TEMA 4 Modelo de regresión múltiple

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4 Modelo de regresión múltiple"

Transcripción

1 TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología

2 Estructura de este tema Modelo de regresión múltiple. Ejemplos. Estimación e inferencia sobre los parámetros del modelo. Tabla ANOVA y contraste de la regresión. Regresión polinómica. Variables regresoras dicotómicas. Multicolinealidad. Diagnóstico del modelo.

3 Ejemplo Se estudia Y = la tasa de respiración (moles O 2 /(g min)) del liquen Parmelia saxatilis bajo puntos de goteo con un recubrimiento galvanizado. El agua que cae sobre el liquen contiene zinc y potasio, que utilizamos como variables explicativas. (Fuente de datos: Wainwright (1993), J. Biol. Educ..) Tasa de respiración Potasio (ppm) Zinc (ppm)

4 Ejemplo 4.2 (cont.): Tasa respiración Zinc Potasio 600 Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 6

5 Zinc Potasio Tasa_resp Tasa_resp Potasio Correlaciones Tasa_resp Correlación de Pearson 1 Sig. (bilateral) N 9 Correlación de Pearson,686 Sig. (bilateral),041 Potasio,686, Zinc,653,057 9,443,232 N Zinc Correlación de Pearson,653,443 1 Tasa_resp Potasio Zinc Sig. (bilateral) N,057 9,

6 Modelo de regresión lineal múltiple En la regresión lineal múltiple de Y sobre X 1,..., X k se supone que la función de regresión tiene la expresión Y β 0 + β 1 x β k x k. Cuando k = 2 la función de regresión es un plano Ejemplo 4.2: Plano de regresión Tasa respiración Zinc Potasio 600

7 Modelo de regresión lineal múltiple Tenemos una muestra de n individuos en los que observamos las variables Y y X 1,..., X k. Para el individuo i, tenemos el vector de datos (Y i, x i1, x i2,..., x ik ). El modelo de regresión lineal múltiple supone que Y i = β 0 + β 1 x i β K x ik + u i, i = 1,..., n, donde las variables de error U i verifican a) u i tiene media cero, para todo i. b) Var(u i ) = σ 2, para todo i (homocedasticidad). c) Los errores son variables independientes. d) u i tiene distribución normal, para todo i. e) n k + 2 (hay más observaciones que parámetros). f) Las variables X i son linealmente independientes entre sí (no hay colinealidad).

8 Modelo de regresión lineal múltiple Las hipótesis (a)-(d) se pueden reexpresar así: las observaciones Y i son independientes entre con distribución normal: Y i N(β 0 + β 1 x i β k x ik, σ). El modelo admite una expresión equivalente en forma matricial: Y 1 1 x x 1k β 0 u 1 Y 2 1 x x 2k β 1 u 2. Y n =.. 1 x n1... x nk. β k +. u n

9 Estimación de los parámetros del modelo Parámetros desconocidos: β 0, β 1,..., β k, σ 2. Estimamos β 0, β 1,..., β K por el método de mínimos cuadrados, es decir, los estimadores son los valores para los que se minimiza la suma: n [Y i (β 0 + β 1 x i β k x ik )] 2. i=1 Cada coeficiente β i mide el efecto que tiene sobre la respuesta un aumento de una unidad de la variable regresora x i cuando el resto de las variables permanece constante.

10 Estimación de los parámetros del modelo Al derivar la suma anterior respecto a β 0, β 1,..., β k e igualar las derivadas a 0 obtenemos k + 1 restricciones sobre los residuos: n e i = 0, i=1 n e i x i1 = 0,..., i=1 n e i x ik = 0. i=1 A partir de este sistema de k + 1 ecuaciones es posible despejar los estimadores de mínimos cuadrados de β 0, β 1,..., β k. Las hipótesis (e) y (f) hacen falta para que el sistema tenga una solución única. Llamamos ˆβ 0, ˆβ 1,..., ˆβ k a los estimadores. Le media de los residuos es cero. La correlación entre los residuos y cada una de las k variables regresoras es cero. Los residuos tienen n k 1 grados de libertad.

11 Estimación de los parámetros del modelo Ejemplo 4.2: Plano de regresión Tasa respiración Zinc Potasio 600

12 Estimación de la varianza Un estimador insesgado de σ 2 es la varianza residual S 2 R. Como en los modelos anteriores, SR 2 se define como la suma de los residuos al cuadrado, corregida por los gl apropiados: S 2 R = 1 n k 1 n ei 2. i=1 Siempre se verifica ȳ = ˆβ 0 + ˆβ 1 x ˆβ k x k, siendo ȳ = 1 n n y i, i=1 x 1 = 1 n n x i1,..., x k = 1 n i=1 n x ik. i=1 Por ejemplo, si k = 2, el plano de regresión pasa por el punto de medias muestrales ( x 1, x 2, ȳ).

13 Inferencia sobre los parámetros del modelo Distribución de los estimadores de los coeficientes: Todos los estimadores ˆβ j verifican: ˆβ j β j error típico de ˆβ j t n k 1, donde el error típico de ˆβ j es un valor que se calcula con SPSS. Intervalos de confianza para los coeficientes: Para cualquier j = 0, 1,..., k, ( ) IC 1 α (β j ) = ˆβ j t n k 1;α/2 error típico de ˆβ j.

14 Contrastes de hipótesis individuales sobre los coeficientes Estamos interesados en determinar qué variables X j son significativas para explicar Y. H 0 : β j = 0 (X j no influye sobre Y ) H 1 : β j 0 (X j influye sobre Y ) La región crítica de cada H 0 al nivel de significación α es { } β j R = > t n k 1;α/2. error típico de ˆβ j El cociente ˆβ j /(error típico de ˆβ j ) se llama estadístico t asociado a β j.

15 Salida SPSS Resumen del modelo Modelo R R cuadrado R cuadrado corregida Error típ. de la estimación 1,789 a,622,496 12,907 a. Variables predictoras: (Constante), Zinc, Potasio ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 1644, , ,000 gl Media cuadrática 822, ,602 F 4,935 Sig.,054 a a. Variables predictoras: (Constante), Zinc, Potasio b. Variable dependiente: Tasa_resp Modelo 1 (Constante) Potasio Zinc Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. 15,978 15,304 1,044,337,053,013 a. Variable dependiente: Tasa_resp Coeficientes a,030,009,494,434 1,763 1,549,128,172

16 Descomposición de la variabilidad Como en modelos anteriores: Y i = Ŷ i + e i Y i Ȳ = (Ŷ i Ȳ ) + e i n (Y i Ȳ ) 2 = n (Ŷ i Ȳ ) 2 + i=1 i=1 SCT = SCE + SCR n i=1 e 2 i SCT mide la variabilidad total (tiene n 1 gl) SCE mide la variabilidad explicada por el modelo (tiene k gl) SCR mide la variabilidad no explicada o residual (tiene n k 1 gl)

17 El contraste de la regresión H 0 : β 1 =... = β k = 0 (el modelo no es explicativo: ninguna de las variables explicativas influye en la respuesta) H 1 : β j 0 para algún j = 1,..., k (el modelo es explicativo: al menos una de las variables X j influye en la respuesta) Comparamos la variabilidad explicada con la no explicada mediante el estadístico F : SCE/k F = SCR/(n k 1). Bajo H 0 el estadístico F sigue una distribución F k,n k 1. La región de rechazo de H 0 al nivel de significación α es R = {F > F k,n k 1;α }

18 El coeficiente de determinación Es una medida de la bondad del ajuste en el modelo de regresión múltiple R 2 = SCE SCT. Propiedades: 0 R 2 1. Cuando R 2 = 1 existe una relación exacta entre la respuesta y las k variables regresoras. Cuando R 2 = 0, sucede que ˆβ 0 = ȳ y ˆβ 1 =... = ˆβ k = 0. No existe relación lineal entre Y y las X i. Podemos interpretar R 2 o como un coeficiente de correlación múltiple entre Y y las k variables regresoras. Se verifica que F = R2 n k 1 1 R 2. k

19 El coeficiente de determinación ajustado El coeficiente de determinación para comparar distintos modelos de regresión entre sí tiene el siguiente inconveniente: Siempre que se añade una nueva variable regresora al modelo, R 2 aumenta, aunque el efecto de la variable regresora sobre la respuesta no sea significativo. Por ello se define el coeficiente de determinación ajustado o corregido por grados de libertad R 2 = 1 SCE/(n k 1) SCT/(n 1) = 1 S 2 R SCT/(n 1) R 2 sólo disminuye al introducir una nueva variable en el modelo si la varianza residual disminuye.

20 Regresión polinómica Podemos utilizar el modelo de regresión múltiple para ajustar un polinomio: Y β 0 + β 1 x + β 2 x β k x k. Basta considerar las k variables regresoras x, x 2,..., x k x y

21 Regresión polinómica Resumen del modelo R cuadrado Error típ. de la Modelo R R cuadrado corregida estimación 1,926 a,858,857 19,04222 a. Variables predictoras: (Constante), x Modelo 1 (Constante) x a. Variable dependiente: y Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. -14,376 3,762-3,822,000 15,904 Resumen del modelo Coeficientes a,650 R cuadrado Error típ. de la Modelo R R cuadrado corregida estimación 1,947 a,896,894 16,36427 a. Variables predictoras: (Constante), x2, x Modelo 1 (Constante) x x2 a. Variable dependiente: y Coeficientes no estandarizados,926 Coeficientes tipificados 24,472,000 B Error típ. Beta t Sig. 6,846 4,790 1,429,156 3,042 1,286 Coeficientes a 2,214,214,177,774 1,374 6,004,172,000

22 y Regresión polinómica Estimación curvilínea Variable dependiente:y Ecuación Lineal R cuadrado,858 Resumen del modelo y estimaciones de los parámetros Resumen del modelo F 598,866 gl1 gl2 Sig.,000 Cuadrático, , ,000 La variable independiente esx. Variable dependiente:y Ecuación Lineal Estimaciones de los parámetros Constante -14,376 b1 15,904 Cuadrático 6,846 3,042 1,286 La variable independiente esx. b2 1 Resumen del modelo y estimaciones de los parámetros 99 y 200,00 150,00 100, Observado Lineal Cuadrático 50,00 0, x

23 Regresión polinómica ajustados1 residuos ajustados2 residuos2

24 Regresión polinómica: rentas y fracaso escolar Resumen del modelo y estimaciones de los parámetros Variable dependiente:fracaso Ecuación Lineal Cuadrático R cuadrado,550,586 Resumen del modelo F 25,658 14,183 gl1 1 2 gl2 21 Sig.,000 Constante 38,494 Estimaciones de los parámetros 61,088 b1-1,347-4,614 Potencia,610 32, , ,923-1,066 La variable independiente esrenta. 20,000 b2,109 Fracaso 40,0 30,0 Observado Lineal Cuadrático Potencia 20,0 10,0 0,0 8,000 10,000 12,000 14,000 16,000 18,000 20,000 22,000 Renta

25 Regresión polinómica y sobreajuste y y y y y Radj 2 = 0.88 R 2 = Radj 2 = 0.87 R 2 = Radj 2 = 0.85 R 2 = Radj 2 = 0.83 R 2 = Radj 2 = 0.85 R 2 = 0.92 y y y y y Radj 2 = 0.83 R 2 = Radj 2 = 0.81 R 2 = Radj 2 = 0.72 R 2 = Radj 2 = 0.67 R 2 = Radj 2 = NaN R 2 = 1

26 Curvas estimadas a partir de 50 muestras de 10 datos Mucho sesgo y poca varianza z z Polinomio de grado k=9 300 k=2 (reg. cuadrática) 300 k=2 (reg. simple) Modelo verdadero Poco sesgo y mucha varianza 5 10

27 Variables regresoras dicotómicas Mezclar subpoblaciones en regresión no es adecuado x1 y x2 y2 En qué se diferencian los dos ejemplos anteriores?

28 Modelo aditivo Resumen del modelo Modelo R R cuadrado R cuadrado corregida 1,963 a,928,923 a. Variables predictoras: (Constante), x1z1, z1, x1 Error típ. de la estimación ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 438,063 34, ,104 gl Media cuadrática 146,021,740 F 197,319 Sig.,000 a a. Variables predictoras: (Constante), x1z1, z1, x1 b. Variable dependiente: y1 Modelo 1 (Constante) x1 z1 x1z1 a. Variable dependiente: y1 Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig.,277,177 1,560,126,927 3,620,142 Coeficientes a,080,247,114,647,589,068 11,632 14,649 1,241,000,000,221

29 Modelo con interacciones Resumen del modelo Modelo R R cuadrado R cuadrado corregida 1,987 a,975,973 a. Variables predictoras: (Constante), x2z2, z2, x2 Error típ. de la estimación ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 1533,096 39, ,700 gl Media cuadrática 511,032,861 F 593,559 Sig.,000 a a. Variables predictoras: (Constante), x2z2, z2, x2 b. Variable dependiente: y2 Modelo 1 (Constante) x2 z2 x2z2 a. Variable dependiente: y2 Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. -,235,189-1,243,220,796 3,025 3,288 Coeficientes a,115,267,152,247,270,781 6,902 11,320 21,599,000,000,000

30 Multicolinealidad El cálculo de los estimadores de los parámetros en regresión múltiple requiere resolver un sistema de k + 1 ecuaciones con k + 1 incógnitas. Cuando una de las X j es combinación lineal de las restantes variables regresoras, el sistema es indeterminado. Entonces diremos que las variables explicativas son colineales. En la práctica esto nunca pasa de manera exacta, aunque sí es posible que en un conjunto de datos algunas de las variables regresoras se puedan describir muy bien como función lineal de las restantes variables. Este problema, llamado multicolinealidad, hace que los estimadores de los parámetros ˆβ i tengan alta variabilidad (errores típicos muy grandes) y sean muy dependientes entre sí.

31 Multicolinealidad y x1 x Y X1 X2 X1 Y Y Correlaciones Y Correlación de Pearson 1 Sig. (bilateral) N 20 Correlación de Pearson,906 X1 X1,906, X2,902,000 20,987 X2 Sig. (bilateral),000,000 N X2 Correlación de Pearson,902,987 1 Sig. (bilateral),000,000 N

32 Multicolinealidad Resumen del modelo Modelo R R cuadrado R cuadrado corregida Error típ. de la estimación 1,907 a,823,803,84071 a. Variables predictoras: (Constante), X2, X1 ANOVA b Modelo 1 Regresión Residual Total Suma de cuadrados 56,049 12,015 68,065 gl Media cuadrática 28,025,707 F 39,651 Sig.,000 a a. Variables predictoras: (Constante), X2, X1 b. Variable dependiente: Y Modelo 1 (Constante) X1 X2 a. Variable dependiente: Y Coeficientes no estandarizados Coeficientes tipificados B Error típ. Beta t Sig. -,041,202 -,205,840 1,360,648 Coeficientes a 1,426 1,319,601,309,954,491,354,630

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r)

Correlación. El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) Correlación El coeficiente de correlación mide la fuerza o el grado de asociación entre dos variables (r) El coeficiente de correlación lineal de Pearson (r) permite medir el grado de asociación entre

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. MODELO DE REGRESIÓN MÚLTIPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Abordaremos en este capítulo el modelo de regresión lineal múltiple, una vez que la mayor parte de las

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

Tema 4. Modelo de regresión múltiple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1

Tema 4. Modelo de regresión múltiple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1 Tema 4. Modelo de regresión múltiple Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 4: Regresión múltiple 1 Objetivos del tema Construir un modelo que represente la dependencia lineal de

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Tema 8: Regresión y Correlación

Tema 8: Regresión y Correlación Tema 8: Regresión y Correlación Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 8: Regresión y Correlación Curso 2008-2009 1 / 12 Índice

Más detalles

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis

TODO ECONOMETRIA. Bondad del ajuste Contraste de hipótesis TODO ECONOMETRIA Bondad del ajuste Contraste de hipótesis Índice Bondad del ajuste: Coeficiente de determinación, R R ajustado Contraste de hipótesis Contrastes de hipótesis de significación individual:

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M.

1 Introducción. 2 Modelo. Hipótesis del modelo. MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción MODELO DE REGRESIÓN SIMPLE Julián de la Horra Departamento de Matemáticas U.A.M. Los modelos de regresión sirven, en general, para tratar de expresar una variable respuesta (numérica) en

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

Estadística para la Economía y la Gestión IN 3401

Estadística para la Economía y la Gestión IN 3401 Estadística para la Economía y la Gestión IN 3401 3 de junio de 2010 1 Modelo de Regresión con 2 Variables Método de Mínimos Cuadrados Ordinarios Supuestos detrás del método MCO Errores estándar de los

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA

1 Introducción. 2 Modelo. Hipótesis del modelo MODELO DE REGRESIÓN LOGÍSTICA MODELO DE REGRESIÓN LOGÍSTICA Introducción A grandes rasgos, el objetivo de la regresión logística se puede describir de la siguiente forma: Supongamos que los individuos de una población pueden clasificarse

Más detalles

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística

Regresión lineal. Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Regresión lineal Marcelo Rodríguez Ingeniero Estadístico - Magíster en Estadística Universidad Católica del Maule Facultad de Ciencias Básicas Pedagogía en Matemática Estadística I 01 de enero de 2012

Más detalles

y = b 0 + b 1 x 1 + + b k x k

y = b 0 + b 1 x 1 + + b k x k Las técnicas de Regresión lineal multiple parten de k+1 variables cuantitativas: La variable respuesta (y) Las variables explicativas (x 1,, x k ) Y tratan de explicar la y mediante una función lineal

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A

Regresión lineal SIMPLE MÚLTIPLE N A Z IRA C A L L E J A Regresión lineal REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL MÚLTIPLE N A Z IRA C A L L E J A Qué es la regresión? El análisis de regresión: Se utiliza para examinar el efecto de diferentes variables (VIs

Más detalles

Errores de especificación

Errores de especificación CAPíTULO 5 Errores de especificación Estrictamente hablando, un error de especificación es el incumplimiento de cualquiera de los supuestos básicos del modelo lineal general. En un sentido más laxo, esta

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso Septiembre Primera Parte ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 13 - Septiembre - 2.004 Primera Parte Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple. Facultad de Ciencias Sociales - UdelaR Estadística y sus aplicaciones en Ciencias Sociales 7. El modelo de regresión simple Facultad de Ciencias Sociales - UdelaR Índice 7.1 Introducción 7.2 Análisis de regresión 7.3 El Modelo de Regresión

Más detalles

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

TEMA 2: Propiedades de los estimadores MCO

TEMA 2: Propiedades de los estimadores MCO TEMA 2: Propiedades de los estimadores MCO Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 2: Pdades de los estimadores MCO Curso

Más detalles

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple

Pronósticos, Series de Tiempo y Regresión. Capítulo 4: Regresión Lineal Múltiple Pronósticos, Series de Tiempo y Regresión Capítulo 4: Regresión Lineal Múltiple Temas Modelo de regresión lineal múltiple Estimaciones de Mínimos Cuadrados Ordinarios (MCO); estimación puntual y predicción

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

Ejercicio Heterocedasticidad_2

Ejercicio Heterocedasticidad_2 Ejercicio heterocedasticidad 2. 1 Ejercicio Heterocedasticidad_2 Tengamos los siguientes datos de los beneficios (B i ) y ventas (V i ) de 20 empresas: obs B V 1 13,2 61 2 15 78 3 22,2 158 4 15,2 110 5

Más detalles

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación

ECONOMETRÍA I. Tema 3: El Modelo de Regresión Lineal Múltiple: estimación ECONOMETRÍA I Tema 3: El Modelo de Regresión Lineal Múltiple: estimación Patricia Moreno Juan Manuel Rodriguez Poo Alexandra Soberon Departamento de Economía Alexandra Soberon (UC) ECONOMETRÍA I 1 / 45

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística)

Ejemplo 6.2. Pilar González y Susan Orbe. Dpto. Economía Aplicada III (Econometría y Estadística) Ejemplo 6.2 Inferencia en el Modelo de Regresión Lineal General Pilar González y Susan Orbe Dpto. Economía Aplicada III (Econometría y Estadística) Pilar González y Susan Orbe OCW 2013 Ejemplo 6.2 Inferencia

Más detalles

TEMA 3: Contrastes de Hipótesis en el MRL

TEMA 3: Contrastes de Hipótesis en el MRL TEMA 3: Contrastes de Hipótesis en el MRL Econometría I M. Angeles Carnero Departamento de Fundamentos del Análisis Económico Curso 2011-12 Econometría I (UA) Tema 3: Contrastes de Hipótesis Curso 2011-12

Más detalles

Prácticas Tema 2: El modelo lineal simple

Prácticas Tema 2: El modelo lineal simple Prácticas Tema 2: El modelo lineal simple Ana J. López y Rigoberto Pérez Departamento de Economía Aplicada. Universidad de Oviedo PRACTICA 2.1- Se han analizado sobre una muestra de 10 familias las variables

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL

ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL ANALISIS DE REGRESIÓN Y CORRELACIÓN LINEAL Msc. Lácides Baleta Octubre 16 Página 1 de 11 REGRESIÓN Y CORRELACIÓN LINEAL Son dos herramientas para investigar la dependencia de una variable dependiente Y

Más detalles

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión

INTERPRETACIÓN DE LA REGRESIÓN. Interpretación de la regresión INTERPRETACIÓN DE LA REGRESIÓN Este gráfico muestra el salario por hora de 570 individuos. 1 Interpretación de la regresión. regresión Salario-Estudios Source SS df MS Number of obs = 570 ---------+------------------------------

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Universidad Nacional Agraria La Molina 2011-2 Efectos de Diagnósticos de Dos predictores X 1 y X 2 son exactamente colineales si existe una relación lineal tal que C 1 X 1 + C 2 X 2 = C 0 para algunas

Más detalles

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11

Tema 5. Análisis de regresión (segunda parte) Estadística II, 2010/11 Tema 5 Análisis de regresión (segunda parte) Estadística II, 2010/11 Contenidos 5.1: Diagnóstico: Análisis de los residuos 5.2: La descomposición ANOVA (ANalysis Of VAriance) 5.3: Relaciones no lineales

Más detalles

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES

CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES TUTORÍA DE INTRODUCCIÓN A LA ESTADÍSTICA (º A.D.E.) CUESTIONES Y PROBLEMAS DE DISTRIBUCIONES DE FRECUENCIAS BIDIMENSIONALES PROPUESTOS EN EXÁMENES 1º) Qué ocurre cuando r = 1: a) Los valores teóricos no

Más detalles

Tema 3. Modelo de regresión simple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1

Tema 3. Modelo de regresión simple. Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1 Tema 3. Modelo de regresión simple Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 3: Regresión simple 1 Introducción Objetivo del modelo de regresión simple: Explicar el comportamiento de

Más detalles

Práctica 3: Regresión simple con R

Práctica 3: Regresión simple con R Estadística II Curso 2010/2011 Licenciatura en Matemáticas Práctica 3: Regresión simple con R 1. El fichero de datos Vamos a trabajar con el fichero salinity que se encuentra en el paquete boot. Para cargar

Más detalles

Técnicas de regresión: Regresión Lineal Simple

Técnicas de regresión: Regresión Lineal Simple Investigación: 1/7 Técnicas de regresión: Regresión Lineal Simple Pértega Díaz S., Pita Fernández S. Unidad de Epidemiología Clínica y Bioestadística. Complexo Hospitalario Juan Canalejo. A Coruña. Cad

Más detalles

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo

2 Modelo de Diseño de Experimentos con dos factores sin interacción. Hipótesis del modelo MODELO DE DISEÑO DE EXPERIMENTOS (VARIOS FACTORES) Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción Los modelos de diseño de experimentos sirven, en general, para tratar de explicar

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante

SOLUCIÓN A LOS EJERCICIOS DEL SPSS Bivariante SOLUCIÓ A LOS EJERCICIOS DEL SPSS Bivariante. a). La media y la varianza de las variables estatura y peso en la escala de medida norteamericana. Peso Peso: Transformar -> Calcular: Libras.4536 Peso libras

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 5. Estimación Facultad de Ciencias Sociales, UdelaR Índice 1. Repaso: estimadores y estimaciones. Propiedades de los estimadores. 2. Estimación puntual.

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso

ESTADISTICA II. INGENIERIA INFORMATICA, 3 ER Curso ESTADISTICA II INGENIERIA INFORMATICA, 3 ER Curso 22 - Diciembre - 2.006 Primera Parte - Test Apellidos y Nombre:... D.N.I. :... Nota : En la realización de este examen sólo esta permitido utilizar calculadoras

Más detalles

Estadística para la Economía y la Gestión IN 3401 Clase 5

Estadística para la Economía y la Gestión IN 3401 Clase 5 Estadística para la Economía y la Gestión IN 3401 Clase 5 Problemas con los Datos 9 de junio de 2010 1 Multicolinealidad Multicolinealidad Exacta y Multicolinealidad Aproximada Detección de Multicolinealidad

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

Teoría de la decisión

Teoría de la decisión 1.- Un problema estadístico típico es reflejar la relación entre dos variables, a partir de una serie de Observaciones: Por ejemplo: * peso adulto altura / peso adulto k*altura * relación de la circunferencia

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas

INDICE Prefacio 1. Introducción 2. Distribuciones de frecuencia: tablas estadísticas y graficas INDICE Prefacio XIII 1. Introducción 1.1. la imagen de la estadística 1 1.2. dos tipos de estadísticas 1.3. estadística descriptiva 2 1.4. estadística inferencial 1.5. naturaleza interdisciplinaria de

Más detalles

Tercera práctica de REGRESIÓN.

Tercera práctica de REGRESIÓN. Tercera práctica de REGRESIÓN. DATOS: fichero practica regresión 3.sf3 1. Objetivo: El objetivo de esta práctica es aplicar el modelo de regresión con más de una variable explicativa. Es decir regresión

Más detalles

Regresión Lineal. 15 de noviembre de Felipe Bravo Márquez

Regresión Lineal. 15 de noviembre de Felipe Bravo Márquez Felipe José Bravo Márquez 15 de noviembre de 2013 Introducción Un modelo de regresión se usa para modelar la relación de una variable dependiente y numérica con n variables independientes x 1, x 2,...,

Más detalles

El Modelo de Regresión Simple

El Modelo de Regresión Simple El Modelo de Regresión Simple Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso 2007/08 C Velasco

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

Examen de Introducción a la Econometría 8 de septiembre de 2008

Examen de Introducción a la Econometría 8 de septiembre de 2008 NOMBRE DNI: GRUPO Firma: MODELO 1: SOLUCIONES Examen de Introducción a la Econometría 8 de septiembre de 008 Sólo una respuesta es válida. Debe justificar la respuesta de cada pregunta en el espacio que

Más detalles

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales

MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales MODELO DE REGRESIÓN LINEAL Y MÚLTIPLE ESTADÍSTICA APLICADA AL MEDIO AMBIENTE Grado en Ciencias Ambientales 3.1. En algunas reservas naturales se controla el número Y de ejemplares de cierta especie al

Más detalles

Análisis de Regresión Múltiple: Estimación

Análisis de Regresión Múltiple: Estimación Análisis de Regresión Múltiple: Estimación Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso

Más detalles

Modelos lineales. Tema 1: Modelo de regresión lineal simple. 6 de febrero de Carmen Armero

Modelos lineales. Tema 1: Modelo de regresión lineal simple. 6 de febrero de Carmen Armero Carmen Armero 6 de febrero de 2012 Introducción Un poco de historia Definición y propiedades Mínimos cuadrados Máxima verosimilitud Ejemplo: Masa muscular y edad 1.I La edad es uno de los factores determinantes

Más detalles

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17

Multicolinealidad. Universidad de Granada. RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 Román Salmerón Gómez Universidad de Granada RSG Incumplimiento de las hipótesis básicas en el modelo lineal uniecuacional múltiple 1 / 17 exacta: aproximada: exacta: aproximada: RSG Incumplimiento de las

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN

TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN TAMAÑO DE MUESTRA EN LA ESTIMACIÓN DE LA MEDIA DE UNA POBLACIÓN En este artículo, se trata de explicar una metodología estadística sencilla y sobre todo práctica, para la estimación del tamaño de muestra

Más detalles

Formulación matricial del modelo lineal general

Formulación matricial del modelo lineal general Formulación matricial del modelo lineal general Estimadores MCO, propiedades e inferencia usando matrices Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni Formulación matricial del modelo

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 01221701 scientia@utp.edu.co Universidad Tecnológica de Pereira Colombia URRUTIA MOSQUERA, JORGE ANDRÉS; SALAZAR, HEVER DARÍO; CRUZ TREJOS, EDUARDO ARTURO EVALUACIÓN DE LA ROBUSTEZ

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

Tema 1. Modelo de diseño de experimentos (un factor)

Tema 1. Modelo de diseño de experimentos (un factor) Tema 1. Modelo de diseño de experimentos (un factor) Estadística (CC. Ambientales). Profesora: Amparo Baíllo Tema 1: Diseño de experimentos (un factor) 1 Introducción El objetivo del Análisis de la Varianza

Más detalles

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n ) Tema 3 Formas cuadráticas. 3.1. Definición y expresión matricial Definición 3.1.1. Una forma cuadrática sobre R es una aplicación q : R n R que a cada vector x = (x 1, x 2,, x n ) R n le hace corresponder

Más detalles

Econometría III Examen. 29 de Marzo de 2012

Econometría III Examen. 29 de Marzo de 2012 Econometría III Examen. 29 de Marzo de 2012 El examen consta de 20 preguntas de respuesta múltiple. El tiempo máximo es 1:10 minutos. nota: no se pueden hacer preguntas durante el examen a no ser que sean

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS

Preliminares Métodos de Ajuste de Curvas AJUSTE DE CURVAS AJUSTE DE CURVAS Contenido 1 Preliminares Definiciones 2 Definiciones Contenido 1 Preliminares Definiciones 2 Definiciones Definiciones En ciencias e ingeniería es frecuente que un experimento produzca un conjunto de datos

Más detalles

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA

CAPÍTULO 4 (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Página de CAPÍTULO (Continuación): ESTADÍSTICA DESCRIPTIVA BIVARIADA Relaciones entre dos variables cuantitativas A menudo nos va a interesar describir la relación o asociación entre dos variables. Como

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

Unidad IV: Distribuciones muestrales

Unidad IV: Distribuciones muestrales Unidad IV: Distribuciones muestrales 4.1 Función de probabilidad En teoría de la probabilidad, una función de probabilidad (también denominada función de masa de probabilidad) es una función que asocia

Más detalles

Diplomado en Estadística Aplicada

Diplomado en Estadística Aplicada Diplomado en Estadística Aplicada Con el propósito de mejorar las habilidades para la toma de decisiones, la División de Estudios de Posgrado de la Facultad de Economía ha conjuntado a profesores con especialidad

Más detalles

Economía Aplicada. Regresión Lineal. Basado en Stock y Watson (cap.4-6), Wooldridge (cap.3-5)

Economía Aplicada. Regresión Lineal. Basado en Stock y Watson (cap.4-6), Wooldridge (cap.3-5) Economía Aplicada Regresión Lineal Basado en Stock y Watson (cap.4-6), Wooldridge (cap.3-5) Outline 1 Modelo de Regresión Lineal Simple Introducción Supuestos Interpretación de los coeficientes Estimación

Más detalles

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables

Índice general. Pág. N. 1. Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN. Diseño. Población. Muestra. Individuo (Observación, Caso, Sujeto) Variables Pág. N. 1 Índice general Capítulo 1 ETAPAS DE UNA INVESTIGACIÓN 1.1 Diseño 1.2 Descriptiva 1.3 Inferencia Diseño Población Muestra Individuo (Observación, Caso, Sujeto) Variables Ejercicios de Población

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO

MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I Y II CONTENIDOS BACHILLERATO BLOQUE 1. PROCESOS, MÉTODOS Y ACTITUDES EN MATEMÁTICAS Los contenidos de este bloque se desarrollan de forma simultánea al resto

Más detalles

Estadística Descriptiva II: Relación entre variables

Estadística Descriptiva II: Relación entre variables Estadística Descriptiva II: Relación entre variables Iniciación a la Investigación Ciencias de la Salud MUI Ciencias de la Salud, UEx 25 de octubre de 2010 De qué trata? Descripción conjunto concreto de

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Resumen teórico de los principales conceptos estadísticos

Resumen teórico de los principales conceptos estadísticos Temas de Estadística Práctica Antonio Roldán Martínez Proyecto http://www.hojamat.es/ Muestreo aleatorio simple Resumen teórico Resumen teórico de los principales conceptos estadísticos Muestreo aleatorio

Más detalles

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión

Estadís5ca. María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo. Tema 2. Modelos de regresión Estadís5ca Tema 2. Modelos de regresión María Dolores Frías Domínguez Jesús Fernández Fernández Carmen María Sordo Departamento de Matemá.ca Aplicada y Ciencias de la Computación Este tema se publica bajo

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp

Regresión en Cadena. StatFolio de Ejemplo: ridge reg.sgp Regresión en Cadena Resumen El procedimiento Regresión en Cadena está diseñado para ajustar un modelo de regresión múltiple cuando las variables independientes exhiben multicolinealidad. Multicolinealidad

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

ANALISIS DE FRECUENCIA EN HIDROLOGIA

ANALISIS DE FRECUENCIA EN HIDROLOGIA ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos

INDICE 1. Introducción 2. Recopilación de Datos Caso de estudia A 3. Descripción y Resumen de Datos 4. Presentación de Datos INDICE Prefacio VII 1. Introducción 1 1.1. Qué es la estadística moderna? 1 1.2. El crecimiento y desarrollo de la estadística moderna 1 1.3. Estudios enumerativos en comparación con estudios analíticos

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Prueba de Hipótesis. Para dos muestras

Prueba de Hipótesis. Para dos muestras Prueba de Hipótesis Para dos muestras Muestras grandes (n mayor a 30) Utilizar tabla Z Ho: μ1 = μ2 H1: μ1 μ2 Localizar en valor de Zt en la tabla Z Error estándar de la diferencia de medias Prueba de

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Análisis de Regresión Múltiple: Inferencia

Análisis de Regresión Múltiple: Inferencia Análisis de Regresión Múltiple: Inferencia Carlos Velasco 1 1 Departamento de Economía Universidad Carlos III de Madrid Econometría I Máster en Economía Industrial Universidad Carlos III de Madrid Curso

Más detalles