TEMA 4 Modelo de regresión múltiple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4 Modelo de regresión múltiple"

Transcripción

1 TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología

2 Estructura de este tema Modelo de regresión múltiple. Ejemplos. Estimación e inferencia sobre los parámetros del modelo. Tabla ANOVA y contraste de la regresión. Regresión polinómica. Variables regresoras dicotómicas. Multicolinealidad. Diagnóstico del modelo.

3 Ejemplo Se estudia Y = la tasa de respiración (moles O 2 /(g min)) del liquen Parmelia saxatilis bajo puntos de goteo con un recubrimiento galvanizado. El agua que cae sobre el liquen contiene zinc y potasio, que utilizamos como variables explicativas. (Fuente de datos: Wainwright (1993), J. Biol. Educ..) Tasa de respiración Potasio (ppm) Zinc (ppm)

4 Ejemplo 4.2 (cont.): Tasa respiración Zinc Potasio 600 Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 6

5 Zinc Potasio Tasa_resp Tasa_resp Potasio Correlaciones Tasa_resp Correlación de Pearson 1 Sig. (bilateral) N 9 Correlación de Pearson,686 Sig. (bilateral),041 Potasio,686, Zinc,653,057 9,443,232 N Zinc Correlación de Pearson,653,443 1 Tasa_resp Potasio Zinc Sig. (bilateral) N,057 9,

6 Modelo de regresión lineal múltiple En la regresión lineal múltiple de Y sobre X 1,..., X k se supone que la función de regresión tiene la expresión Y β 0 + β 1 x β k x k. Cuando k = 2 la función de regresión es un plano Ejemplo 4.2: Plano de regresión Tasa respiración Zinc Potasio 600

7 Modelo de regresión lineal múltiple Tenemos una muestra de n individuos en los que observamos las variables Y y X 1,..., X k. Para el individuo i, tenemos el vector de datos (Y i, x i1, x i2,..., x ik ). El modelo de regresión lineal múltiple supone que Y i = β 0 + β 1 x i β K x ik + u i, i = 1,..., n, donde las variables de error U i verifican a) u i tiene media cero, para todo i. b) Var(u i ) = σ 2, para todo i (homocedasticidad). c) Los errores son variables independientes. d) u i tiene distribución normal, para todo i. e) n k + 2 (hay más observaciones que parámetros). f) Las variables X i son linealmente independientes entre sí (no hay colinealidad).

8 Modelo de regresión lineal múltiple Las hipótesis (a)-(d) se pueden reexpresar así: las observaciones Y i son independientes entre con distribución normal: Y i N(β 0 + β 1 x i β k x ik, σ). El modelo admite una expresión equivalente en forma matricial: Y 1 1 x x 1k β 0 u 1 Y 2 1 x x 2k β 1 u 2. Y n =.. 1 x n1... x nk. β k +. u n

9 Estimación de los parámetros del modelo Parámetros desconocidos: β 0, β 1,..., β k, σ 2. Estimamos β 0, β 1,..., β K por el método de mínimos cuadrados, es decir, los estimadores son los valores para los que se minimiza la suma: n [Y i (β 0 + β 1 x i β k x ik )] 2. i=1 Cada coeficiente β i mide el efecto que tiene sobre la respuesta un aumento de una unidad de la variable regresora x i cuando el resto de las variables permanece constante.

10 Estimación de los parámetros del modelo Al derivar la suma anterior respecto a β 0, β 1,..., β k e igualar las derivadas a 0 obtenemos k + 1 restricciones sobre los residuos: n e i = 0, i=1 n e i x i1 = 0,..., i=1 n e i x ik = 0. i=1 A partir de este sistema de k + 1 ecuaciones es posible despejar los estimadores de mínimos cuadrados de β 0, β 1,..., β k. Las hipótesis (e) y (f) hacen falta para que el sistema tenga una solución única. Llamamos ˆβ 0, ˆβ 1,..., ˆβ k a los estimadores. Le media de los residuos es cero. La correlación entre los residuos y cada una de las k variables regresoras es cero. Los residuos tienen n k 1 grados de libertad.

11 Estimación de los parámetros del modelo Ejemplo 4.2: Plano de regresión Tasa respiración Zinc Potasio 600

12 Estimación de la varianza Un estimador insesgado de σ 2 es la varianza residual S 2 R. Como en los modelos anteriores, SR 2 se define como la suma de los residuos al cuadrado, corregida por los gl apropiados: S 2 R = 1 n k 1 n ei 2. i=1 Siempre se verifica ȳ = ˆβ 0 + ˆβ 1 x ˆβ k x k, siendo ȳ = 1 n n y i, i=1 x 1 = 1 n n x i1,..., x k = 1 n i=1 n x ik. i=1 Por ejemplo, si k = 2, el plano de regresión pasa por el punto de medias muestrales ( x 1, x 2, ȳ).

13 Inferencia sobre los parámetros del modelo Distribución de los estimadores de los coeficientes: Todos los estimadores ˆβ j verifican: ˆβ j β j error típico de ˆβ j t n k 1, donde el error típico de ˆβ j es un valor que se calcula con SPSS. Intervalos de confianza para los coeficientes: Para cualquier j = 0, 1,..., k, ( ) IC 1 α (β j ) = ˆβ j t n k 1;α/2 error típico de ˆβ j.

14 Contrastes de hipótesis individuales sobre los coeficientes Estamos interesados en determinar qué variables X j son significativas para explicar Y. H 0 : β j = 0 (X j no influye sobre Y ) H 1 : β j 0 (X j influye sobre Y ) La región crítica de cada H 0 al nivel de significación α es { } β j R = > t n k 1;α/2. error típico de ˆβ j El cociente ˆβ j /(error típico de ˆβ j ) se llama estadístico t asociado a β j.

15 Salida SPSS Resumen del modelo Modelo R R cuadrado R cuadrado corregida Error típ. de la estimación 1,789 a,622,496 12,907 a. Variables predictoras: (Constante), Zinc, Potasio ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 1644, , ,000 gl Media cuadrática 822, ,602 F 4,935 Sig.,054 a a. Variables predictoras: (Constante), Zinc, Potasio b. Variable dependiente: Tasa_resp Modelo 1 (Constante) Potasio Zinc Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. 15,978 15,304 1,044,337,053,013 a. Variable dependiente: Tasa_resp Coeficientes a,030,009,494,434 1,763 1,549,128,172

16 Descomposición de la variabilidad Como en modelos anteriores: Y i = Ŷ i + e i Y i Ȳ = (Ŷ i Ȳ ) + e i n (Y i Ȳ ) 2 = n (Ŷ i Ȳ ) 2 + i=1 i=1 SCT = SCE + SCR n i=1 e 2 i SCT mide la variabilidad total (tiene n 1 gl) SCE mide la variabilidad explicada por el modelo (tiene k gl) SCR mide la variabilidad no explicada o residual (tiene n k 1 gl)

17 El contraste de la regresión H 0 : β 1 =... = β k = 0 (el modelo no es explicativo: ninguna de las variables explicativas influye en la respuesta) H 1 : β j 0 para algún j = 1,..., k (el modelo es explicativo: al menos una de las variables X j influye en la respuesta) Comparamos la variabilidad explicada con la no explicada mediante el estadístico F : SCE/k F = SCR/(n k 1). Bajo H 0 el estadístico F sigue una distribución F k,n k 1. La región de rechazo de H 0 al nivel de significación α es R = {F > F k,n k 1;α }

18 El coeficiente de determinación Es una medida de la bondad del ajuste en el modelo de regresión múltiple R 2 = SCE SCT. Propiedades: 0 R 2 1. Cuando R 2 = 1 existe una relación exacta entre la respuesta y las k variables regresoras. Cuando R 2 = 0, sucede que ˆβ 0 = ȳ y ˆβ 1 =... = ˆβ k = 0. No existe relación lineal entre Y y las X i. Podemos interpretar R 2 o como un coeficiente de correlación múltiple entre Y y las k variables regresoras. Se verifica que F = R2 n k 1 1 R 2. k

19 El coeficiente de determinación ajustado El coeficiente de determinación para comparar distintos modelos de regresión entre sí tiene el siguiente inconveniente: Siempre que se añade una nueva variable regresora al modelo, R 2 aumenta, aunque el efecto de la variable regresora sobre la respuesta no sea significativo. Por ello se define el coeficiente de determinación ajustado o corregido por grados de libertad R 2 = 1 SCE/(n k 1) SCT/(n 1) = 1 S 2 R SCT/(n 1) R 2 sólo disminuye al introducir una nueva variable en el modelo si la varianza residual disminuye.

20 Regresión polinómica Podemos utilizar el modelo de regresión múltiple para ajustar un polinomio: Y β 0 + β 1 x + β 2 x β k x k. Basta considerar las k variables regresoras x, x 2,..., x k x y

21 Regresión polinómica Resumen del modelo R cuadrado Error típ. de la Modelo R R cuadrado corregida estimación 1,926 a,858,857 19,04222 a. Variables predictoras: (Constante), x Modelo 1 (Constante) x a. Variable dependiente: y Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. -14,376 3,762-3,822,000 15,904 Resumen del modelo Coeficientes a,650 R cuadrado Error típ. de la Modelo R R cuadrado corregida estimación 1,947 a,896,894 16,36427 a. Variables predictoras: (Constante), x2, x Modelo 1 (Constante) x x2 a. Variable dependiente: y Coeficientes no estandarizados,926 Coeficientes tipificados 24,472,000 B Error típ. Beta t Sig. 6,846 4,790 1,429,156 3,042 1,286 Coeficientes a 2,214,214,177,774 1,374 6,004,172,000

22 y Regresión polinómica Estimación curvilínea Variable dependiente:y Ecuación Lineal R cuadrado,858 Resumen del modelo y estimaciones de los parámetros Resumen del modelo F 598,866 gl1 gl2 Sig.,000 Cuadrático, , ,000 La variable independiente esx. Variable dependiente:y Ecuación Lineal Estimaciones de los parámetros Constante -14,376 b1 15,904 Cuadrático 6,846 3,042 1,286 La variable independiente esx. b2 1 Resumen del modelo y estimaciones de los parámetros 99 y 200,00 150,00 100, Observado Lineal Cuadrático 50,00 0, x

23 Regresión polinómica ajustados1 residuos ajustados2 residuos2

24 Regresión polinómica: rentas y fracaso escolar Resumen del modelo y estimaciones de los parámetros Variable dependiente:fracaso Ecuación Lineal Cuadrático R cuadrado,550,586 Resumen del modelo F 25,658 14,183 gl1 1 2 gl2 21 Sig.,000 Constante 38,494 Estimaciones de los parámetros 61,088 b1-1,347-4,614 Potencia,610 32, , ,923-1,066 La variable independiente esrenta. 20,000 b2,109 Fracaso 40,0 30,0 Observado Lineal Cuadrático Potencia 20,0 10,0 0,0 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 Renta

25 Regresión polinómica y sobreajuste y y y y y Radj 2 = 0.88 R 2 = Radj 2 = 0.87 R 2 = Radj 2 = 0.85 R 2 = Radj 2 = 0.83 R 2 = Radj 2 = 0.85 R 2 = 0.92 y y y y y Radj 2 = 0.83 R 2 = Radj 2 = 0.81 R 2 = Radj 2 = 0.72 R 2 = Radj 2 = 0.67 R 2 = Radj 2 = NaN R 2 = 1

26 Curvas estimadas a partir de 50 muestras de 10 datos Mucho sesgo y poca varianza z z Polinomio de grado k=9 300 k=2 (reg. cuadrática) 300 k=2 (reg. simple) Modelo verdadero Poco sesgo y mucha varianza 5 10

27 Variables regresoras dicotómicas Mezclar subpoblaciones en regresión no es adecuado x1 y x2 y2 En qué se diferencian los dos ejemplos anteriores?

28 Modelo aditivo Resumen del modelo Modelo R R cuadrado R cuadrado corregida 1,963 a,928,923 a. Variables predictoras: (Constante), x1z1, z1, x1 Error típ. de la estimación ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 438,063 34, ,104 gl Media cuadrática 146,021,740 F 197,319 Sig.,000 a a. Variables predictoras: (Constante), x1z1, z1, x1 b. Variable dependiente: y1 Modelo 1 (Constante) x1 z1 x1z1 a. Variable dependiente: y1 Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig.,277,177 1,560,126,927 3,620,142 Coeficientes a,080,247,114,647,589,068 11,632 14,649 1,241,000,000,221

29 Modelo con interacciones Resumen del modelo Modelo R R cuadrado R cuadrado corregida 1,987 a,975,973 a. Variables predictoras: (Constante), x2z2, z2, x2 Error típ. de la estimación ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 1533,096 39, ,700 gl Media cuadrática 511,032,861 F 593,559 Sig.,000 a a. Variables predictoras: (Constante), x2z2, z2, x2 b. Variable dependiente: y2 Modelo 1 (Constante) x2 z2 x2z2 a. Variable dependiente: y2 Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. -,235,189-1,243,220,796 3,025 3,288 Coeficientes a,115,267,152,247,270,781 6,902 11,320 21,599,000,000,000

30 Multicolinealidad El cálculo de los estimadores de los parámetros en regresión múltiple requiere resolver un sistema de k + 1 ecuaciones con k + 1 incógnitas. Cuando una de las X j es combinación lineal de las restantes variables regresoras, el sistema es indeterminado. Entonces diremos que las variables explicativas son colineales. En la práctica esto nunca pasa de manera exacta, aunque sí es posible que en un conjunto de datos algunas de las variables regresoras se puedan describir muy bien como función lineal de las restantes variables. Este problema, llamado multicolinealidad, hace que los estimadores de los parámetros ˆβ i tengan alta variabilidad (errores típicos muy grandes) y sean muy dependientes entre sí.

31 Multicolinealidad y x1 x Y X1 X2 X1 Y Y Correlaciones Y Correlación de Pearson 1 Sig. (bilateral) N 20 Correlación de Pearson,906 X1 X1,906, X2,902,000 20,987 X2 Sig. (bilateral),000,000 N X2 Correlación de Pearson,902,987 1 Sig. (bilateral),000,000 N

32 Multicolinealidad Resumen del modelo Modelo R R cuadrado R cuadrado corregida Error típ. de la estimación 1,907 a,823,803,84071 a. Variables predictoras: (Constante), X2, X1 ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 56,049 12,015 68,065 gl Media cuadrática 28,025,707 F 39,651 Sig.,000 a a. Variables predictoras: (Constante), X2, X1 b. Variable dependiente: Y Modelo 1 (Constante) X1 X2 a. Variable dependiente: Y Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. -,041,202 -,205,840 1,360,648 Coeficientes a 1,426 1,319,601,309,954,491,354,630

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 4. Modelo de regresión múltiple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1

Tema 4. Modelo de regresión múltiple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1 Tema 4. Modelo de regresión múltiple Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1 Objetivos del tema Construir un modelo que represente la dependencia lineal de

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

y = b 0 + b 1 x 1 + + b k x k

y = b 0 + b 1 x 1 + + b k x k Las técnicas de Regresión lineal multiple parten de k+1 variables cuantitativas: La variable respuesta (y) Las variables explicativas (x 1,, x k ) Y tratan de explicar la y mediante una función lineal

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

PRÁCTICA 4. REGRESIÓN CURVILÍNEA. INTRODUCCIÓN DE VARIABLES ARTIFICIALES EN REGRESIÓN LINEAL

PRÁCTICA 4. REGRESIÓN CURVILÍNEA. INTRODUCCIÓN DE VARIABLES ARTIFICIALES EN REGRESIÓN LINEAL PRÁCTICA 4. REGRESIÓN CURVILÍNEA. INTRODUCCIÓN DE VARIABLES ARTIFICIALES EN REGRESIÓN LINEAL 4.1. Regresión exponencial 4.2. Regresión cúbica 4.3. Regresión con variables artificiales M. Carmen Carollo,

Más detalles

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales 3.1. En algunas reservas naturales se controla el número Y de ejemplares de cierta especie al

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01221701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia URRUTIA MOSQUERA, JORGE ANDRÉS; SALAZAR, HEVER DARÍO; CRUZ TREJOS, EDUARDO ARTURO EVALUACIÓN DE LA ROBUSTEZ

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1

INTRODUCCIÓN DIAGRAMA DE DISPERSIÓN. Figura1 Capítulo 5 Análisis de regresión INTRODUCCIÓN OBJETIVO DE LA REGRESIÓN Determinar una función matemática sencilla que describa el comportamiento de una variable dadoslosvaloresdeotrauotrasvariables. DIAGRAMA

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS

3. ASOCIACIÓN ENTRE DOS VARIABLES CUALITATIVAS 1. INTRODUCCIÓN Este tema se centra en el estudio conjunto de dos variables. Dos variables cualitativas - Tabla de datos - Tabla de contingencia - Diagrama de barras - Tabla de diferencias entre frecuencias

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA 1 INFERENCIA ESTADISTICA Es una rama de la Estadística que se ocupa de los procedimientos que nos permiten analizar y extraer conclusiones de una población a partir de los datos de una muestra aleatoria,

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013

Tema 3.1: Modelo lineal general: hipótesis y estimación. Universidad Complutense de Madrid 2013 ema 3.1: Modelo lineal general: hipótesis y estimación Universidad Complutense de Madrid 2013 Introducción El objetivo es especificar y estimar un Modelo Lineal General (MLG) en donde una variable de interés

Más detalles

REGRESIÓN LINEAL MÚLTIPLE

REGRESIÓN LINEAL MÚLTIPLE REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...

Más detalles

PROGRAMA ACADEMICO Ingeniería Industrial

PROGRAMA ACADEMICO Ingeniería Industrial 1. IDENTIFICACIÓN DIVISION ACADEMICA Ingenierías DEPARTAMENTO Ingeniería Industrial PROGRAMA ACADEMICO Ingeniería Industrial NOMBRE DEL CURSO Análisis de datos en Ingeniería COMPONENTE CURRICULAR Profesional

Más detalles

REGRESION simple. Correlación Lineal:

REGRESION simple. Correlación Lineal: REGRESION simple Correlación Lineal: Dadas dos variable numéricas continuas X e Y, decimos que están correlacionadas si entre ambas variables hay cierta relación, de modo que puede predecirse (aproximadamente)

Más detalles

El Análisis de la Regresión a través de SPSS

El Análisis de la Regresión a través de SPSS El Análisis de la Regresión a través de SPSS M. D olores M artínez M iranda Profesora del D pto. E stadística e I.O. U niversidad de G ranada Referencias bibliográficas. Hair, J.F., Anderson, R.E., Tatham,

Más detalles

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO Estadística Superior CLAVE: LII PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. REGRESIÓN LINEAL SIMPLE Y MÚLTIPLE 1.1. Regresión lineal simple 1.2. Estimación y predicción por intervalo en regresión lineal

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Descriptiva Para Psicólogos (EST-225)

Más detalles

Regresión Polinomial. StatFolio de Ejemplo: polynomial reg.sgp

Regresión Polinomial. StatFolio de Ejemplo: polynomial reg.sgp Regresión Polinomial Resumen El procedimiento Regresión Polinomial está diseñado para construir una modelo estadístico que describa el impacto de un solo factor cuantitativo X en una variable dependiente

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

ENUNCIADOS DE PROBLEMAS

ENUNCIADOS DE PROBLEMAS UNIVERSIDAD CARLOS III DE MADRID ECONOMETRÍA I 22 de Septiembre de 2007 ENUNCIADOS DE PROBLEMAS Muy importante: Tenga en cuenta que algunos resultados de las tablas han podido ser omitidos. PROBLEMA 1:

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11

Estadística II Tema 4. Regresión lineal simple. Curso 2010/11 Estadística II Tema 4. Regresión lineal simple Curso 010/11 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón

INFERENCIA ESTADÍSTICA. Metodología de Investigación. Tesifón Parrón Metodología de Investigación Tesifón Parrón Contraste de hipótesis Inferencia Estadística Medidas de asociación Error de Tipo I y Error de Tipo II α β CONTRASTE DE HIPÓTESIS Tipos de Test Chi Cuadrado

Más detalles

Medidas de dispersión

Medidas de dispersión Medidas de dispersión Las medidas de dispersión nos informan sobre cuánto se alejan del centro los valores de la distribución. Las medidas de dispersión son: Rango o recorrido El rango es la diferencia

Más detalles

Diseño de Bloques al azar. Diseño de experimentos p. 1/25

Diseño de Bloques al azar. Diseño de experimentos p. 1/25 Diseño de Bloques al azar Diseño de experimentos p. 1/25 Introducción En cualquier experimento, la variabilidad proveniente de un factor de ruido puede afectar los resultados. Un factor de ruido es un

Más detalles

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos

Contenido. 2 Probabilidad 9. Prefacio. 1 Introducci6n a la estadfstica y al an;!llisis de datos Contenido Prefacio ix 1 Introducci6n a la estadfstica y al an;!llisis de datos 1 1.1 1.2 1.3 1.4 1.5 1.6 Repaso 1 EI papel de la probabilidad 2 Medidas de posici6n: media de una muestra 4 Medidas de variabilidad

Más detalles

Modelo Econométrico sobre el Turismo

Modelo Econométrico sobre el Turismo Modelo Econométrico sobre el Turismo Ruth Rubio Rodríguez Miriam Gómez Sánchez Mercados 3ºA GMIM Índice Planteamiento del Problema..4 1. Estadísticos Descriptivos...5 2. Matriz Correlaciones 5 3. Gráfico

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS)

REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1 REGRESIÓN LINEAL SIMPLE, COEFICIENTE DE DETERMINACIÓN Y CORRELACIONES (EJERCICIOS RESUELTOS) 1. EN LA REGIÓN DE DRAKUL DE LA REPÚBLICA DE NECROLANDIA, LAS AUTORIDADES ECONÓMICAS HAN REALIZADO UNA REVISIÓN

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10

Diplomatura en Ciencias Empresariales X Y 10 10000 100 1000 1000 100 10000 10 DEPARTAMENTO DE ESTADÍSTICA E INVESTIGACIÓN OPERATIVA Diplomatura en Ciencias Empresariales ESTADÍSTICA II Relación Tema 10: Regresión y correlación simple. 1. Ajustar una función potencial a los siguientes

Más detalles

PRÁCTICA 3: Ejercicios del capítulo 5

PRÁCTICA 3: Ejercicios del capítulo 5 PRÁCICA 3: Eercicios del capítulo 5 1. Una empresa bancaria a contratado a un equipo de expertos en investigación de mercados para que les asesoren sobre el tipo de campaña publicitaria más recomendable

Más detalles

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección

Más detalles

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E.

OPTIMIZACIÓN EXPERIMENTAL. Ing. José Luis Zamorano E. OPTIMIZACIÓN EXPERIMENTAL Ing. José Luis Zamorano E. Introducción n a la metodología de superficies de respuesta EXPERIMENTACIÓN: Significa variar deliberadamente las condiciones habituales de trabajo

Más detalles

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS

CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS CONTRASTES DE HIPÓTESIS NO PARAMÉTRICOS 1 POR QUÉ SE LLAMAN CONTRASTES NO PARAMÉTRICOS? A diferencia de lo que ocurría en la inferencia paramétrica, ahora, el desconocimiento de la población que vamos

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

6 Sexta. 6.1 Parte básica. Unidad Didáctica "REGRESIÓN Y CORRELACIÓN"

6 Sexta. 6.1 Parte básica. Unidad Didáctica REGRESIÓN Y CORRELACIÓN 352 6 Sexta Unidad Didáctica "REGRESIÓN Y CORRELACIÓN" 6.1 Parte básica 353 6.1.1 Introducción Regresión es una palabra un tanto rara. La utilizan los biólogos, los médicos, los psicólogos... y suena como

Más detalles

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso.

18 Experimentos aleatorios. Sucesos y espacio muestral. Frecuencia y probabilidad de un suceso. PRIMER CURSO DE E.S.O Criterios de calificación: 80% exámenes, 10% actividades, 10% actitud y trabajo 1 Números naturales. 2 Potencias de exponente natural. Raíces cuadradas exactas. 3 Divisibilidad. Concepto

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Tema 1.- Correlación Lineal

Tema 1.- Correlación Lineal Tema 1.- Correlación Lineal 3.1.1. Definición El término correlación literalmente significa relación mutua; de este modo, el análisis de correlación mide e indica el grado en el que los valores de una

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales Tema 5. Muestreo y distribuciones muestrales Contenidos Muestreo y muestras aleatorias simples La distribución de la media en el muestreo La distribución de la varianza muestral Lecturas recomendadas:

Más detalles

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN

MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II INSTRUCCIONES Y CRITERIOS GENERALES DE CALIFICACIÓN UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MODELO DE EXAMEN CURSO 2014-2015 MATERIA: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES

Más detalles

Introducción a la regresión ordinal

Introducción a la regresión ordinal Introducción a la regresión ordinal Jose Barrera jbarrera@mat.uab.cat 20 de mayo 2009 Jose Barrera (UAB) Introducción a la regresión ordinal 20 de mayo 2009 1 / 11 Introducción a la regresión ordinal 1

Más detalles

Ecuaciones de 2º grado

Ecuaciones de 2º grado Ecuaciones de 2º grado Una ecuación de segundo grado es toda expresión de la forma: ax 2 + bx +c = 0 con a 0. Resolución de ecuaciones de segundo grado Para resolver ecuaciones de segundo grado utilizamos

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad.

Estadística II Examen Final - Enero 2012. Responda a los siguientes ejercicios en los cuadernillos de la Universidad. Estadística II Examen Final - Enero 2012 Responda a los siguientes ejercicios en los cuadernillos de la Universidad. No olvide poner su nombre y el número del grupo de clase en cada hoja. Indique claramente

Más detalles

UNIDAD 6. Estadística

UNIDAD 6. Estadística Matemática UNIDAD 6. Estadística 2 Medio GUÍA N 1 MEDIDAS DE DISPERSIÓN PARA DATOS NO AGRUPADOS ACTIVIDAD Consideremos los siguientes conjuntos de valores referidos a las edades de los jugadores de dos

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith)

INTERVALOS DE CONFIANZA. La estadística en cómic (L. Gonick y W. Smith) INTERVALOS DE CONFIANZA La estadística en cómic (L. Gonick y W. Smith) EJEMPLO: Será elegido el senador Astuto? 2 tamaño muestral Estimador de p variable aleatoria poblacional? proporción de personas que

Más detalles

ESTADÍSTICA DESCRIPTIVA

ESTADÍSTICA DESCRIPTIVA ESTADÍSTICA DESCRIPTIVA Medidas de tendencia central y de dispersión Giorgina Piani Zuleika Ferre 1. Tendencia Central Son un conjunto de medidas estadísticas que determinan un único valor que define el

Más detalles

REGRESIÓN LINEAL CON SPSS

REGRESIÓN LINEAL CON SPSS ESCUELA SUPERIOR DE INFORMÁTICA Prácticas de Estadística REGRESIÓN LINEAL CON SPSS 1.- INTRODUCCIÓN El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre

Más detalles

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste

Contraste de hipótesis Tema Pasos del contraste de hipótesis. 1.1 Hipótesis estadísticas: nula y alternativa. 1.3 Estadístico de contraste 1 Contraste de hipótesis Tema 3 1. Pasos del contraste de hipótesis 1.1 Hipótesis estadísticas: nula y alternativa 1.2 Supuestos 1.3 Estadístico de contraste 1.4 Regla de decisión: zona de aceptación y

Más detalles

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como:

Y = ßo + ß1X + ε. La función de regresión lineal simple es expresado como: 1 Regresión Lineal Simple Cuando la relación funcional entre las variables dependiente (Y) e independiente (X) es una línea recta, se tiene una regresión lineal simple, dada por la ecuación donde: Y =

Más detalles

EJERCICIOS RESUELTOS DE ESTADÍSTICA II

EJERCICIOS RESUELTOS DE ESTADÍSTICA II EJERCICIOS RESUELTOS DE ESTADÍSTICA II RESUMEN DE EJERCICIOS DADOS EN CLASES PARTE II POR: EILEEN JOHANA ARAGONES GENEY DISTRIBUCIONES DOCENTE: JUAN CARLOS V ERGARA SCHMALBACH ESTIMACIÓN PRUEBAS DE HIPÓTESIS

Más detalles

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO

UNIVERSIDAD AUTONOMA DE SANTO DOMINGO UNIVERSIDAD AUTONOMA DE SANTO DOMINGO FACULTAD DE CIENCIAS ECONOMICAS Y SOCIALES DEPARTAMENTO DE ESTADISITICA CATEDRA Estadística Especializada ASIGNATURA Estadística Industrial (EST-121) NUMERO DE CREDITOS

Más detalles

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas

SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA. PROF. Esther González Sánchez. Departamento de Informática y Sistemas SESIÓN PRÁCTICA 7: REGRESION LINEAL SIMPLE PROBABILIDAD Y ESTADÍSTICA PROF. Esther González Sánchez Departamento de Informática y Sistemas Facultad de Informática Universidad de Las Palmas de Gran Canaria

Más detalles

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis

Matemáticas 2.º Bachillerato. Intervalos de confianza. Contraste de hipótesis Matemáticas 2.º Bachillerato Intervalos de confianza. Contraste de hipótesis Depto. Matemáticas IES Elaios Tema: Estadística Inferencial 1. MUESTREO ALEATORIO Presentación elaborada por el profesor José

Más detalles

1. Caso no lineal: ajuste de una función potencial

1. Caso no lineal: ajuste de una función potencial 1. Caso no lineal: ajuste de una función potencial La presión (P) y el volumen (V ) en un tipo de gas están ligados por una ecuación del tipo PV b = a, siendo a y b dos parámetros desconocidos. A partir

Más detalles

Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios

Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios Hipótesis en el modelo de regresión lineal por Mínimos Cuadrados Ordinarios Apellidos, nombre Chirivella González, Vicente (vchirive@eio.upv.es) Departamento Centro Estadística e Investigación Operativa

Más detalles

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo...

CONTENIDO. Prólogo a la 3. a edición en español ampliada... Prólogo... CONTENIDO Prólogo a la 3. a edición en español ampliada.................................. Prólogo.................................................................. vii xvii 1. Métodos descriptivos................................................

Más detalles

PROPUESTA DE PROYECTO DE ESTADÍSTICA: UN MODELO DE REGRESIÓN LINEAL SIMPLE PARA PRONOSTICAR LA CONCENTRACIÓN DE CO2 DEL VOLCÁN MAUNA LOA

PROPUESTA DE PROYECTO DE ESTADÍSTICA: UN MODELO DE REGRESIÓN LINEAL SIMPLE PARA PRONOSTICAR LA CONCENTRACIÓN DE CO2 DEL VOLCÁN MAUNA LOA DESDE LA ACADEMIA PROPUESTA DE PROYECTO DE ESTADÍSTICA: UN MODELO DE REGRESIÓN LINEAL SIMPLE PARA PRONOSTICAR LA CONCENTRACIÓN DE CO2 DEL VOLCÁN MAUNA LOA * CLAUDIO ALFREDO LÓPEZ MIRANDA, CÉSAR AUGUSTO

Más detalles

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor

Esquema (1) Análisis de la Varianza y de la Covarianza. ANOVA y ANCOVA. ANOVA y ANCOVA 1. Análisis de la Varianza de 1 Factor Esquema (1) Análisis de la arianza y de la Covarianza ANOA y ANCOA 1. (Muestras independientes). () 3. Análisis de la arianza de Factores 4. Análisis de la Covarianza 5. Análisis con más de Factores J.F.

