DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional"

Transcripción

1 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 DESARROLLO de Unidad VIII: Movimiento Potencial Bidimensional Poblema 6 : Una fuente bidimensional de intensidad q está ubicada en una esquina ectangula fomada po dos paedes semi-infinitas. La fuente se encuente equidistante de ambas paedes una distancia h. Empleando el concepto del método de imágenes encuente la distibución de velocidad de pesión sobe la paed infeio como función de q Sol. : q h + h u v π ( h) + h ( + h) + h + DESARROLLO Obseve que el flujo posee simetía especto una línea a 45 o de manea que lo que es velocidad u en la mitad infeio seá idéntico a la componente v en la mitad supeio, vicevesa. Además, en el flujo mostado, las paedes son planos en los cuáles el flujo es tangencial, de manea que pueden se eemplazadas po planos de simetía con la siguiente configuación de 4 fuentes: q q q q Po lo tanto, el potencial del flujo es la suma de 4 fuentes en la disposición mostada. El potencial de una fuente ubicada en un punto - está dado po: φ ln dónde es la distancia desde la fuente al punto genéico - Pag.1

2 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Paa una fuente: (( ) ( ) ) φ ln 4π 4π + φ u + ln ( ) ( ) φ v + ( ) ( ) Paa las 4 fuentes mostadas, la componente u seá entonces: h h + h + h u h + h h + + h + h + h + h + h ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) La velocidad u sobe el plano seá: h h + h + h u ( h) + h ( h) + h ( + h) + h ( + h) + h h + h + ( h) + h ( + h) + h u h + h u + π ( h) + h ( + h) + h Obseve que eistiá u en (la esquina de la configuación) cuando. Además u seá máimo en un punto intemedio. Obviamente la componente v en todo el plano hoizontal. u máimo 1.85 h El campo de movimiento seá: Pag.

3 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Poblema 63 : Un vótice espial se foma combinando una fuente de intensidad un vótice iotacional de ciculación Γ. Es el modelo elemental del movimiento en el plano de situaciones físicas concetas como las siguientes: el desagote de líquido de un ecipiente a tavés de un oificio en el fondo (empleando un sumideo ubicado en el oificio). el movimiento de la masa de aie alededo del núcleo de un tonado (empleando un sumideo en el cento del núcleo). el flujo de salida del oto de una bomba centífuga (empleando una fuente en el eje de otación). Obtenga el campo de velocidades mueste que las líneas de coiente del vótice espial son espiales logaítmicas dadas po : DESARROLLO k e Γ dónde k es la constante que identifica una línea de coiente dada. Asumo como ejemplo un vótice en sentido anti-hoaio un sumideo: Γ φ ln Γ ψ ln u u φ 1 ψ 1 1 φ ψ Γ 1 Obseve que el sumideo apota la velocidad adial (negativa) que el vótice anti-hoaio apota la velocidad tansvesal (positiva). La ecuación de las líneas de flujo es: d V En coodenadas polaes: eˆ ˆ ˆ e e d d o u d u d u u Γ 1 1 d + d Sepaando vaiables: Integando: ln + cte Γ Finalmente: ( ) k e Γ k es una constante positiva puesto que es k e cte d d Γ e e Pag.3

4 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Poblema 64 : Considee el flujo alededo de un cilindo cicula de adio R que esulta de combina un doblete con un flujo unifome. Sea el caso del flujo de una coiente unifome de velocidad U en la diección, a lo lago de un piso hoizontal con una constucción semi-cilíndica de adio R sobesaliendo del nivel de suelo. a) Obtenga la distibución de velocidades de pesiones sobe el cilindo b) Patiendo del esultado teóico de la distibución de pesiones sobe el cilindo, obtenga la fueza de sustentación sobe el semi-cilindo con el modelo de flujo ideal. 5 Sol. : u U cos ; u ; F ρ U R 3 DESARROLLO La combinación está dada po la suma, a sea de las funciones potenciales o las funciones de coiente: cos cos φ U σ U cos σ + + sin cos ψ U σ U sin σ Las componentes de velocidad adial tansvesal son: φ σ cos σ u U cos U cos 1 φ 1 σ sin σ u U sin U + sin Sobe el cilindo, la velocidad adial es nula paa cualquie, de manea que: U σ R Lo cuál detemina la intensidad del doblete según el adio del cilindo: σ R U La única velocidad sobe el cilindo, en R, está dada po la componente tansvesal: σ R U u U + sin U sin + R R u U sin La pesión local se plantea con la ecuación de Benoullí, ente la coiente libe un punto cualquiea: 1 1 p + ρu p+ ρ u + u ( ) Sobe el cilindo, la pesión manomética es entonces: Pag.4

5 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 1 u 1 p p ρu 1 ρu ( 1 4sin ) U El coeficiente de pesiones es: C p p p 1 4sin 1 ρu Paa el cálculo de fuezas sobe un cuepo, el elemento de fueza de pesión sobe la supeficie del cuepo está dado en un caso geneal po: df p p da n p ( ) ˆ La fueza vetical sobe el cuepo se obtiene integando dicha fueza poectada en el eje : ( ) ˆ ˆ F p p dan j En nuesto caso el cuepo es un semi-cilindo de adio R ancho b. Sobe la mitad supeio del cilindo se tiene que: da R b d nˆ ˆj sin Reemplazando e integando: 1 ρ ( 1 4sin ) sin 1 π ρurb ( 1 4sin ) sin d 5 ρ U Rb 3 F U Rbd Veso n R Pag.5

6 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Poblema 65 : La combinación de una fuente de intensidad una coiente unifome de velocidad U puede emplease paa epesenta el flujo alededo de un cuepo semi-infinito, denominado poa de Fuhman, alineado con una coiente etena. Obtenga el valo de la función de coiente de la línea del punto de impacto (o punto de estancamiento). Obtenga la foma del cuepo en función de U así como la distibución de pesiones. DESARROLLO Combinamos un flujo unifome U alineado con el eje más una fuente en el oigen, sumando los potenciales las funciones de coiente: La función potencial: φ U+ ln U+ ln + U+ ln ( + ) 4π La función de coiente: ψ U U actan + + Conviene tabaja en coodenadas polaes en luga de coodenadas catesianas: φ Ucos + ln ψ Usin + cos sin Las componentes de velocidad se obtienen deivando φ o ψ : 1 ψ u U cos + ψ u U sin El punto de impacto seá el punto dónde se igualan a ceo ambas componentes de velocidad: Seá u en U cos Seá u en π Pag.6

7 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Po lo tanto el punto de impacto está ubicado en: π U El valo de la función de coiente en el punto de impacto queda dado po: ψ PI La línea de flujo que pasa po el punto de impacto coesponde al valo: ψ (, ) ψ PI. Po lo que la foma del cuepo está dada po: U sin U π sin Resulta un cuepo semi infinito de ancho finito pues paa el adio peo tiende a una dimensión finita en : Asíntota paa Escibiendo la foma del cuepo como sin 1 U π paa Asíntota paa se obseva que posee asíntotas La velocidad sobe el cuepo está dada po eemplaza la foma del cuepo en las fómulas de las componentes de velocidad: u U sin sin u Ucos + U cos 1 + π 1 U π sin El coeficiente de pesiones está dado po: C p u 1 + u U sin 1 sin cos + π sin sin + cos π π Pag.7

8 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Resulta una distibución de la siguiente foma: Pico de succión: C p mínimo < Asíntota: C p Punto de impacto: C p +1 Si con el flujo unifome se combinaa un sumideo en luga de una fuente, en luga de un cuepo delanteo, o poa, se obtendía sino un cuepo posteio, "cola" o "popa", semi infinito como se muesta: Pag.8

9 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Poblema 66 : Una planta de potencia costea toma un caudal de 11 m 3 /seg de agua de ma mediante un tubo colecto vetical pefoado de manea unifome e inmeso en 8 m de agua. Si la velocidad de la coiente de agua es de 5 cm/seg, estime a que distancia aguas abajo, aguas aiba latealmente se hacen peceptibles los efectos de la toma de caudal. Emplee un modelo de flujo potencial bidimensional. Asuma un citeio de petubación meno a un %. Tubo vetical pefoado de manea unifome V.5 m/s b 8 m 11 m 3 /s DESARROLLO Si se despecian los efectos tidimensionales en el flujo, éste poblema se esuelve combinando una coiente unifome de.5 m/s con un sumideo bidimensional de intensidad σ En flujo bidimensional la intensidad de fuente o de sumideo es un caudal po unidad de longitud, po lo tanto la constante σ del sumideo seá: 3 11 m / s σ b 8 m m / s El flujo combinación de ambos flujos elementales está dado po: σ φ Ucos ln σ ψ Usin El campo de velocidades esta dado po: σ u U cos u U sin La magnitud de la velocidad local esta dada po: U U cos + ( U sin ) σ Paa estudia la petubación aguas aiba de la toma de caudal eemplazamos π : σ σ U U U π U U Aplicando el citeio del % de petubación especto la coiente se plantea: Pag.9

10 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 σ U U U σ U U U Reemplazamos los valoes numéicos despejamos: m Es deci que po delante de la toma de caudal, el % de petubación ecién se nota a una distancia de 438 m po delante del tubo colecto. Paa estudia la petubación latealmente a la toma de caudal eemplazamos π /: U σ + U Aplicando el citeio del % de petubación especto la coiente se plantea: 1. U 1.44 U σ + U σ + U Reemplazamos los valoes numéicos despejamos: m Es deci que latealmente a la toma de caudal, el % de petubación ecién se nota a una distancia de 9 m a ambos costados del tubo colecto. Pag.1

11 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 Poblema 67 : La combinación de un flujo unifome de velocidad U con una fuente un sumideo de iguales intensidades sepaados una distancia como se muesta, puede epesenta el flujo ideal alededo de un cuepo de foma oval denominado óvalo de Rankine alineado con una coiente etena. Obtenga el valo de la función de coiente de la línea del punto de impacto. Obtenga la semi-longitud a en función de, U. Discuta el método de obtene la foma del cuepo la distibución de pesiones., a DESARROLLO Sumando las tes soluciones elementales: un flujo unifome U alineado con el eje, una fuente en un sumideo en esultan: La función potencial: φ U+ ln 1 ln U+ ln ( + ) + ln ( ) + U+ ln ( + ) + ln ( ) π ( ) ( ) La función de coiente: ψ U + 1 U + actan actan + π Los dos puntos de impacto se buscan igualando a ceo ambas componentes de velocidad: φ ( + ) ( ) u U + 4 π ( + ) + 4 ( ) + + U + π ( + ) + ( ) + π Pag.11

12 Depatamento de Aeonáutica : Mecánica de los Fluidos IA 7 φ v 4 π ( + ) + 4 π ( ) π ( + ) + ( ) + Se obseva que en se tendá v siempe. Buscamos entonces los ceos de u + u U + π ( + ) + ( ) U + + U + U + U π Se despeja la posición en de los puntos de impacto: La semi-longitud del cuepo seá: a + + πu PI ± + πu Reemplazando los valoes de e de los puntos de impacto en la función de coiente se veifica que coesponde ψ PI La foma del cuepo está dada entonces po: ψ (, ) ψ PI U + actan actan + Se tata de una elación implícita que equiee del cálculo numéico paa obtene la foma del cuepo. Dicha foma no esta dada po una ecuación algebaica diecta. Pag.1

D = 4 cm. Comb. d = 2 mm

D = 4 cm. Comb. d = 2 mm UNIDAD 7 - POBLEMA 55 La figua muesta en foma simplificada el Ventui de un cabuado. La succión geneada en la gaganta, po el pasaje del caudal de aie debe se suficiente paa aspia un cieto caudal de combustible

Más detalles

Capa límite. Flujo irrotacional. Figura 6.1: Flujo irrotacional y capa límite sobre un cuerpo.

Capa límite. Flujo irrotacional. Figura 6.1: Flujo irrotacional y capa límite sobre un cuerpo. 70 Capítulo 6 Flujo Potencial Se analizaá en éste capítulo un tipo paticula de flujo o escuimiento denominado flujo potencial. Este tipo de flujo se denomina así a ue es posible defini una función potencial

Más detalles

FLUJO POTENCIAL BIDIMENSIONAL (continuación)

FLUJO POTENCIAL BIDIMENSIONAL (continuación) Pof. ALDO TAMBURRINO TAVANTZIS Pof. ALDO TAMBURRINO TAVANTZIS FLUJO POTENCIAL BIDIMENSIONAL (continuación) RESUMEN DE LA CLASE ANTERIOR Si un flujo es iotacional, V 0, entonces eiste una función escala

Más detalles

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA

INSTITUTO DE FÍSICA MECÁNICA NEWTONIANA INSTITUT DE FÍSIC ECÁNIC NEWTNIN Cuso 009 Páctico V Sistemas de Patículas y Sistemas ígidos Pate : Sistemas de patículas Ejecicio N o 1 Halla geométicamente, es deci, aplicando popiedades de simetía o

Más detalles

Ejemplos 2. Cinemática de los Cuerpos Rígidos

Ejemplos 2. Cinemática de los Cuerpos Rígidos Ejemplos. Cinemática de los Cuepos Rígidos.1. Rotación alededo de un eje fijo.1.** El bloque ectangula ota alededo de la ecta definida po los puntos O con una velocidad angula de 6,76ad/s. Si la otación,

Más detalles

Fuerza magnética sobre conductores.

Fuerza magnética sobre conductores. Fueza magnética sobe conductoes. Peviamente se analizó el compotamiento de una caga q que se mueve con una velocidad dento de un campo magnético B, la cual expeimenta una fueza dada po la expesión: F q(v

Más detalles

Lección 2. El campo de las cargas en reposo: campo electrostático.

Lección 2. El campo de las cargas en reposo: campo electrostático. Lección 2. El campo de las cagas en eposo: campo electostático. 41. Sea el campo vectoial E = x x 2 + y u y 2 x + x 2 + y u 2 y. Puede tatase de un campo electostático? Cuánto vale el flujo de E a tavés

Más detalles

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO

APUNTES DE FÍSICA II Profesor: José Fernando Pinto Parra UNIDAD 7 POTENCIAL ELECTROSTÁTICO EL POTENCIAL ELÉCTRICO. REPÚBLICA BOLIVARIANA DE VENEZUELA APUNTES DE FÍSICA II Pofeso: José Fenando Pinto Paa UNIDAD 7 POTENCIAL ELECTROSTÁTICO Dos cagas en la misma posición tienen dos veces más enegía

Más detalles

ANEJO 2 CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A2.1.- INTRODUCCIÓN

ANEJO 2 CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A2.1.- INTRODUCCIÓN Anejo ANEJO CÁLCULO DE DEPÓSITOS CILÍNDRICOS CIRCULARES SEGÚN LA TEORIA DE LÁMINAS A.1.- INTRODUCCIÓN En el capítulo 3 se ha desaollado una fomulación paa el dimensionamiento y compobación de depósitos

Más detalles

z Región III Región II Región I

z Región III Región II Región I Capacito de placas ciculaes - solución completa amos a calcula el potencial electostático en todo el espacio paa un capacito de placas ciculaes y paalelas. Las placas conductoas están ubicadas en z = ±l/2,

Más detalles

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos:

Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: FÍSICA GENERAL II GUÍA - Campo eléctico: Ley de Gauss Objetivos de apendizaje Esta guía es una heamienta que usted debe usa paa loga los siguientes objetivos: Defini el concepto de Flujo de Campo Eléctico.

Más detalles

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades.

Consideremos dos placas paralelas en contacto, con sus correspondientes espesores y conductividades. Continuación: Tansfeencia de calo a tavés de placas compuestas: Consideemos dos placas paalelas en contacto, con sus coespondientes espesoes y conductividades. En la supeficie de contacto la tempeatua

Más detalles

XIII.- TEOREMA DEL IMPULSO

XIII.- TEOREMA DEL IMPULSO XIII.- TEOREMA DEL IMPULSO http://libos.edsauce.net/ XIII.1.- REACCIÓN DE UN FLUIDO EN MOVIMIENTO SOBRE UN CANAL GUÍA El cálculo de la fueza ejecida po un fluido en movimiento sobe el canal que foman los

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO Facultad de iencias uso - SOLUIOS ROLMAS FÍSIA. TMA : AMO LÉTRIO. n los puntos (; ) y (-; ) de un sistema de coodenadas donde las distancias se miden en cm, se sitúan dos cagas puntuales de valoes, y -,

Más detalles

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica?

IES Menéndez Tolosa Física y Química - 1º Bach Campo eléctrico I. 1 Qué afirma el principio de conservación de la carga eléctrica? IS Menéndez Tolosa ísica y Química - º Bach ampo eléctico I Qué afima el pincipio de consevación de la caga eléctica? l pincipio indica ue la suma algebaica total de las cagas elécticas pemanece constante.

Más detalles

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo:

Derivando dos veces respecto del tiempo obtenemos la aceleración del cuerpo: MMENT ANGULAR: El vecto de posición de un cuepo de 6 kg de masa está dado po = ( 3t 2 6t) i ˆ 4t 3 ˆ j ( en m y t en s). Halla la fueza que actúa sobe la patícula, el momento de fuezas especto del oigen,

Más detalles

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES.

OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. OTRAS APLICACIONES DE LA APROXIMACIÓN DE CAPA LÍMITE LAMINAR. CORRIENTES LIBRES. 1 Intoducción Los movimientos de choos de líquido en el seno del mismo líquido, la estela de cuepos en el seno de una coiente

Más detalles

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.

Diferencia de potencial y potencial eléctricos. En el campo gravitatorio. Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia

Más detalles

Hoy trataremos algún aspecto del diseño de una vasija o depósito de pared delgada (t/r<10) sometida a presión interna

Hoy trataremos algún aspecto del diseño de una vasija o depósito de pared delgada (t/r<10) sometida a presión interna CAPÍTULO 1 TENSIÓN Ho tataemos algún aspecto del diseño de una vasija o depósito de paed delgada (t/

Más detalles

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 02. LOGSE / FÍSICA / EXAMEN COMPLETO CANAIAS / SEPTIEMBE 0. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un

Más detalles

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice

Cátedra de Física 1. Autor: Ing. Ricardo Minniti. Sábado 10 de Febrero de 2007 Página 1 de 14. Índice Cáteda de Física Índice Figua - Enunciado Solución Ecuación - Momento de inecia definición Figua - Sistema de estudio 3 Ecuación - Descomposición del momento de inecia3 Figua 3 - Cálculo del momento de

Más detalles

CAPÍTULO II LEY DE GAUSS

CAPÍTULO II LEY DE GAUSS Tópicos de lecticidad y Magnetismo J.Pozo y R.M. Chobadjian. CAPÍTULO II LY D GAUSS La Ley de Gauss pemite detemina el campo eléctico cuando las distibuciones de cagas pesentan simetía, en caso contaio

Más detalles

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla

Situaciones 1: Dada una carga eléctrica puntual, determine el campo eléctrico en algún punto dado. r u r. r 2. Esmelkys Bonilla Situaciones 1: Dada una caga eléctica puntual, detemine el campo eléctico en algún punto dado. E = k q 2 u 1.- Una caga puntual positiva, situada en el punto P, cea un campo eléctico E v en el punto, epesentado

Más detalles

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática

Tema 2: Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla. Parte 4/7 Leyes de la electrostática Tema : Pincipios de la electostática 1, Antonio Gon nzález Fená ández Antonio González Fenández Depatamento de Física Aplicada III Univesidad de Sevilla Pate 4/7 Leyes de la electostática Leyes de la electostática:

Más detalles

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.).

Movimientos rectilíneos o de trayectoria recta. Movimientos curvilíneos o de trayectoria curva (circular, elíptica, parabólica, etc.). 1.- Clasificación de movimientos. 1. Tomando como efeencia la tayectoia: Movimientos ectilíneos o de tayectoia ecta. Movimientos cuvilíneos o de tayectoia cuva (cicula, elíptica, paabólica, etc.). 2. Tomando

Más detalles

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA

LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA LABORATORIO DE FISICA Nº 1 MAQUINAS SIMPLES PALANCA-POLEA OBJETIVOS I.- Loga el equilibio estático de objetos que pueden ota en tono a un eje, po medio de la aplicación de fuezas y toques. INTRODUCCIÓN

Más detalles

Dinámica de la rotación Momento de inercia

Dinámica de la rotación Momento de inercia Laboatoi de Física I Dinámica de la otación omento de inecia Objetivo Detemina los momentos de inecia de vaios cuepos homogéneos. ateial Discos, cilindo macizo, cilindo hueco, baa hueca, cilindos ajustables

Más detalles

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores.

Coulomb. 2.2 La ley de Gauss. Gauss. 2.4 La discontinuidad de E n. conductores. CAPÍTULO Campo eléctico II: distibuciones continuas de caga Índice del capítulo.1 Cálculo del campo eléctico mediante la ley de Coulomb.. La ley de Gauss..3 Cálculo del campo eléctico mediante la ley de

Más detalles

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE

Apuntes de Electrostática Prof. J. Martín ETSEIT ELECTROESTÁTICA I CAMPO ELECTRICO EN EL ESPACIO LIBRE LCTROSTÁTICA I CAMPO LCTRICO N L SPACIO LIBR. Le de Coulomb. Cagas puntuales 3. Distibuciones de caga 4. Campo eléctico 5. cuaciones de campo 6. Le de Gauss 7. Potencial eléctico 8. negía potencial 9.

Más detalles

Trabajo y Energía I. r r = [Joule]

Trabajo y Energía I. r r = [Joule] C U R S O: FÍSICA MENCIÓN MATERIAL: FM-11 Tabajo y Enegía I La enegía desempeña un papel muy impotante en el mundo actual, po lo cual se justifica que la conozcamos mejo. Iniciamos nuesto estudio pesentando

Más detalles

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO

GALICIA / JUNIO 03. LOGSE / FÍSICA / EXAMEN COMPLETO GALICIA / JUNIO 3. LOGSE / FÍSICA / EXAMEN COMPLEO El examen de física de las P.A.U. pesenta dos opciones de semejante nivel de dificultad. Cada opción consta de tes pates difeentes(poblemas, cuestiones

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA

UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA ESTÁTICA UNIVESIDD NCINL DEL CLL CULTD DE INGENIEÍ ELÉCTIC Y ELECTÓNIC ESCUEL PESINL DE INGENIEÍ ELÉCTIC ESTÁTIC * Equilibio de cuepos ígidos ING. JGE MNTÑ PISIL CLL, 2010 EQUILIBI DE CUEPS ÍGIDS CNCEPTS PEVIS

Más detalles

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2).

GUIA Hallar el módulo del vector de origen en (20,-5,8) y extremo en (-4,-3,2). GUIA 0 1 - Halla el módulo del vecto de oigen en (20,-5,8) etemo en (-4,-3,2). 2 - a) Halla las componentes catesianas de los siguientes vectoes: (i) A (ii) A = 4 A = θ = 30º 4 θ =135º A (iii) (iv) A θ

Más detalles

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE

Facultad de C. E. F. y N. Departamento de FÍSICA Cátedra de FÍSICA II SOLENOIDE U N IV ESID A D NACIONA de CÓ DO BA Facultad de C. E. F. y N. Depatamento de FÍSICA Cáteda de FÍSICA II caeas: todas las ingenieías auto: Ing. ubén A. OCCHIETTI Capítulo VI: Campo Magnético: SOENOIDE El

Más detalles

CP; q v B m ; R R qb

CP; q v B m ; R R qb Campo Magnético Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas extemas del imán a las que vamos a llama polos (N y S). Si acecamos

Más detalles

Campo Estacionario. Campos Estacionarios

Campo Estacionario. Campos Estacionarios Electicidad y Magnetismo Campo Estacionaio Campo Estacionaio EyM 4- Campos Estacionaios Se denomina situación estacionaia a aquella en la que no hay vaiación con el tiempo. Existen sin embago movimientos

Más detalles

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa:

Al estar la fuerza dirigida hacia arriba y la intensidad del campo eléctrica hacia abajo, la carga de la esfera es negativa: PROLMS CMPO LÉCTRICO. FÍSIC CHILLRTO. Pofeso: Féli Muñoz Jiménez Poblema 1 Detemina la caga de una peueña esfea cagada de 1, mg ue se encuenta en euilibio en un campo eléctico unifome de 000 N /C diigido

Más detalles

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO

CANARIAS / SEPTIEMBRE 03. LOGSE / FÍSICA / EXAMEN COMPLETO De las dos opciones popuestas, sólo hay que desaolla una opción completa. Cada poblema coecto vale po tes puntos. Cada cuestión coecta vale po un punto. Poblemas OPCIÓN A.- Un satélite descibe una óbita

Más detalles

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE

FUERZA MAGNÉTICA SOBRE UN CONDUCTOR QUE TRANSPORTA CORRIENTE UERZA MAGNÉTCA SORE UN CONDUCTOR QUE TRANSPORTA CORRENTE J v d +q J Podemos calcula la fueza magnética sobe un conducto potado de coiente a pati de la fueza qv x sobe una sola caga en movimiento. La velocidad

Más detalles

Potencial Escalar - Integrales de superposición. 2010/2011

Potencial Escalar - Integrales de superposición. 2010/2011 Potencial Escala - Integales de supeposición. / Electostática Definición os conductoes en electostática. Campo de una caga puntual. Aplicaciones de la ey de Gauss Integales de supeposición. Potencial electostático

Más detalles

X I OLIMPIADA NACIONAL DE FÍSICA

X I OLIMPIADA NACIONAL DE FÍSICA X I LIMPIADA NACINAL D FÍSICA FAS LCAL - UNIVSIDADS D GALICIA - 18 de Febeo de 2000 APLLIDS...NMB... CNT... PUBA BJTIVA 1) Al medi la masa de una esfea se obtuvieon los siguientes valoes (en gamos): 4,1

Más detalles

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS

TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS TEORÍA DE CAMPOS Y OPERADORES DIFERENCIALES. PROBLEMAS RESUELTOS 1. Dado un campo vectoial v = ( x + y ) i + xy j + ϕ( x, y, k en donde ϕ es una función tal que sus deivadas paciales son las funciones

Más detalles

Problemas de la Unidad 1

Problemas de la Unidad 1 Poblemas de la Unidad.- Dado el vecto a = i + 5 j - k, calcula: a) Sus componentes catesianas, b) Módulo de las componentes catesianas, c) Módulo del vecto a, d) Los cosenos diectoes, e) Ángulo que foma

Más detalles

Solución al examen de Física

Solución al examen de Física Solución al examen de Física Campos gavitatoio y eléctico 14 de diciembe de 010 1. Si se mantuviea constante la densidad de la Tiea: a) Cómo vaiaía el peso de los cuepos en su supeficie si su adio se duplicaa?

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA.

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE. (PLAN 2002) Junio 2004 FÍSICA. . UCIA / UNIO 04. OGS / FÍSICA / XAN COPO XAN COPO PUBAS D ACCSO A A UNIVSIDAD PAA AUNOS D BACHIAO OGS. (PAN 00 unio 004 FÍSICA. OINACIONS: Comente sus planteamientos de tal modo que demueste que entiende

Más detalles

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide

F =. Calcule F d S donde S es. Exprese una integral de una variable que permita calcular., S es la porción del elipsoide egio Yansen Núñez Teoema de tokes y Gauss Actividad Nº Considee el campo vectoial F( x, y, z) ( y, x, z ). Calcule F d donde C es C la intesección ente el plano x + y + z y el cilindo x + y. Actividad

Más detalles

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp

Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Informática, P. Gomez et al., pp Ejemplos Ley de Gauss, Fundamentos Físicos y Tecnológicos de la Infomática, P. Gomez et al., pp. 5-. Ejemplo 1º. Aplicando el teoema de Gauss halla el campo eléctico ceado po una distibución esféica de

Más detalles

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo.

LEY DE GAUSS. Este enunciado constituye en realidad una de las principales leyes del Electromagnetismo. LY D GAU La ley de Gauss es un enunciado ue es deivable de las popiedades matemáticas ue tiene el Vecto de intensidad de Campo léctico con especto a las supeficies en el espacio. ste enunciado constituye

Más detalles

A.5.- La aceleración de un bloque que se mueve a lo largo del eje x se expresa como

A.5.- La aceleración de un bloque que se mueve a lo largo del eje x se expresa como 3 : CINEMTIC.1.- Una patícula se mueve de foma tal que la manitud del vecto posición es constante. Demosta que la velocidad de la patícula es pependicula a. Intepete eométicamente este esultado..2.- l

Más detalles

TEMA 2.- Campo gravitatorio

TEMA 2.- Campo gravitatorio ema.- Campo gavitatoio EMA.- Campo gavitatoio CUESIONES.- a) Una masa m se encuenta dento del campo gavitatoio ceado po ota masa M. Si se mueve espontáneamente desde un punto A hasta oto B, cuál de los

Más detalles

IV.- FLUJO INCOMPRESIBLE NO VISCOSO

IV.- FLUJO INCOMPRESIBLE NO VISCOSO IV.- FLUJO INCOMPRESIBLE NO VISCOSO http://libos.edsauce.net/ IV.1.- CINEMÁTICA DE FLUIDOS La Cinemática de Fluidos tiene una coespondencia biunívoca con el Pime Pincipio de la Temodinámica aplicado a

Más detalles

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell

CAMPOS ELECTROMAGNÉTICOS Tema 3 Ecuaciones de Maxwell CAMPOS ELECTROMAGNÉTICOS Tema Ecuaciones de Mawell P.- En una egión totalmente vacía ha un campo eléctico E = kt uˆ oto magnético con B B =. La magnitud k es constante. Calcula B. = B = ε µ + k k ' P.-

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDAD DE ALCALÁ PRUEBA DE ACCESO A ESTUDIOS UNIVERSITARIOS (Mayoes 5 años) Cuso 009-010 MATERIA: FÍSICA INSTRUCCIONES GENERALES Y VALORACIÓN La pueba consta de dos pates: La pimea pate consiste en

Más detalles

Profesor BRUNO MAGALHAES

Profesor BRUNO MAGALHAES POTENCIL ELÉCTRICO Pofeso RUNO MGLHES II.3 POTENCIL ELÉCTRICO Utilizando los conceptos de enegía impatidos en Física I, pudimos evalua divesos poblemas mecánicos no solo a tavés de las fuezas (vectoes),

Más detalles

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS

FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Los ángulos: Se pueden medi en: GRADOS RADIANES: El adián se define como el ángulo que limita un aco cuya longitud es igual al adio del aco. Po tanto, el ángulo, α,

Más detalles

SERIE # 3 CÁLCULO VECTORIAL

SERIE # 3 CÁLCULO VECTORIAL SERIE # 3 ÁLULO VETORIAL ÁLULO VETORIAL Página 1 1) Sea el campo vectoial F (x,y,)=( 3x+ y)i+( x+ y ) j ( x) k. alcula lago de la cuva : 4 5 x = + y y =, del punto A ( 3, 1, 1) al punto B ( 3, 1, -1).

Más detalles

LA RUEDA PELTON (Shames)

LA RUEDA PELTON (Shames) LA RUEDA PELTON (Shames) Es una tubina de impulsión. Uno o más choos de agua, que sale(n) de una tobea a velocidad alta, incide sobe un sistema de cuchaas unidas a una ueda. El odete (cuchaas y ueda) tiene

Más detalles

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION

BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 11 BOLILLA 3 DESPLAZAMIENTO, VELOCIDAD Y ACELERACION 1. INTRODUCCION A LA CINEMATICA El oigen de la dinámica se emonta a los pimeos expeimentos

Más detalles

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias

MATEMÁTICAS II TEMA 6 Planos y rectas en el espacio. Problemas de ángulos, paralelismo y perpendicularidad, simetrías y distancias Geometía del espacio: poblemas de ángulos y distancias; simetías MATEMÁTICAS II TEMA 6 Planos y ectas en el espacio Poblemas de ángulos, paalelismo y pependiculaidad, simetías y distancias Ángulos ente

Más detalles

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano

TALLER VERTICAL 3 DE MATEMÁTICA MASSUCCO ARRARAS - MARAÑON DI LEO Geometría lineal Recta y Plano LA LINEA RECTA: DEFINICIÓN. TALLER VERTICAL DE MATEMÁTICA Recibe el nombe de línea ecta el luga geomético de los puntos tales que, tomados dos puntos cualesquiea distintos P, ) P, ) el valo de la epesión:

Más detalles

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B.

UNIVERSIDAD SIMON BOLIVAR Departamento de Conversión y Transporte de Energía Sección de Máquinas Eléctricas Prof. E. Daron B. FUNDAMENTOS GENERALES SOBRE LAS MAQUINAS ELÉCTRICAS REPASO SOBRE LAS MAGNITUDES DEL CAMPO MAGNÉTICO Hoja Nº I- INDUCCION MAGNETICA B Definida a pati del efecto electodinámico de fueza De la fueza F ejecida

Más detalles

Segunda ley de Newton

Segunda ley de Newton Segunda ley de Newton Fundamento La segunda ley de la mecánica de Newton se expesa matemáticamente. F = ext m a El sumatoio se efiee a las fuezas exteioes. En la páctica, dento de las fuezas exteioes que

Más detalles

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva

CAPÍTULO III EL POTENCIAL ELÉCTRICO. El trabajo que se realiza al llevar la carga prueba positiva Tópicos de Electicidad y Magnetismo J.Pozo y.m. Chobadjian. CPÍTULO III EL POTENCIL ELÉCTICO.. Definición de difeencia de potencial El tabajo ue se ealiza al lleva la caga pueba positiva del punto al punto

Más detalles

Columna armada del Grupo II (con forros intermedios) sometida a compresión axil y a compresión y tracción axil. Aplicación Capítulos A, B, C, D y E.

Columna armada del Grupo II (con forros intermedios) sometida a compresión axil y a compresión y tracción axil. Aplicación Capítulos A, B, C, D y E. 73 EJEMPLO N 13 Columna amada del Gupo II (con foos intemedios) sometida a compesión ail a compesión tacción ail. Aplicación Capítulos A, B, C, D E. Enunciado Dimensiona los codones supeioes e infeioes

Más detalles

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4

SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 SOLUCIONES DE LOS EJERCICIOS DE APLICACIÓN II TEMA 4 Ejecicio de aplicación 44 (Deivación) Se desea obtene una viga ectangula a pati de un tonco cilíndico de 6 cm de diámeto a) Demosta que la viga con

Más detalles

Problemas de dinámica de traslación.

Problemas de dinámica de traslación. Poblemas de dinámica de taslación. 1.- Un ascenso, que tanspota un pasajeo de masa m = 7 kg, se mueve con una velocidad constante y al aanca o detenese lo hace con una aceleación de 1'8 m/s. Calcula la

Más detalles

FÍSICA II: 1º Curso Grado de QUÍMICA

FÍSICA II: 1º Curso Grado de QUÍMICA FÍSICA II: 1º Cuso Gado de QUÍMICA 5.- DIPOLOS Y DIELÉCTRICOS 5.1 Se tiene una distibución de cagas puntuales según la figua. P Calcula cuánto vale a) el momento monopola y b) el momento dipola 5.2 Calcula

Más detalles

Hidrostática y Fluidos Ideales.

Hidrostática y Fluidos Ideales. Hidostática y Fluidos Ideales. Intoducción a la Física Ambiental. Tema 5. Tema IFA5. (Pof. M. RAMOS Tema 5.- Hidostática y Fluidos Ideales. Hidostática: Pesión. Distibución de pesiones con la pofundidad:

Más detalles

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011

EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 25 AÑOS SIN CICLO MEDIO COMPLETO. PRACTICO 3 Función Lineal Rectas Noviembre 2011 EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO Función Lineal Rectas Noviembe RECORDAR: Una unción lineal es de la oma popiedad que los cocientes incementales:

Más detalles

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA

Paredes Delgadas. Clase 6 Recipiente de Revolución de Paredes Delgadas. Facultad de Ingeniería - UNA Paedes Delgadas Clase 6 Recipiente de Revolución de Paedes Delgadas Impotancia páctica de la evolución de los cálculos Catedal de San Pedo, edificada en el siglo XVI, Luz 40 m, espeso pomedio de 3 metos

Más detalles

v L G M m =m v2 r D M S r D

v L G M m =m v2 r D M S r D Poblemas de Campo Gavitatoio 1 Calcula la velocidad media de la iea en su óbita alededo del ol y la de la luna en su óbita alededo de la iea, sabiendo que el adio medio de la óbita luna es 400 veces meno

Más detalles

2º de Bachillerato Interacción Gravitatoria

2º de Bachillerato Interacción Gravitatoria Física EA º de Bacilleato Inteacción avitatoia.- Aveiua cuál seía la duación del año teeste en el caso supuesto que la iea se acecaa al Sol de manea que la distancia fuea un 0 % meno que la eal. Y si se

Más detalles

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO

FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO FUERZA SOBRE UNA CARGA ELECTRICA DEBIDA A UN CAMPO MAGNETICO Los campos magnéticos pueden genease po imanes pemanentes, imanes inducidos y po coientes elécticas. Ahoa inteesaá enconta la fueza sobe una

Más detalles

CAMPO ELÉCTRICO Y POTENCIAL

CAMPO ELÉCTRICO Y POTENCIAL CMPO ELÉCTRICO Y POTENCIL INTERCCIONES ELECTROSTÁTICS (CRGS EN REPOSO) Caga eléctica: popiedad intínseca de la mateia ue se manifiesta a tavés de fuezas de atacción o epulsión Ley de Coulomb: expesa la

Más detalles

2º de Bachillerato Campo Eléctrico

2º de Bachillerato Campo Eléctrico Física TEM 6 º de achilleato ampo Eléctico.- Tes cagas elécticas puntuales iguales, de n, están situadas en el vacío ocupando los puntos cuyas coodenadas en metos son (,, (,4 y (,. alcula la fueza que

Más detalles

FÍSICA I TEMA 0: INTRODUCCIÓN

FÍSICA I TEMA 0: INTRODUCCIÓN FÍSICA I TEMA 0: INTRODUCCIÓN 1. Expesa en los sistemas cegesimal, intenacional y técnico el peso y la masa de un cuepo de 80 Kg. de masa. CEGESIMAL Centímeto, gamo y segundo. 80 Kg 80 Kg * 1000 g /Kg

Más detalles

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( )

( ) y ( ) = CAMPOS: OPERADOR NABLA ( ) ( ) CAMPOS: OPERADOR NABLA Repesenta los campos vectoiales A i + j, B i j. Halla la divegencia el otacional de cada uno de ellos eplica el significado físico de los esultados obtenidos. Solución: I.T.I., 3,

Más detalles

Interacción magnética

Interacción magnética Inteacción magnética Áea Física Resultados de apendizaje Utiliza las leyes de Gauss, Biot-Savat y Ampee paa calcula campos magnéticos en difeentes poblemas. Estudia el movimiento de una patícula cagada

Más detalles

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( )

CÁLCULO VECTORIAL. Operaciones con vectores libres. , siendo las componentes de ( ) CÁLCULO VECTOIAL Opeaciones con vectoes libes Suma de vectoes libes La suma de n vectoes libes P P P n es un vecto libe llamado esultante = i j k la suma de las componentes espectivas, siendo las componentes

Más detalles

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando

MECANICA APLICADA I. EXAMEN PARCIAL PRIMER EJERCICIO TIEMPO: 75. cuando MECNIC PLICD I. EXMEN PCIL. 17-04-99. PIME EJECICI TIEMP: 75 1. btene la expesión de la velocidad de ω V s ω V s sucesión del cento instantáneo de otación cuando =. 2 2. Indica qué afimaciones son cietas

Más detalles

CUERPOS REDONDOS. LA ESFERA TERRESTRE

CUERPOS REDONDOS. LA ESFERA TERRESTRE IES PEÑAS NEGRAS. Geometía. º ESO. CUERPOS REDONDOS. LA ESFERA TERRESTRE 1. CUERPOS REDONDOS. Un cuepo edondo es un sólido que contiene supeficies cuvas. Dento de los cuepos edondos los más inteesantes

Más detalles

Apunte FII-1-RM: Repaso de Matemática

Apunte FII-1-RM: Repaso de Matemática Física II Física B - Electomagnetismo Pofesoa: Da. C. Caletti : Repaso de Matemática I. Gadiente A fin de compende mejo el concepto de gadiente comenzaemos po las bases, analizando, peviamente, qué tipo

Más detalles

2.7 Cilindros, conos, esferas y pirámides

2.7 Cilindros, conos, esferas y pirámides UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos

Más detalles

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE

OPTIMIZACIÓN DE FUNCIONES DE UNA VARIABLE Matemáticas º Bacilleato. OTIMIZACIÓN DE UNCIONE DE UNA VARIABLE ROBLEMA DE OTIMIZACIÓN aa esolve un poblema de optimización se siguen los siguientes pasos:. Lee bien el enunciado.. i el poblema tiene

Más detalles

RELACION DE ORDEN: PRINCIPALES TEOREMAS

RELACION DE ORDEN: PRINCIPALES TEOREMAS RELACION DE ORDEN: PRINCIPALES TEOREMAS Sean a, b, c y d númeos eales; se tiene que:. Si a < b c < d a + c < b + d. Si a 0 a > 0 3. Si a < b -a > -b 4. Si a > 0 a - > 0 ; si a < 0 a - < 0 5. Si 0 < a

Más detalles

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo

Las componentes en el eje Y se anulan El CE resultante de la esfera hueca se encontrara sobre el eje X. El área de trabajo Cuso: FISICA II CB 3U 1I Halla el CE de una esfea hueca con caga Q adio a. ad a d asen P de a Las componentes en el eje Y se anulan El CE esultante de la esfea hueca se encontaa sobe el eje X. El áea de

Más detalles

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS

TEMA 4. ELECTROSTATICA EN CONDUCTORES Y DIELECTRICOS Fundamentos Físicos de la Infomática Escuela Supeio de Infomática Cuso 09/0 Depatamento de Física Aplicada TEMA 4. ELECTOSTATICA EN CONDUCTOES Y DIELECTICOS 4..- Se tiene un conducto esféico de adio 0.5

Más detalles

TAREA DE DINAMICA Equilibrio traslacional Serway Cap. 5 Ejemplo 5.4 (Estática) 2. H Cap. 6 P24. reposo reposo Equilibrio traslacional y rotacional

TAREA DE DINAMICA Equilibrio traslacional Serway Cap. 5 Ejemplo 5.4 (Estática) 2. H Cap. 6 P24. reposo reposo Equilibrio traslacional y rotacional TAEA DE DINAMICA Equilibio taslacional. Seway Cap. 5 Ejemplo 5.4 (Estática) En la figua se muesta un semáfoo de 98 N de peso que cuelga de tes cables los cuales se ompen si la tensión en ellos excede 00N.

Más detalles

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría

Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice

Más detalles

2º de Bachillerato El Campo Magnético

2º de Bachillerato El Campo Magnético ísica TEM 7 º de Bachilleato El Campo Magnético 1.- Calcula la velocidad que debe tene una caga eléctica puntual de 5 mc paa que a una distancia de 3 cm en el vacío y en la diección pependicula a su tayectoia

Más detalles

2º de Bachillerato Óptica Física

2º de Bachillerato Óptica Física Física TEMA 4 º de Bacilleato Óptica Física.- Aveigua el tiempo que tadaá la luz oiginada en el Sol en llega a la Tiea si el diámeto de la óbita que ésta descibe alededo del Sol es de 99350000 Km. Y en

Más detalles

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES

EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES EL MODELO CUÁNTICO PARA ÁTOMOS HIDROGENOIDES De su cota y espectacula existencia (1911-1927 el átomo de Boh dejó una imagen simple del átomo y vaios conceptos nuevos y fundamentales, como el de númeos

Más detalles

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso.

ESTÁTICA. El Centro de Gravedad (CG) de un cuerpo es el punto donde se considera aplicado el peso. C U R S O: FÍSICA MENCIÓN MATERIAL: FM- 09 ESTÁTICA En esta unidad analizaemos el equilibio de un cuepo gande, que no puede considease como una patícula. Además, vamos a considea dicho cuepo como un cuepo

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO

PROBLEMAS DE ELECTROMAGNETISMO º de Bachilleato. Electomagnetismo POBLEMAS DE ELECTOMAGNETISMO 1- Un ion de litio Li +, que tiene una masa de 1,16 Α 1-6 kg, se acelea mediante una difeencia de potencial de V y enta pependiculamente

Más detalles

Ley de Fourier. dt k dy. y = Y. t < 0. t = 0. x y = 0 T 0 T 1. t > 0. y Q

Ley de Fourier. dt k dy. y = Y. t < 0. t = 0. x y = 0 T 0 T 1. t > 0. y Q Ley de Fouie y = Y t < 0 y x y = 0 t = 0 0 0 Q t > 0 ( t, y 0 Q t y ( 0 y Q Q A* t Y Q ( 0 k A* t Y q d k dy CONDUCCION UNIDIMENSIONAL EN ESADO ESACIONARIO Consideemos la conducción de calo a tavés de

Más detalles

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb

q v De acuerdo con esto la fuerza será: F qv B o bien F q v B sen 2 q v B m R R qb Un imán es un cuepo capaz de atae al hieo y a algunos otos mateiales. La capacidad de atacción es máxima en dos zonas z extemas del imán a las que vamos a llama polos ( y ). i acecamos dos imanes, los

Más detalles

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS

CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS CARACTERISTICAS DE LOS CAMPOS CONSERVATIVOS Paa los inteeses de la Física, los Campos Vectoiales se clasifican en dos gupos: -CAMPOS VECTORIALES CONSERVATIVOS.CAMPOS VECTORIALES NO CONSERVATIVOS Los de

Más detalles

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es

32[m/s] 1,6[s] + 4,9[m/s ] 1,6 [s ] = = 32[m/s] 9,8[m/s ] 1,6[s] A2.- El trabajo realizado por la fuerza al mover la partícula hasta un punto x =3 es BLOQUE A A.- En el instante t = se deja cae una pieda desde un acantilado sobe un lago;,6 s más tade se lanza una segunda pieda hacia abajo con una velocidad inicial de 3 m/s. Sabiendo que ambas piedas

Más detalles

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES

TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES TEMA 3 FUERZAS Y MOVIMIENTOS CIRCULARES 1. MOVIMIENTO CIRCULAR UNIFORME (MCU). Es el movimiento de un cuepo cuya tayectoia es una cicunfeencia y su velocidad es constante. 1.1. Desplazamiento angula o

Más detalles

Introducción al cálculo vectorial

Introducción al cálculo vectorial GRADUADO EN INGENIERÍA Y CIENCIA AGRONÓMICA GRADUADO EN INGENIERIA ALIMENTARIA GRADUADO EN INGENIERÍA AGROAMBIENTAL Intoducción al cálculo vectoial Magnitudes escalaes y vectoiales Tipos de vectoes Opeaciones

Más detalles