Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears"

Transcripción

1 Análisis de la varianza Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

2 CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza con más de un factor. Análisis de la covarianza.

3 Bibliografía: LÉVY, J.P. Y VARELA, J. (003). Análisis multivariable para las ciencias sociales. Ed. Pearson Prentice Hall. Madrid. NEWBOLD, P. (1997). Estadística para los Negocios y la Economía. Prentice Hall. Madrid. PARDO, A. RUÍZ, M. A. (001). SPSS Guía para el análisis de datos. Accesible en: PEÑA, D. (001) ESTADÍSTICA. Modelos y Métodos. Tomo II: Fundamentos. Ed. Alianza Universidad Textos.Madrid. PÉREZ, C. (001). Técnicas estadísticas con SPSS. Ed. Pearson Prentice Hall. Madrid. PERÉZ, C. (004). Técnicas de Anàlisis Multivariante de Datos. Aplicaciones con SPSS. Pearson Educación, S. A. Madrid. URIEL, E. Y ALDÁS, J. (005). Anàlisis Multivariante Aplicado. Thomson. Madrid.

4 Análisis de la Varianza de un factor El Análisis de la Varianza (ANOVA) permite contrastar la igualdad de medias en k poblaciones. En cada una de las poblaciones, la variable cuantitativa X tiene la siguiente distribución: Hipótesis a contrastar: H 0 : µ 1 = µ = = µ k = µ X j N(µ j, σ ) para j = 1,,, k H A : al menos una media es diferente La causa de la posible heterogeneidad de las poblaciones se denomina factor. Los factores son variables cualitativas cuyas categorías determinan las diferentes poblaciones que se comparan.

5 Análisis de la Varianza de un factor Supuestos: Las varianzas de todas las poblaciones son iguales (homocedasticidad). La variable analizada se distribuye normalmente en todas las poblaciones. Incumplimiento de los supuestos: El ANOVA es una técnica robusta a la presencia de heterocedasticidad si el número de observaciones de cada grupo es similar. El ANOVA es una técnica robusta al incumplimiento del supuesto de normalidad si las muestras son grandes.

6 Análisis de la Varianza de un factor Información muestral: POBLACIÓN 1 k x 11 x 1 x k1 Observaciones muestrales x 1 x x k x 1n x n x kn Medias x1 x xk Media global x

7 Análisis de la Varianza de un factor Información muestral: Medidas de variabilidad: 1 x 11 POBLACIÓN x 1 k x k1 - Variabilidad intragrupos: ( x ij x j ) Observaciones muestrales Medias Media global x 1 x 1n x x n x1 x x x k x kn xk - Variabilidad entre grupos: ( x) x j - Variabilidad total: ( x x) ij

8 Análisis de la Varianza de un factor Estadístico de contraste: Medidas de variabilidad: F ( x j x) ( k 1) = ( x x ) ( n k) ij j Ho cierta F k 1,n k - Variabilidad intragrupos: ( x ij x j ) - Variabilidad entre grupos: Rh o si F > F k-1, n-k; α ( x) x j - Variabilidad total: ( x x) ij

9 Análisis de la Varianza de un factor Tabla ANOVA: Fuentes de variación Sumas de cuadrados Grados de libertad Medias de cuadrados F p-valor Entre grupos ( x j x) k 1 ( x j x) ( k 1) F p-valor Intragrupos ( x ij x j ) n k ( xij x j ) ( n k ) ( x) x ij n 1

10 Análisis de la Varianza de un factor Ejemplo. Coste en farmacia por CA. Descriptivos Costes totales por habitante (población total) en euros Intervalo de confianza para la media al 95% N Media Desviación típica Error típico Límite inferior Límite superior Mínimo Máximo Asturias ,175 0,10973,307 14, , ,43 01,90 Cantabria 3 137,730 4, , , , ,88 06,35 La Rioja 18 14,1683 7, , , , ,34 185,37 Murcia 71 14, , , , , ,1 187,43 Aragón ,874 35,6395 3, , , ,30 5,5 Castilla La Mancha ,9665 3,19195, ,33 166, ,7 90,77 Extremadura ,9971 6,83451, , , ,96 14,83 Illes Balears ,8415 6, , ,345 18, ,96 178,99 Madrid 89 10,01 8,7670 1, , ,571 10,60 6,11 Castilla y León 3 143,55 3,54685, , , ,51 30, , ,6660 1, , ,13 10,60 90,77

11 Análisis de la Varianza de un factor Ejemplo. Coste en farmacia por CA. ANOVA Costes totales por habitante (población total) en euros Suma de cuadrados gl Media cuadrática F Sig. Inter-grupos 56106, ,50 7,100,000 Intra-grupos , , ,1 1153

12 Análisis de la Varianza con más de un factor Permite evaluar el efecto individual y conjunto de dos o más variables categóricas sobre una variable dependiente cuantitativa. Hipótesis. Existe una hipótesis nula por cada factor y una por cada posible combinación de factores: La hipótesis nula referida a un factor afirma que las medias de las poblaciones definidas por los niveles del factor son iguales. La hipótesis referida al efecto de una interacción afirma que su efecto es nulo. Para contrastar cada hipótesis se utiliza un estadístico F siguiendo la misma lógica que en el caso del ANOVA de un factor.

13 Análisis de la Varianza con más de un factor Supuestos: Se trabaja con tantas poblaciones como casillas resultan de la combinación de todas las categorías de los factores. Todas las poblaciones son normales. Igualdad de varianzas en todas las poblaciones.

14 Análisis de la Varianza con más de un factor Ejemplo. Coste en farmacia por acreditación docente y porcentaje de MIR Pruebas de los efectos inter-sujetos Variable dependiente: Costes totales por habitante (población total) en euros Suma de Fuente cuadrados tipo III gl Media cuadrática F Significación Modelo corregido ,58 a ,430 36,775,000 Intersección 40345, ,7 547,870,000 porc_mir 67997, ,943 5,777,000 docencia 6403, ,169 7,8,007 porc_mir * docencia 11677, ,737 6,640,001 Error , , , corregida 57118, a. R cuadrado =,339 (R cuadrado corregida =,330)

15 Análisis de la Varianza con más de un factor Ejemplo. Coste en farmacia por acreditación docente y porcentaje de MIR

16 Análisis de la Varianza con más de un factor Ejemplo. Coste en farmacia por acreditación docente y porcentaje de MIR Estadísticos descriptivos Variable dependiente: Costes totales por habitante (población total) en euros Formación de médicos Existencia de Media Desv. típ. N 0 No 18,0577 6, ,0577 6, inferior al 34% No 151, , Sí 118,1513 8, , , entre el 34% y el 66% No 118,73 9, Sí 11,300 4, ,668 8, superior al 66% No 97,1619 8, Sí 101,119 5, ,347 6, No 14, , Sí 109,4694 6, , ,47 437

17 Análisis de la Varianza con más de un factor Ejemplo. Coste en farmacia por acreditación docente y porcentaje de MIR Estimaciones de los parámetros Variable dependiente: Costes totales por habitante (población total) en euros Intervalo de confianza al 95%. Límite Parámetro B Error típ. t Significación Límite inferior superior Intersección 101,1 5,604 18,061,000 90,197 11,6 [porc_mir=0] 84,896 10,797 7,863,000 63, ,117 [porc_mir=1] 16,939 8,814 1,9,055 -,384 34,63 [porc_mir=] 11,018 8,49 1,336,18-5,195 7,31 [porc_mir=3] [docencia=0] -4,050 8,49 -,491,64-0,63 1,163 [docencia=1] [porc_mir=0] * [docencia=0] [porc_mir=1] * [docencia=0] 37,000 10,847 3,411,001 15,680 58,30 [porc_mir=1] * [docencia=1] [porc_mir=] * [docencia=0] 10,047 10,845,96,355-11,68 31,363 [porc_mir=] * [docencia=1] [porc_mir=3] * [docencia=0] [porc_mir=3] * [docencia=1] a. Al parámetro se le ha asignado el valor cero porque es redundante.

18 Análisis de la Covarianza El ANCOVA permite eliminar de la variable dependiente el efecto atribuible a variables no incluidas como factores. El interés sigue siendo analizar los efectos de los factores, contrastándose las mismas hipótesis que en el ANOVA. Además, se contrasta la hipótesis nula de que el efecto de la covariable sobre la dependiente es cero.

19 Análisis de la Covarianza Ejemplo. Coste en farmacia por acreditación docente, porcentaje de MIR, frecuentación y calidad de la prescripción. Pruebas de los efectos inter-sujetos Variable dependiente: Costes totales por habitante (población total) en euros Fuente Modelo corregido Intersección porc_mir docencia porc_mir * docencia frecuent utb_1998 Error corregida Suma de cuadrados Media tipo III gl cuadrática F Significación 791,773 a ,47 5,640, , , ,38, , ,07 7,81, , ,459 5,547, ,14 308,071 3,570, , ,011 7,071, , ,367 95,165, , , , , a. R cuadrado =,507 (R cuadrado corregida =,497)

20 Análisis de la Covarianza Ejemplo. Coste en farmacia por acreditación docente, porcentaje de MIR, frecuentación y calidad de la prescripción. Estimaciones de los parámetros Variable dependiente: Costes totales por habitante (población total) en euros Intervalo de confianza al 95%. Límite Parámetro B Error típ. t Significación Límite inferior superior Intersección 7,48 5,599 1,903,000 61,41 83,54 [porc_mir=0] 47,377 10,175 4,656,000 7,376 67,379 [porc_mir=1] 5,390 8,116,664,507-10,564 1,344 [porc_mir=],050 7,318,80,779-1,334 16,435 [porc_mir=3] [docencia=0] -4,135 7,680 -,538,591-19,33 10,963 [docencia=1] [porc_mir=0] * [docencia=0] [porc_mir=1] * [docencia=0] 7,064 10,179,659,008 7,055 47,074 [porc_mir=1] * [docencia=1] [porc_mir=] * [docencia=0] 13,91 9,848 1,350,178-6,068 3,649 [porc_mir=] * [docencia=1] [porc_mir=3] * [docencia=0] [porc_mir=3] * [docencia=1] frecuent 1,349,59 5,03,000,840 1,859 utb_1998 3,163,34 9,755,000,56 3,801 a. Al parámetro se le ha asignado el valor cero porque es redundante.

21 Análisis de la Covarianza Ejemplo. Coste en farmacia por acreditación docente, porcentaje de MIR, frecuentación y calidad de la prescripción. ANOVA ANCOVA

Prueba t para muestras independientes

Prueba t para muestras independientes Prueba t para muestras independientes El procedimiento Prueba t para muestras independientes compara las medias de dos grupos de casos. Para esta prueba, idealmente los sujetos deben asignarse aleatoriamente

Más detalles

1. Realice la prueba de homogeneidad de variancias e interprete los resultados.

1. Realice la prueba de homogeneidad de variancias e interprete los resultados. 1ª PRÁCTICA DE ORDENADOR (FEEDBACK) Un investigador pretende evaluar la eficacia de dos programas para mejorar las habilidades lectoras en escolares de sexto curso. Para ello asigna aleatoriamente seis

Más detalles

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos

Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Tema 4: Otros Métodos de Análisis de Datos Cuantitativos y Cualitativos Metodología de la Investigación en Fisioterapia Miguel González Velasco Departamento de Matemáticas. Universidad de Extremadura M.

Más detalles

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes

ANOVA. Análisis de la Varianza. Univariante Efectos fijos Muestras independientes ANOVA Análisis de la Varianza Univariante Efectos fijos Muestras independientes De la t a la F En el test de la t de Student para muestras independientes, aprendimos como usar la distribución t para contrastar

Más detalles

ANÁLISIS DE EXPERIMENTOS

ANÁLISIS DE EXPERIMENTOS ANÁLISIS DE EXPERIMENTOS Prof. Dr. José Perea Dpto. Producción Animal ANÁLISIS DE EXPERIMENTOS 1. Introducción 2. Comparación de dos medias 3. Comparación de más de dos medias 4. Pruebas post-hoc 5. ANCOVA

Más detalles

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009

Estadística; 3º CC. AA. Examen final, 23 de enero de 2009 Estadística; 3º CC. AA. Examen final, 3 de enero de 9 Apellidos Nombre: Grupo: DNI. (5 ptos.) En un estudio sobre las variables que influyen en el peso al nacer se han obtenido utilizando SPSS los resultados

Más detalles

TEMA 10 COMPARAR MEDIAS

TEMA 10 COMPARAR MEDIAS TEMA 10 COMPARAR MEDIAS Los procedimientos incluidos en el menú Comparar medias permiten el cálculo de medias y otros estadísticos, así como la comparación de medias para diferentes tipos de variables,

Más detalles

Lucila Finkel Temario

Lucila Finkel Temario Lucila Finkel Temario 1. Introducción: el análisis exploratorio de los datos. 2. Tablas de contingencia y asociación entre variables. 3. Correlación bivariada. 4. Contrastes sobre medias. 5. Regresión

Más detalles

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS

TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS TEMA 4 FASE ESTADÍSTICO-ANALÍTICA: RECURSOS PARA EL ANÁLISIS DE DATOS FASES EN EL ANÁLISIS DE LOS DATOS DE UNA INVESTIGACIÓN SELECCIÓN HIPÓTESIS DE INVESTIGACIÓN Modelo de Análisis Técnica de Análisis

Más detalles

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears

Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears Análisis estadístico básico (I) Magdalena Cladera Munar mcladera@uib.es Departament d Economia Aplicada Universitat de les Illes Balears CONTENIDOS Introducción a la inferencia estadística. Muestreo. Estimación

Más detalles

14 horas. 20 horas

14 horas. 20 horas EJERCICIOS PROPUESTOS ANALISIS DE VARIANZA. Se realiza un ANOVA para comparar el tiempo que demora en aliviar el dolor de cabeza de varios tipos de analgésicos. Se obtiene como resultado un test observado

Más detalles

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA)

ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) ANÁLISIS DE LA VARIANZA CON UN FACTOR (ANOVA) El análisis de la varianza permite contrastar la hipótesis nula de que las medias de K poblaciones (K >2) son iguales, frente a la hipótesis alternativa de

Más detalles

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II

DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II DISEÑO Y ANÁLISIS DE DATOS EN PSICOLOGÍA II PRÁCTICA 5 En una determinada investigación se estudió el rendimiento en matemáticas en función del estilo de aprendizaje de una serie de estudiantes de educación

Más detalles

Tema 2 Análisis de la varianza multifactorial

Tema 2 Análisis de la varianza multifactorial Tema 2 Análisis de la varianza multifactorial Tratamos de explicar el comportamiento de una variable aleatoria (variable respuesta) debido a la influencia de varios factores (variables explicativas) Definición

Más detalles

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN

ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN CURSO DE BIOESTADÍSTICA BÁSICA Y SPSS ASOCIACIÓN ENTRE DOS VARIABLES CONTINUAS: REGRESIÓN Y CORRELACIÓN Amaia Bilbao González Unidad de Investigación Hospital Universitario Basurto (OSI Bilbao-Basurto)

Más detalles

TEMA 4 Modelo de regresión múltiple

TEMA 4 Modelo de regresión múltiple TEMA 4 Modelo de regresión múltiple José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Estructura de este tema Modelo de regresión múltiple.

Más detalles

Para poder analizar los diferentes objetivos e hipótesis planteados, se llevaron a. Correlaciones entre las distintas Variables objeto de estudio.

Para poder analizar los diferentes objetivos e hipótesis planteados, se llevaron a. Correlaciones entre las distintas Variables objeto de estudio. Tesis Doctoral. Juan Ángel Simón Piqueras. Para poder analizar los diferentes objetivos e hipótesis planteados, se llevaron a cabo los siguientes análisis estadísticos: MANCOVA tomando como variables independientes

Más detalles

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN

Capítulo 6. Análisis de la covarianza ANÁLISIS DE LA COVARIANZA UNIFACTORIAL INTRODUCCIÓN Capítulo 6 Análisis de la covarianza INTRODUCCIÓN Es una combinación de dos técnicas: Análisis de la Varianza y Análisis de Regresión. En el Análisis de la Covarianza: F La variable respuesta es cuantitativa

Más detalles

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR

ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR ANOVA I ES EL ANÁLISIS DE LA VARIANZA DE UN FACTOR En el análisis de la varianza con un factor (ANOVA I) se supone que hay variación debida a los tratamientos. Se aplica un tratamiento distinto a cada

Más detalles

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS

SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS SIGNIFICACIÓN ESTADÍSTICA DE LA DIFERENCIA ENTRE 2 MEDIAS 3datos 2011 Variables CUANTITATIVAS Valor más representativo: MEDIA aritmética Técnicas Inferenciales sobre la significación de la diferencia entre

Más detalles

Estimación de Parámetros.

Estimación de Parámetros. Estimación de Parámetros. Un estimador es un valor que puede calcularse a partir de los datos muestrales y que proporciona información sobre el valor del parámetro. Por ejemplo la media muestral es un

Más detalles

Econometría. Multicolinealidad

Econometría. Multicolinealidad Econometría Multicolinealidad Que es? Hay dependencia lineal entra las variables explicativas Ejemplo1 1 3 6 1 X = 1 1 4 8 12 Determinante de X ' X es cero No se puede invertir X ' X No se pueden calcular

Más detalles

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas

GUIA DOCENTE. Curso Académico Licenciatura Administración y Dirección de Empresas GUIA DOCENTE Curso Académico 2012-2013 1. ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA 1.1. Datos de la asignatura Tipo de estudios Licenciatura Titulación Administración y Dirección de Empresas Nombre

Más detalles

CONTRASTES DE HIPÓTESES

CONTRASTES DE HIPÓTESES CONTRASTES DE IPÓTESES 1. Contraste de hipótesis 2. Contrastes de tipo paramétrico 2.1 Contraste T para una muestra 2.2 Contraste T para dos muestras independientes 2.3 Análisis de la varianza 3. Contrastes

Más detalles

TEMA 2 Diseño de experimentos: modelos con varios factores

TEMA 2 Diseño de experimentos: modelos con varios factores TEMA 2 Diseño de experimentos: modelos con varios factores José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Análisis de Datos - Grado en Biología Esquema del tema Modelo bifactorial

Más detalles

PROGRAMA DE CURSO. Código Nombre ESTADISTICA PARA ECONOMIA Y GESTION Nombre en Inglés STATISTICS FOR BUSINESS AND ECONOMICS Unidades

PROGRAMA DE CURSO. Código Nombre ESTADISTICA PARA ECONOMIA Y GESTION Nombre en Inglés STATISTICS FOR BUSINESS AND ECONOMICS Unidades PROGRAMA DE CURSO Código Nombre IN 3401 ESTADISTICA PARA ECONOMIA Y GESTION Nombre en Inglés STATISTICS FOR BUSINESS AND ECONOMICS es Horas Docencia Horas de Trabajo SCT Horas de Cátedra Docentes Auxiliar

Más detalles

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología

1. Ordena los datos en una tabla de contingencia. Economía Matemáticas Literatura Biología Exemple Examen Part II (c) Problema 1 - Solución. En un estudio sobre la elección de la carrera universitaria entre envió cuestionarios a una muestra aleatoria simple de estudiantes preguntando la carrera

Más detalles

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T

Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T Capítulo 13 Contrastes sobre medias Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

Tipo de punta (factor) (bloques)

Tipo de punta (factor) (bloques) Ejemplo Diseño Bloques al Azar Ejercicio -6 (Pág. 99 Montgomery) Probeta Tipo de punta (factor) (bloques) 9. 9. 9.6 0.0 9. 9. 9.8 9.9 9. 9. 9.5 9.7 9.7 9.6 0.0 0. ) Representación gráfica de los datos

Más detalles

Análisis de la varianza ANOVA

Análisis de la varianza ANOVA Estadística Básica. Mayo 2004 1 Análisis de la varianza ANOVA Francisco Montes Departament d Estadística i I. O. Universitat de València http://www.uv.es/~montes Estadística Básica. Mayo 2004 2 Comparación

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado.

Se permite un folio escrito por las dos caras. Cada problema se realiza en hojas diferentes y se entregan por separado. NORMAS El examen consta de dos partes: 0.0.1. Diez Cuestiones: ( tiempo: 60 minutos) No se permite ningún tipo de material (libros, apuntes, calculadoras,...). No se permite abandonar el aula una vez repartido

Más detalles

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias

Capítulo 13. Contrastes sobre medias: Los procedimientos Medias y Prueba T. Medias Capítulo 13 Contrastes sobre medias: Los procedimientos Medias y Prueba T La opción Comparar medias del menú Analizar contiene varios de los procedimientos estadísticos diseñados para efectuar contrastes

Más detalles

4 Análisis de Varianza

4 Análisis de Varianza 4 Análisis de Varianza 4. Análisis de Varianza e.4.1. Quiénes obtienen mejores resultados en Matemáticas, los estudiantes que viven en zonas rurales, en pequeñas ciudades, en ciudades medias o en grandes

Más detalles

Guía docente 2007/2008

Guía docente 2007/2008 Guía docente 2007/2008 Plan 247 Lic.Investigación y Tec.Mercado Asignatura 43579 METODOS CUANTITATIVOS PARA LA INVESTIGACION DE MERCADOS Grupo 1 Presentación Métodos y técnicas cuantitativas de investigación

Más detalles

T2. El modelo lineal simple

T2. El modelo lineal simple T2. El modelo lineal simple Ana J. López y Rigoberto Pérez Dpto Economía Aplicada. Universidad de Oviedo Curso 2010-2011 Curso 2010-2011 1 / 40 Índice 1 Planteamiento e hipótesis básicas 2 Estimación de

Más detalles

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias

Estructura de este tema. Tema 4 Regresión lineal simple. Ejemplo: consumo de vino y dolencias cardíacas. Frecuencias Estructura de este tema Tema 4 Regresión lineal simple José R. Berrendero Departamento de Matemáticas Universidad utónoma de Madrid Planteamiento del problema. Ejemplos Recta de regresión de mínimos cuadrados

Más detalles

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado

PRÁCTICA 3. REGRESIÓN LINEAL SIMPLE CON SPSS Ajuste de un modelo de regresión lineal simple Porcentaje de variabilidad explicado PÁCTICA 3. EGESIÓN LINEAL SIMPLE CON SPSS 3.1. Gráfico de dispersión 3.2. Ajuste de un modelo de regresión lineal simple 3.3. Porcentaje de variabilidad explicado 3.4 Es adecuado este modelo para ajustar

Más detalles

Técnicas de Muestreo Métodos

Técnicas de Muestreo Métodos Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad

Más detalles

Tema 4. Regresión lineal simple

Tema 4. Regresión lineal simple Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores de mínimos cuadrados: construcción y propiedades Inferencias

Más detalles

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos)

EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) EXAMEN DE ESTADÍSTICA II Junio de 2002 SOLUCIÓN (tiempo:100 minutos) PROBLEMA 1 Se quiere comparar la cantidad de energía necesaria para realizar 3 ejercicios o actividades: andar, correr y montar en bici.

Más detalles

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia

Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Universidad de Chile DIPLOMA PREPARACIÓN Y EVALUACIÓN SOCIAL DE PROYECTOS Prof: Sara Arancibia Estudio de Caso: Estudio Morfología Coeficiente de Correlación Considere el archivo Estudio Morfología.sav.

Más detalles

Tema 9: Introducción al problema de la comparación de poblaciones

Tema 9: Introducción al problema de la comparación de poblaciones Tema 9: Introducción al problema de la comparación de poblaciones Estadística. 4 o Curso. Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 9: Introducción al problema

Más detalles

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO

DISEÑOS EXPERIMENTALES DE DOS GRUPOS Y MULTIGRUPO TEMA II ESQUEMA GENERAL Diseño experimental de dos grupos: definición y clasificación Formatos del diseño y prueba de hipótesis Diseño experimental multigrupo: definición Formato del diseño multigrupo

Más detalles

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min.

Estadística II Examen final junio - 17/06/16 Curso 2015/16 Soluciones Duración del examen: 2 h. y 45 min. Estadística II Examen final junio - 17/06/16 Curso 201/16 Soluciones Duración del examen: 2 h. y 4 min. 1. (3, puntos) La publicidad de un fondo de inversión afirma que la rentabilidad media anual del

Más detalles

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto

ESQUEMA GENERAL. Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño factorial mixto DISEÑOS DE MEDIDAS REPETIDAS Definición En el diseño medidas

Más detalles

Tema 4. Análisis multivariante de la varianza

Tema 4. Análisis multivariante de la varianza Máster en Técnicas Estadísticas Análisis Multivariante Año 2008 2009 Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias

Más detalles

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA G969 - Métodos Estadísticos en Economía y Empresa Grado en Economía Curso Académico 2015-2016 1. DATOS IDENTIFICATIVOS Título/s Grado en Economía Tipología y Optativa.

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE REGRESIÓN LINEAL SIMPLE 1. El problema de la regresión lineal simple. Método de mínimos cuadrados 3. Coeficiente de regresión 4. Coeficiente de correlación lineal 5. El contraste de regresión 6. Inferencias

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Tema 3: Análisis de datos bivariantes

Tema 3: Análisis de datos bivariantes Tema 3: Análisis de datos bivariantes 1 Contenidos 3.1 Tablas de doble entrada. Datos bivariantes. Estructura de la tabla de doble entrada. Distribuciones de frecuencias marginales. Distribución conjunta

Más detalles

Anova unifactorial Grados de Biología y Biología sanitaria

Anova unifactorial Grados de Biología y Biología sanitaria Anova unifactorial Grados de Biología y Biología sanitaria M. Marvá e-mail: marcos.marva@uah.es Unidad docente de Matemáticas, Universidad de Alcalá 29 de noviembre de 2015 El problema Analizaremos la

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías

Estas dos clases. ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA I 19-8-2014 Estas dos clases ANOVA I - Conceptos generales - Supuestos - ANOVA de una vía - Transformación de datos - Test a Posteriori - ANOVA de dos vías ANOVA II - ANOVA factorial - ANCOVA (análisis

Más detalles

MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO

MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO MÉTODOS ESTADÍSTICOS 4º Biológicas Septiembre 2009 PRIMER EJERCICIO Resultados obtenidos por los hombres ganadores de las medallas de oro en salto de longitud y salto de altura en las olimpiadas desde

Más detalles

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows.

Departamento de Medicina Preventiva y Salud Publica e Historia de la Ciencia. Universidad Complutense de Madrid. SPSS para windows. TEMA 13 REGRESIÓN LOGÍSTICA Es un tipo de análisis de regresión en el que la variable dependiente no es continua, sino dicotómica, mientras que las variables independientes pueden ser cuantitativas o cualitativas.

Más detalles

Regresión con variables independientes cualitativas

Regresión con variables independientes cualitativas Regresión con variables independientes cualitativas.- Introducción...2 2.- Regresión con variable cualitativa dicotómica...2 3.- Regresión con variable cualitativa de varias categorías...6 2.- Introducción.

Más detalles

1º CURSO BIOESTADÍSTICA

1º CURSO BIOESTADÍSTICA E.U.E. MADRID CRUZ ROJA ESPAÑOLA UNIVERSIDAD AUTÓNOMA DE MADRID CURSO ACADÉMICO 2012/2013 1º CURSO BIOESTADÍSTICA Coordinación: Eva García-Carpintero Blas Profesores: María de la Torre Barba Fernando Vallejo

Más detalles

478 Índice alfabético

478 Índice alfabético Índice alfabético Símbolos A, suceso contrario de A, 187 A B, diferencia de los sucesos A y B, 188 A/B, suceso A condicionado por el suceso B, 194 A B, intersección de los sucesos A y B, 188 A B, unión

Más detalles

Grupo: Fecha: Nombre y Apellidos. -1. Formular la hipótesis nula y la hipótesis alternativa

Grupo: Fecha: Nombre y Apellidos. -1. Formular la hipótesis nula y la hipótesis alternativa 1 Grupo: Fecha: Nombre y Apellidos. -1. Formular la hipótesis nula y la hipótesis alternativa -2. Decidir el nivel de significación estadística a priori -3. Decidir qué prueba estadística es la más recomendable

Más detalles

2. Plantear hipótesis considerando que: Hipótesis: Siendo una prueba no direccionada, el planteamiento de hipótesis, señalará que:

2. Plantear hipótesis considerando que: Hipótesis: Siendo una prueba no direccionada, el planteamiento de hipótesis, señalará que: Análisis de varianza El análisis de la varianza, conocida también como ANVAR o ANOVA, por sus siglas en inglés (ANalysis Of VAriance) es un método que permite comparar dos o más grupos de datos a través

Más detalles

BIOSESTADÍSTICA AMIGABLE

BIOSESTADÍSTICA AMIGABLE BIOSESTADÍSTICA AMIGABLE EJEMPLO: Ficha solicitud Colección Reserva UNIVERSIDAD AUSTRAL DE CHILE SISTEMA DE BIBLIOTECAS Clasificación: 574.015195 MAR 2001 Vol. y/o Copia: Apellido Autor: Título: C. 1 (SEGÚN

Más detalles

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición...

2 Introducción a la inferencia estadística Introducción Teoría de conteo Variaciones con repetición... Contenidos 1 Introducción al paquete estadístico S-PLUS 19 1.1 Introducción a S-PLUS............................ 21 1.1.1 Cómo entrar, salir y consultar la ayuda en S-PLUS........ 21 1.2 Conjuntos de datos..............................

Más detalles

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL

PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL 1 PROYECTO DEL CURSO DE ESTADÍSTICA INFERENCIAL Prof.: MSc. Julio R. Vargas A. I. INTRODUCCION El presente trabao está orientado a aplicar los conocimientos de estadística inferencial a un caso práctico

Más detalles

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE

ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE ANÁLISIS ESTADÍSTICO REGRESIÓN LINEAL SIMPLE Jorge Fallas jfallas56@gmail.com 2010 1 Temario Introducción: correlación y regresión Supuestos del análisis Variación total de Y y variación explicada por

Más detalles

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011

Índice. Diseños factoriales. José Gabriel Palomo Sánchez E.U.A.T. U.P.M. Julio de 2011 Diseños factoriales José Gabriel Palomo Sánchez gabrielpalomo@upmes EUAT UPM Julio de 2011 Índice 1 Diseños factoriales con dos factores 1 Denición 2 Organización de los datos 3 Ventajas de los diseños

Más detalles

Estadística de Precios de Suelo del segundo trimestre de Nota de prensa

Estadística de Precios de Suelo del segundo trimestre de Nota de prensa Estadística de Precios de Suelo del segundo trimestre de 2016 El precio medio del suelo urbano creció un 6,6% en el segundo trimestre de 2016 en tasa interanual Se han realizado 4.435 transacciones de

Más detalles

Supuestos y comparaciones múltiples

Supuestos y comparaciones múltiples Supuestos y comparaciones múltiples Diseño de Experimentos Pruebas estadísticas Pruebas de bondad de ajuste Prueba de hipótesis para probar si un conjunto de datos se puede asumir bajo una distribución

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS

LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS DEPARTAMENT D ECONOMIA APLICADA UNIVERSITAT DE VALENCIA LICENCIATURA EN ECONOMÍA Y LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS PROGRAMA DE ESTADÍSTICA E INTRODUCCIÓN A LA ECONOMETRÍA TEMA 1: INTRODUCCIÓN

Más detalles

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple

ESTADÍSTICA APLICADA. Tema 4: Regresión lineal simple ESTDÍSTIC PLICD Grado en Nutrición Humana y Dietética Planteamiento del problema Tema 4: Regresión lineal simple Recta de regresión de mínimos cuadrados El modelo de regresión lineal simple IC y contrastes

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL PROGRAMA DE LA ASIGNATURA DE: IDENTIFICACIÓN DE LA ASIGNATURA

Más detalles

Una vez realizados estos procesos conviene verificar que han aparecido las dos nuevas variables (columnas) en el archivo de datos.

Una vez realizados estos procesos conviene verificar que han aparecido las dos nuevas variables (columnas) en el archivo de datos. ECONOMETRÍA 09 PRACTICA 1: REPASO DE SPSS 1. Cuántas variables hay en el fichero? Y cuántas observaciones? Qué representa cada observación? Distingue entre variables cualitativas y cuantitativas. El fichero

Más detalles

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10

Estadística II Tema 4. Regresión lineal simple. Curso 2009/10 Estadística II Tema 4. Regresión lineal simple Curso 009/10 Tema 4. Regresión lineal simple Contenidos El objeto del análisis de regresión La especificación de un modelo de regresión lineal simple Estimadores

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS

INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS INTRODUCCIÓN A LA ECONOMETRÍA (LE Y LADE, mañana) Prof. Magdalena Cladera APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL Y SPSS CONTENIDOS APLICACIONES DE INFERENCIA ESTADÍSTICA DE EXCEL... 2 1. Probabilidad...

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS

ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS ANÁLISIS DESCRIPTIVO DE LOS DATOS DE VARIABLES CUANTITATIVAS 3datos 2011 Variables CUANTITATIVAS Números con unidad de medida (con un instrumento, o procedimiento, de medición formal) Ej.: Tasa cardiaca;

Más detalles

ANEXO I. ANÁLISIS DE LA VARIANZA.

ANEXO I. ANÁLISIS DE LA VARIANZA. ANEXO I. ANÁLISIS DE LA VARIANZA. El análisis de la varianza (o Anova: Analysis of variance) es un método para comparar dos o más medias. Cuando se quiere comparar más de dos medias es incorrecto utilizar

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Introducción a la Estadística Aplicada en la Química

Introducción a la Estadística Aplicada en la Química Detalle de los Cursos de Postgrado y Especialización en Estadística propuestos para 2015 1/5 Introducción a la Estadística Aplicada en la Química FECHAS: 20/04 al 24/04 de 2015 HORARIO: Diario de 10:00

Más detalles

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD

TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD TÉCNICAS ESTADÍSTICAS APLICADAS EN NUTRICIÓN Y SALUD Contrastes de hipótesis paramétricos para una y varias muestras: contrastes sobre la media, varianza y una proporción. Contrastes sobre la diferencia

Más detalles

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA

ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA ESTADÍSTICA I PRESENTACIÓN DE LA ASIGNATURA Descripción de la asignatura Estadística I El objetivo de la asignatura es proporcionar al estudiante conocimiento Departamento de Estadística y comprensión

Más detalles

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F

Bloque 3 Tema 14 ANÁLISIS DE LA VARIANZA. PRUEBA F Bloque 3 Tema 4 AÁLISIS DE LA VARIAZA. PRUEBA F El objetivo fundamental de la experimentación es estudiar la posible relación de causalidad existente entre dos o más variables. Este estudio representa

Más detalles

Intervalos de Confianza

Intervalos de Confianza Intervalos de Confianza Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Intervalo de Confianza Se puede hacer una estimación puntual de

Más detalles

12. El Modelo Lineal General. Análisis de varianza factorial Univariante.

12. El Modelo Lineal General. Análisis de varianza factorial Univariante. MLG. ANOVA factorial univariante 1. El Modelo Lineal General. Análisis de varianza factorial Univariante. 1.1 Introducción En el capítulo anterior se ha visto, dentro de los varios procedimientos que permiten

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery)

Ejemplo Diseño Completamente aleatorizado (Pág. 470 Montgomery) Ejemplo Diseño Completamente aleatorizado (Pág. 47 Montgomery) ) Representación gráfica de los datos mediante diagramas de caja Resumen del procesamiento de los casos Tension del papel (psi) Casos Válidos

Más detalles

Ejercicios resueltos

Ejercicios resueltos UNIDAD TEMÁTICA 7 CONTRASTE DE HIPÓTESIS ENUNCIADO 1 Se ha realizado una encuesta en una población mediante una muestra de 200 personas resultando 72 fumadores. (a Estima la proporción de fumadores así

Más detalles

Departamento de Matemática Aplicada a la I.T. de Telecomunicación

Departamento de Matemática Aplicada a la I.T. de Telecomunicación Departamento de Matemática Aplicada a la I.T. de Telecomunicación ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS CONVOCATORIA: ENERO 22/23 FECHA: 9 de Enero de 23 Duración del examen: 3 horas Fecha publicación

Más detalles

Tema 10: Introducción a los problemas de Asociación y Correlación

Tema 10: Introducción a los problemas de Asociación y Correlación Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación

Más detalles

1 El Análisis de Varianza

1 El Análisis de Varianza 1 El Análisis de Varianza Objetivo: Explicar (controlar las variaciones de una v.a. Y continua (numérica, mediante factores (variables cualitativas que definen categorías que controlamos (no aleatorios.

Más detalles

INDICE. Prólogo a la Segunda Edición

INDICE. Prólogo a la Segunda Edición INDICE Prólogo a la Segunda Edición XV Prefacio XVI Capitulo 1. Análisis de datos de Negocios 1 1.1. Definición de estadística de negocios 1 1.2. Estadística descriptiva r inferencia estadística 1 1.3.

Más detalles

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara

CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara CURSO-TALLER DE ANÁLISIS ESTADÍSTICO BÁSICO CON EXCEL Y SPSS Instructor: Mario Alberto Barajas Malacara Descripción: Los temas de estadística propuestos corresponden con los conocimientos mínimos que un

Más detalles

CONTRASTACIÓN DE HIPÓTESIS

CONTRASTACIÓN DE HIPÓTESIS UNIVERSIDAD NACIONAL JOSE FAUSTINO SANCHEZ CARRIÓN ESCUELA DE POSTGRADO MAESTRIA EN DOCENCIA SUPERIOR E INVESTIGACIÓN UNIVERSITARIA ASIGNATURA: ESTADÍSTICA PARA LA INVESTIGACIÓN EDUCATIVA CONTRASTACIÓN

Más detalles

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS

GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS GUÍA 5 : EFECTO DEL ESTRÉS EN EL PESO DE RECIÉN NACIDOS Se realizó un estudio a partir de una muestra aleatoria de mujeres atendidas por el departamento de obstetricia y ginecología de cierta clínica particular.

Más detalles

Curso de nivelación Estadística y Matemática

Curso de nivelación Estadística y Matemática Curso de nivelación Estadística y Matemática Sexta clase: Programa Técnico en Riesgo, 2016 Agenda 1 2 de una vía 3 Pasos para realizar una prueba de hipótesis Prueba de hipotesis Enuncia la H 0 ylah 1,ademásdelniveldesignificancia(a).

Más detalles

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016

Pruebas de Hipótesis-ANOVA. Curso de Seminario de Tesis Profesor QF Jose Avila Parco Año 2016 Pruebas de Hipótesis-ANOVA Curso de Seminario de Tesis Profesor Q Jose Avila Parco Año 2016 Análisis de la Varianza de un factor (ANOVA) El análisis de la varianza (ANOVA) es una técnica estadística paramétrica

Más detalles

Paro Registrado Aragón. Diciembre 2016

Paro Registrado Aragón. Diciembre 2016 Instituto Aragonés de Estadística / Informes de Coyuntura 04/01/2017 Paro Registrado. Diciembre 2016 Informe mensual que recoge los datos de paro registrado, su evolución y variaciones según distintas

Más detalles

Paro Registrado Aragón. Febrero 2017

Paro Registrado Aragón. Febrero 2017 Instituto Aragonés de Estadística / Informes de Coyuntura 02/03/2017 Paro Registrado. Febrero 2017 Informe mensual que recoge los datos de paro registrado, su evolución y variaciones según distintas variables:

Más detalles

ANÁLISIS DE REGRESIÓN

ANÁLISIS DE REGRESIÓN ANÁLISIS DE REGRESIÓN INTRODUCCIÓN Francis Galtón DEFINICIÓN Análisis de Regresión Es una técnica estadística que se usa para investigar y modelar la relación entre variables. Respuesta Independiente Y

Más detalles