Más detalles

a. Poisson: los totales marginales y el total muestral varían libremente.

a. Poisson: los totales marginales y el total muestral varían libremente. TEMA 2º: TABLAS DE CONTINGENCIA BIDIMENSIONALES 1º Distribución de frecuencias observadas El único aspecto cuantificable en el análisis cualitativo es el número de individuos que presenta una combinación

Más detalles

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Junio 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

Más detalles

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24

Pregunta 1. Pregunta 2. Pregunta 3. Pregunta 4. Pregunta 5. Pregunta 6. Pregunta 7. Comenzado el lunes, 25 de marzo de 2013, 17:24 Comenzado el lunes, 25 de marzo de 2013, 17:24 Estado Finalizado Finalizado en sábado, 30 de marzo de 2013, 17:10 Tiempo empleado 4 días 23 horas Puntos 50,00/50,00 Calificación 10,00 de un máximo de 10,00

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis

Más detalles

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA

Análisis de Datos CAPITULO 3: MEDIDAS DE VARIABILIDAD Y ASIMETRÍA 1. INTRODUCCIÓN En el tema 1 veíamos que la distribución de frecuencias tiene tres propiedades: tendencia central, variabilidad y asimetría. Las medidas de tendencia central las hemos visto en el tema

Más detalles

Modelos de Regresión y Correlación

Modelos de Regresión y Correlación Artículo de Educación Modelos de Regresión y Correlación REGRESSION AND CORRELATION MODELS Claudio Silva Z 1, Mauricio Salinas 2 1. PhD en Estadística Escuela de Salud Pública Universidad de Chile. 2.

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

Regresión lineal múltiple

Regresión lineal múltiple Regresión lineal múltiple José Gabriel Palomo Sánchez gabriel.palomo@upm.es E.U.A.T. U.P.M. Julio de 2011 Índice I 1 El modelo de regresión lineal múltiple 1 El modelo de regresión múltiple. Introducción

Más detalles

Teoría de la decisión Estadística

Teoría de la decisión Estadística Conceptos básicos Unidad 7. Estimación de parámetros. Criterios para la estimación. Mínimos cuadrados. Regresión lineal simple. Ley de correlación. Intervalos de confianza. Distribuciones: t-student y

Más detalles

Econométricas. Máster Universitario. Técnicas Cuantitativas en Gestión Empresarial

Econométricas. Máster Universitario. Técnicas Cuantitativas en Gestión Empresarial Técnicas Econométricas Máster Universitario Técnicas Cuantitativas en Gestión Empresarial Román Salmerón Gómez Granada, 2013 Técnicas Econométricas: breve descripción de contenidos Román Salmerón Gómez

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

bloques SC Suma de Cuadrados k trat bloques

bloques SC Suma de Cuadrados k trat bloques Análisis de un diseño en bloques aleatorios Cuando sólo hay dos tratamientos, el análisis de varianza de una vía equivale al test t de Student para muestras independientes. A su vez, el análisis de varianza

Más detalles

Pruebas de Hipótesis Multiples

Pruebas de Hipótesis Multiples Pruebas de Hipótesis Multiples Cuando queremos hacer comparaciones de mas de dos poblaciones, una alternativa es comparar todos los grupos a la vez con el método de Análisis de Varianza (ANOVA) H o : µ

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746)

TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO AREA DE MATEMATICA TRABAJO PRÁCTICO ESTADISTICA APLICADA (746) JOSE GREGORIO SANCHEZ CASANOVA C.I. V-9223081 CARRERA: 610 SECCION Nº 1 SAN CRISTOBAL,

Más detalles

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I.

EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. EVALUACIÓN EXTRAORDINARIA DE SEPTIEMBRE CURSO 2013-2014. Contenidos para la Prueba de Septiembre MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I. UNIDAD 3: POLINOMIOS Y FRACCIONES ALGEBRAICAS Operaciones

Más detalles

Tema 2. Descripción Conjunta de Varias Variables

Tema 2. Descripción Conjunta de Varias Variables Tema 2. Descripción Conjunta de Varias Variables Cuestiones de Verdadero/Falso 1. La covarianza mide la relación lineal entre dos variables, pero depende de las unidades de medida utilizadas. 2. El análisis

Más detalles

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M.

ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción ESTIMACIÓN PUNTUAL Julián de la Horra Departamento de Matemáticas U.A.M. En este capítulo, vamos a abordar la Estimación Puntual, que es uno de los tres grandes conjuntos de técnicas que

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles