pependiculaes su

Más detalles

3.3.6 Perímetro en la circunferencia y área en el círculo.

3.3.6 Perímetro en la circunferencia y área en el círculo. 3.3.6 Peímeto en a cicunfeencia y áea en e cícuo. Peímeto de a cicunfeencia. Es a ongitud (L de a cicunfeencia, se cacua con as siguientes fómuas. d adio diámeto L = d Peo d =, entonces L = Ecuación paa

Más detalles

Apuntes de Trigonometría Elemental

Apuntes de Trigonometría Elemental Apuntes de Tigonometía Elemental José Antonio Salgueio González IES Bajo Guadalquivi - ebija ii Agadecimientos A Rocío, que con su apoyo hace posible la ealización de este poyecto 1 Índice geneal Agadecimientos

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO

GEOMETRÍA ANALÍTICA EN EL ESPACIO GEOMETRÍ NLÍTI EN EL ESPIO PRODUTO ESLR a b a b cosx (uando sepamos el ángulo que foman a y b). a ba b a b a b (uando sepamos las coodenadas de a y b ). uando los ectoes son pependiculaes su poducto escala

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES FACULTAD DE CIENCIAS Y TECNOLOGIA CARRERA DE INGENIERIA CIVIL 0.1 CURVAS EN R 3 ANALISIS VECTORIAL Y TENSORIAL SEMESTRE II/2015 PRACTICA # 3 UNIDAD 2 DIFERENCIACION VECTORIAL y OPERADORES DIFERENCIALES

Más detalles

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo

DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 4. TANGENCIAS. Departamento de Artes Plásticas y Dibujo DIBUJO TÉCNICO BACHILLERATO TRABAJOS - LÁMINAS TEMA 4. TANGENCIAS Departamento de Artes Plásticas y Dibujo 1.- Dibujar 2 circunferencias radio 10 mm. que sean TANGENTES EXTERIORES a la dada y entre ellas.

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo

1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo Unidad 1. Dibujo Geométrico 1. Lugar geométrico de los centros de las circunferencias que pasen por un punto fijo 2. Circunferencia que pasa por dos o tres puntos 1.5. Circunferencia que pasa por dos puntos

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. Página 68 Reconoce, nomba y descibe figuas geométicas que apaecen en esta ilustación. Respuesta libe. Po ejemplo: cilindo, otoedo, cono, pisma tiangula Recueda otas figuas geométicas que foman pate

Más detalles

1 Introducción al lenguaje gráfico

1 Introducción al lenguaje gráfico Solucionaio 1 Intoducción al lenguaje gáfico 1.1. beva lo ejemplo del libo. lige una de la imágene dibujando con lápice de coloe do veione, una mediante una epeentación objetiva y ota ubjetiva. Solución:

Más detalles

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria

Geometría 2/2. Material UA. Material propiedad de sus autores. Ojo tiene errores. Magisterio Infantil - Primaria Geometía 2/2 Mateial U Mateial popiedad de sus autoes. Ojo tiene eoes Magisteio Infantil Pimaia / licante 84 Junto Telepizza 695400027 www.academiaup.es info@academiaup.es Univesidad de licante FIGURS

Más detalles

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES

8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8. UNIDAD DIDACTICA 8: TANGENCIAS Y ENLACES 8.1. TANGENCIAS Se dice que dos figuras planas son tangentes cuando tienen un solo punto en común, al que se conoce como punto de tangencia. Las tangencias pueden

Más detalles

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt

L r p. Teniendo en cuenta que p es el momento lineal (masa por el vector velocidad) la expresión anterior nos queda: L r mv m r v. d L dr dv dt dt dt EOEA DE CONSEVACIÓN DE OENO ANGUA: El momento angula se define como: p CASE 4.- EYES DE CONSEVACIÓN eniendo en cuenta que p es el momento lineal (masa po el vecto velocidad) la expesión anteio nos queda:

Más detalles

TEMA IV: DISTANCIA ENTRE ELEMENTOS

TEMA IV: DISTANCIA ENTRE ELEMENTOS TEMA IV: DISTANCIA ENTRE ELEMENTOS 4.1.D Ditancia ente do punto Teniendo en cuenta la elacione mética que e etablecen ente la poyeccione otogonale obe un plano de un egmento AB e puede obtene la ditancia

Más detalles

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS

= = u r y v s son l.d. POSICIÓN RELATIVA DE DOS RECTAS. Ecuaciones generales RECTAS COINCIDENTES RECTAS SECANTES RECTAS PARALELAS POSICIÓN RELATIVA DE DOS RECTAS Ecuacione geneale : Ax + By + C = : Ax + By + C = A B A B RECTAS SECANTES \ Un punto en común A B C = A B C RECTAS PARALELAS Ningún punto en común A B C = = A B C RECTAS

Más detalles

11 Movimientos. 1. Transformaciones geométricas. 2. Vectores y traslaciones

11 Movimientos. 1. Transformaciones geométricas. 2. Vectores y traslaciones 11 Movimiento 1. Tanfomacione geomética onideando poitivo el entido contaio a la aguja del eloj, y ecoiendo lo vétice del tiángulo ectángulo en oden alfabético, di en qué cuadante e poitivo el entido del

Más detalles

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes.

9 Ángulos y rectas OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Recta, semirrecta y segmento. Rectas paralelas, perpendiculares y secantes. 826464 _ 0341-0354.qxd 12/2/07 10:04 Página 341 Ángulo y ecta INTRODUCCIÓN RESUMEN DE LA UNIDAD A nueto alededo encontamo ecta y ángulo que influyen en nueto movimiento: calle, avenida, plano, etc. El

Más detalles

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4.

81 BAC CNyS GEOMETRÍA ANALÍTICA PLANA ÍNDICE 1. PRESENTACIÓN DEL TEMA 2. PUNTOS Y VECTORES EN EL PLANO 3. ECUACIONES DE LA RECTA 4. GEOMETRÍ NLÍTIC LN 81 C CNyS ÍNDICE 1. RESENTCIÓN DEL TEM 2. UNTOS Y VECTORES EN EL LNO 3. ECUCIONES DE L RECT 4. HZ DE RECTS 5. RLELISMO Y ERENDICULRIDD 6. OSICIONES RELTIVS DE DOS RECTS 7. NGULO QUE

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

GRADO GRATUITAS. Matemáticas DESCARGAS GRATUITAS GRADO 11 MATEMÁTICAS

GRADO GRATUITAS. Matemáticas DESCARGAS GRATUITAS GRADO 11 MATEMÁTICAS DESCARGAS GRATUITAS GRADO Matemáticas DESCARGAS GRATUITAS GRADO MATEMÁTICAS RESPONDE LAS PREGUNTAS Las funciones tigonométicas de un ángulo en posición nomal están definidas así: Paa el cálculo de los

Más detalles

TEMA 7: PROPIEDADES MÉTRICAS

TEMA 7: PROPIEDADES MÉTRICAS Depatamento e Matemática º Bachilleato TEMA 7: PROPIEDADES MÉTRICAS 1- HAZ DE PLANOS PARALELOS Too lo plano paalelo a un plano Ax + By + Cz + D tenán el mimo vecto nomal que el e : n A, Po lo tanto, too

Más detalles

Cinemática del Sólido Rígido (SR)

Cinemática del Sólido Rígido (SR) Cinemática del Sólido Rígido (SR) OBJETIVOS Intoduci los conceptos de sólido ígido, taslación, otación y movimiento plano. Deduci la ecuación de distibución de velocidades ente puntos del SR y el concepto

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles