TEMA 4. TRANSFORMACIONES EN EL PLANO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4. TRANSFORMACIONES EN EL PLANO"

Transcripción

1 TEMA 4. TRANSFORMACIONES EN EL PLANO HERRAMIENTAS PARA TRANSFORMACIONES En este bloque encontramos las siguientes herramientas: Simetría axial La herramienta Refleja objeto en recta dibuja la figura simétrica de un objeto con respecto a un eje que puede ser una recta, una semirrecta, un segmento, un vector, un eje o el lado de un polígono. El proceso se iniciará al marcar el objeto del cual deseamos obtener su simétrico, a continuación, señalaremos el eje con respecto al que se realizará la simetría. El objeto obtenido como simétrico es un objeto dependiente del objeto inicial, por lo que para cambiar su aspecto tendremos que modificar el aspecto del original. Agustín Carrillo de Albornoz Torres - 60

2 También cambiará, aunque en este caso, sólo de posición, al variar el eje de simetría. Simetría central Con la herramienta Refleja objeto por punto se realiza una simetría central, por lo que aplica un giro de 180º con respecto a un punto. La forma de utilizar esta herramienta es análoga a la anterior; para realizar la simetría se podrá utilizar uno de los vértices del objeto inicial o cualquier otro punto del plano. Evidentemente, los objetos obtenidos dependen del objeto inicial y del punto con respecto al cual se ha realizado la simetría. Inversión La herramienta Refleja punto por circunferencia dibuja un punto A' inverso de un punto A con respecto a una circunferencia. Agustín Carrillo de Albornoz Torres - 61

3 Los puntos A y A' verifican la relación: OA OA' = r 2 siendo O el centro de la circunferencia y r su radio. Podemos comprobar la relación entre las distancias que relacionan al punto A con su inverso A' con respecto a la circunferencia de centro r. Utilizando Distancia o longitud medimos las distancias OA, OA' y el radio de la circunferencia. A continuación, calculamos el valor de las expresiones OA OA' y 2 r llevando las medidas anteriores al Campo de entrada. Para ello, pulsamos el botón derecho del ratón sobre cada una de las medidas. Aparecerá el siguiente menú desplegable: Agustín Carrillo de Albornoz Torres - 62

4 Traslación Con la herramienta Traslada objeto por vector obtendremos la imagen de un objeto al que se le aplica una traslación determinada por un vector creado previamente. Rotación Utilizaremos la herramienta Rota objeto en torno a punto el ángulo indicado, para dibujar la imagen de un objeto al que se le aplica un giro cuyo ángulo está determinado por un valor numérico. Una vez seleccionado el polígono y el punto, alrededor del cual se desea girar, aparecerá un cuadro de diálogo para introducir el ángulo de giro. Agustín Carrillo de Albornoz Torres - 63

5 El ángulo de giro también puede ser el valor de la medida de un ángulo previamente calculado. Homotecia La herramienta Homotecia desde un punto por un factor de escala crea la imagen de un objeto que se reduce o amplía, según un valor numérico que determina el factor de homotecia. El factor de homotecia se introduce a través del cuadro de diálogo que aparecerá después de seleccionar el polígono al que se desea aplicar la homotecia y el punto origen. Una vez introducido el factor de homotecia, aparecerá la figura original y su transformada. Ejemplo 1 Sea A y B dos puntos que están en el mismo lado de una recta r. Encontrar el camino mínimo desde el punto A hasta B, pasando por un punto de la recta. Dibujamos una recta r y los dos puntos A y B. Agustín Carrillo de Albornoz Torres - 64

6 El problema quedará resuelto cuando esté determinado el punto C en la recta que hace que AC + CB sea mínimo. Utilizando la herramienta Reflexión de un objeto dada la recta de simetría axial (Simetría axial) obtenemos el punto B' simétrico de B con respecto a la recta r. El camino más corto es AC + CB siendo C el punto de intersección del segmento AB con la recta r. Por tanto si AC + CB es el camino más corto, como BC = B'C, tenemos el camino más corto para ir desde A hasta B pasando por un punto de la recta r. Agustín Carrillo de Albornoz Torres - 65

7 Este enunciado corresponde a problemas como el siguiente: Un pájaro está sobre la rama de un árbol (A), situado al borde de un río y desea pasar a otro árbol, situado en la orilla izquierda (B), aprovechando para beber agua sin parar su vuelo. Hacia qué punto del río debe dirigirse para hacer el recorrido más corto? Ejemplo 2 Construir un cuadrado a partir del segmento correspondiente al lado. Es posible determinar los vértices utilizando sólo la herramienta Rotación? Generalizar el método anterior para dibujar otros polígonos regulares inscritos en una circunferencia. Para dibujar un cuadrado a partir del segmento AB correspondiente al lado, bastará con trazar perpendiculares al lado por lo puntos A y B. A continuación, utilizando la herramienta Compás dibujamos las circunferencias de radio AB con centro en A y B, respectivamente. Agustín Carrillo de Albornoz Torres - 66

8 Los puntos de corte con las rectas anteriores serán los dos vértices que faltan para completar el cuadrado que a continuación, dibujaremos utilizando la herramienta Polígono. Para realizar la construcción de un cuadrado utilizando la herramienta Rota objeto en torno a punto, bastará con girar un ángulo de 90 en sentido antihorario, el punto B con respecto al punto A y girar 90 en sentido horario; el punto A con respecto al extremo B, en sentido contrario. Los dos puntos que obtenemos son vértices del cuadrado, que dibujaremos de nuevo utilizando la herramienta Polígono. Agustín Carrillo de Albornoz Torres - 67

9 Ejemplo 3 Construir un triángulo, a partir de dos de sus lados y del ángulo comprendido. Una vez dibujados los segmentos a y b correspondientes a los lados y al ángulo, trazamos una semirrecta sobre la que trasladaremos las distintas medidas. Con la herramienta Circunferencia dados su centro y radio, dibujamos sendas circunferencias de radios a y b, tomando como centro el origen de la semirrecta, que corresponderá al vértice A del triángulo buscado. Estas circunferencias determinan dos puntos de intersección con la semirrecta, que corresponden al vértice B del triángulo y a un punto C que da la distancia del segundo lado. Utilizamos la herramienta Rotación para girar el punto C alrededor del punto A con ángulo de rotación igual al ángulo medido en A; obtendremos el punto C' que corresponde al tercer vértice del triángulo. Agustín Carrillo de Albornoz Torres - 68

10 Ejemplo 4 Comprobar que la composición de dos homotecias de centros diferentes, es una homotecia cuyo centro está alineado con los anteriores y su razón de homotecia es el producto de las razones. Dibujamos un triángulo ABC, dos puntos O y O' que utilizaremos como centros de las sucesivas homotecias, cuyas razones sean 2 y 1'5, respectivamente. Realizamos la primera homotecia del triángulo con centro en O y razón 2 y, al triángulo obtenido le aplicamos una nueva homotecia de razón 1'5 y centro O'. Para determinar el centro de la composición de las dos homotecias, trazamos dos rectas que unan puntos homotéticos del primer y del tercer triángulo; el punto de intersección O'' corresponde al centro de la homotecia composición. Agustín Carrillo de Albornoz Torres - 69

11 Para hallar la razón k de la homotecia composición, bastará con aplicar la O'' A'' definición de homotecia en la que se cumple la relación: = k. O'' A MOSAICOS Un mosaico se construye repitiendo, de forma ordenada, una o varias figuras geométricas para rellenar el plano o el espacio, sin dejar huecos ni producir solapamientos. Ejemplo 6 Construir un mosaico utilizando un triángulo cualquiera. Dibujamos un triángulo ABC que rellenamos de color y en él marcamos los vectores AB y AC. Agustín Carrillo de Albornoz Torres - 70

12 Utilizando la herramienta Traslada objeto por vector realizamos dos traslaciones del triángulo ABC, tomando como vectores AB y AC, respectivamente. Repitiendo el proceso de traslación sobre los nuevos triángulos, utilizando los mismos vectores, obtendremos el mosaico formado con el triángulo ABC. Podemos deformar el triángulo ABC, arrastrado cualquiera de los vértices del triángulo inicial. Agustín Carrillo de Albornoz Torres - 71

13 Ejemplo 7 Construcción de un mosaico a partir de una figura geométrica irregular. En un triángulo equilátero ABC, dibujado a través de la herramienta Polígono regular, construimos una figura geométrica con la cual realizaremos un mosaico a través de traslaciones. A partir del punto A, con final en el punto B, dibujamos tres segmentos que no tienen por qué ser iguales, aunque recomendamos definir un polígono, al que después realizaremos un giro de 60 con centro en el punto A. Definimos el punto F como punto medio del lado BC del triángulo y un punto G interior al triángulo, sobre el que realizamos una simetría con respecto al punto F para obtener el punto G'. Con la herramienta Polígono, definimos la figura geométrica que vamos a utilizar para realizar el mosaico que rellenamos para mejorar el efecto. Agustín Carrillo de Albornoz Torres - 72

14 Definimos los vectores AB y CB. A continuación, realizando traslaciones, utilizando los dos vectores anteriores y ocultando previamente todos los vértices, obtendremos el correspondiente mosaico. ACTIVIDADES PROPUESTAS 1. Sea ABC un triángulo acutángulo y P un punto sobre el lado AB. Obtener los puntos Q y R en los lados AC y BC respectivamente, tales que el perímetro del triángulo PQR sea mínimo. 2. Las rectas r y s son mediatrices de un triángulo ABC. Conocido el vértice A, obtener los dos vértices restantes. Agustín Carrillo de Albornoz Torres - 73

15 3. Las semirrectas Ax y By son dos bisectrices del triángulo ABC. Construir el triángulo. 4. Dibujar un triángulo a partir del segmento correspondiente a un lado y de los dos ángulos adyacentes. 5. Comprobar que la composición de dos simetrías axiales de ejes paralelos, coincide con una traslación. Determinar el vector de la traslación. 6. Dibujar un triángulo ABC y construir su triángulo homotético de razón k. Qué relación existe entre el área y el perímetro de los dos triángulos homotéticos? 7. Sea P un punto cualquiera de la circunferencia circunscrita a un triángulo. Comprobar que los puntos simétricos del punto P, con respecto a cada uno de los lados del triángulo, están alineados. Esta recta, denominada recta de Steiner, es paralela a la recta de Simson y pasa por el ortocentro del triángulo. 8. Sean A y B dos puntos cualesquiera del interior de dos semirrectas, con origen común en el punto O. Determinar los puntos M y N en cada una de las semirrectas, de manera que el camino AM, MN y NB sea de longitud mínima. 9. Sea A uno de los puntos comunes en los que se cortan dos circunferencias. Dibujar una recta que, pasando por A, determine cuerdas de longitud igual en ambas circunferencias. Agustín Carrillo de Albornoz Torres - 74

16 10. Realizar el siguiente mosaico utilizando un cuadrilátero. Agustín Carrillo de Albornoz Torres - 75

TEMA 4 TRANSFORMACIONES EN EL PLANO

TEMA 4 TRANSFORMACIONES EN EL PLANO TEMA 4 TRANSFORMACIONES EN EL PLANO Introducción. Bloque de herramientas Transformar. Mosaicos. Mosaicos regulares. Mosaicos irregulares. Actividades propuestas. INTRODUCCIÓN En este tema expondremos las

Más detalles

TEMA 3. LUGARES GEOMÉTRICOS

TEMA 3. LUGARES GEOMÉTRICOS TEMA 3. LUGARES GEOMÉTRICOS LA HERRAMIENTA LUGAR GEOMÉTRICO Para construir un lugar geométrico necesitaremos dos objetos: un punto que será el que describirá el lugar geométrico, y otro que será el punto

Más detalles

ACTIVIDADES PROPUESTAS

ACTIVIDADES PROPUESTAS GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el

Más detalles

MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO

MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO MOVIMIENTOS Y TRANSFORMACIONES EN EL PLANO Traslación: Traslación (sin deslizadores) Traslación de un objeto: Traslación de una imagen: Actividad con geogebra: Construye un pentágono regular y trasládalo

Más detalles

Unidad Didáctica 8. Dibujo Geométrico

Unidad Didáctica 8. Dibujo Geométrico Unidad Didáctica 8 Dibujo Geométrico 1.- Tazados Geométricos Básicos Trazados Rectas Paralelas Rectas paralelas. Las que no llegan nunca a cortarse, o se cortan en el infinito. Con Escuadra y Cartabón:

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS

EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS EJERCICIOS SELECTIVIDAD TRAZADOS GEOMÉTRICOS 1- Dados el punto V, la circunferencia de centro O y la recta R tangente a la circunferencia, se pide: a. Dibujar la circunferencia homotética de la dada, sabiendo

Más detalles

TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS

TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS TEMA 5. CREACIÓN DE NUEVAS HERRAMIENTAS INTRODUCCIÓN En los capítulos anteriores hemos estudiado algunas de las herramientas disponibles en GeoGebra, con las que podemos realizar numerosas aplicaciones,

Más detalles

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS

11. ALGUNOS PROBLEMAS CON TRIÁNGULOS 11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si

Más detalles

TEMA 6: GEOMETRÍA EN EL PLANO

TEMA 6: GEOMETRÍA EN EL PLANO TEMA 6: GEOMETRÍA EN EL PLANO Definiciones/Clasificaciones Fórmulas y teoremas Dem. Def. y Clasificación de polígonos: Regular o irregular Cóncavo o convexo Por número de lados: o Triángulos: clasificación

Más detalles

12Direcciones de internet

12Direcciones de internet 12Direcciones de internet En la dirección http://www.nucleogestion.8m.com/hall.htm se puede pasear libremente por el museo virtual de Escher. Se puede entrar en la sala que se desee haciendo clic sobre

Más detalles

POLÍGONOS POLÍGONOS. APM Página 1

POLÍGONOS POLÍGONOS. APM Página 1 POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.

Más detalles

TEMA 1. INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA

TEMA 1. INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA TEMA 1. INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA INTRODUCCIÓN El significado de geometría dinámica lo podemos resumir diciendo que se trata de un programa con una serie de elementos u objetos elementales (puntos,

Más detalles

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad

TORNEOS GEOMÉTRICOS Primera Ronda Primer Nivel - 5º Año de Escolaridad TORNEOS GEOMÉTRICOS 2017. Primera Ronda Primer Nivel - 5º Año de Escolaridad Problema 1. El hexágono regular de la figura tiene área 6cm 2. Halla el área de la región sombreada. Solución: El triángulo

Más detalles

FORMAS POLIGONALES TEMA 8

FORMAS POLIGONALES TEMA 8 FORMAS POLIGONALES TEMA 8 1. LOS POLÍGONOS DEFINICIÓN: Un polígono es una figura geométrica plana limitada por segmentos llamados lados, y por vértices. A B C A Lado D Clasificación de los polígonos:

Más detalles

TEMA Nombre IES ALFONSO X EL SABIO

TEMA Nombre IES ALFONSO X EL SABIO 1. Trazar la mediatriz del segmento AB 2. Trazar la perpendicular a la semirrecta s en su extremo A sin prolongar ésta 3. Dividir el arco de circunferencia en dos partes iguales. 4. Dividir gráficamente

Más detalles

Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías

Geometría Prof. L. Solorza Curso: 1 medio. Guía de isometrías Guía de isometrías A) Simetrías a) Reflexiones o Simetrías axiales Concepto: Una reflexión o simetría axial, con eje la recta L, es un movimiento del plano tal que a cada punto P del plano le hace corresponder

Más detalles

TRANSF0RMACIONES GEOMÉTRICAS

TRANSF0RMACIONES GEOMÉTRICAS DIBUJO TÉNCICO 2º BACH TRANSF0RMACIONES GEOMÉTRICAS Nos referimos a Transformaciones Geométricas cuando hablamos de la operación u operaciones necesarias para convertir una figura F en otra figura F portadora

Más detalles

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO

REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. DOS TRIÁNGULOS ESTÁN UNIDOS POR UN LADO COMPLETO REPRESENTAR FIGURAS Y BUSCAR SIMILITUDES. ACTIVIDAD Nº 1 1. Recorta 6 triángulos equiláteros de 6 cm de lado. 2. Combina 2 triángulos, para encontrar nuevas formas geométricas, de acuerdo a la siguiente

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Soluciones Nota nº 3

Soluciones Nota nº 3 Problemas Propuestos Soluciones Nota nº 3 Problema 1: Para dibujar el trasladado de un cuadrilátero convexo según un vector dado, Cuántos puntos trasladados se necesita conocer? Cuáles elegiría? Cómo resolvería

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.2.-Cuadriláteros. Definición, clasificación y notación. Clasificación de los cuadriláteros: Paralelogramos y no paralelogramos. Los cuadriláteros son los polígonos de

Más detalles

Figuras planas. Definiciones

Figuras planas. Definiciones Figuras planas Definiciones Polígono: definición Un polígono es una figura plana (yace en un plano) cerrada por tres o más segmentos. Los lados de un polígono son cada uno de los segmentos que delimitan

Más detalles

CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES

CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES GEOMETRÍA CURVAS TÉCNICAS 1 CURVAS TÉCNICAS: ÓVALOS, OVOIDES Y ESPIRALES Los óvalos y ovoides pertenecen al grupo de los enlaces denominados cerrados, dado que comienzan y terminan en un mismo punto. También

Más detalles

Demostración de teoremas con GeoGebra Es posible?

Demostración de teoremas con GeoGebra Es posible? Ideas para el aula Épsilon - Revista de Educación Matemática 2012, Vol. 29(3), nº 82, 79-87, ISSN: 1131-9321 Demostración de teoremas con GeoGebra Es posible? Agustín Carrillo de Albornoz Torres Universidad

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

Apuntes de Dibujo Técnico

Apuntes de Dibujo Técnico APUNTES DE DIBUJO TÉCNICO 1. Materiales para trazados geométricos. - La Escuadra y el Cartabón. El juego de escuadra y cartabón constituye el principal instrumento de trazado. Se deben usar de plástico

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α

Más detalles

unidad 11 Transformaciones geométricas

unidad 11 Transformaciones geométricas unidad 11 Transformaciones geométricas Cómo dibujar ángulos de 60 con regla y compás Página 1 La cuerda de un arco de 60 (apertura del compás) es igual al radio con que se ha trazado. Veamos el proceso:

Más detalles

Johnson R.A. (1929) Advanced Euclidean Geometry. (pag. 154). Dover publications, INC. New York.

Johnson R.A. (1929) Advanced Euclidean Geometry. (pag. 154). Dover publications, INC. New York. Problema 720.- Teorema Si una recta r contiene al ortocentro H corta a los lados del triángulo ABC en L1, L2 y L3, las simétricas de r respecto a AB, AC y BC concurren en un punto P del circuncírculo y

Más detalles

TEMA 6. COORDENADAS Y REPRESENTACIÓN DE FUNCIONES

TEMA 6. COORDENADAS Y REPRESENTACIÓN DE FUNCIONES TEMA 6. COORDENADAS Y REPRESENTACIÓN DE FUNCIONES INTRODUCCIÓN Aunque no existe una herramienta específica para mostrar las coordenadas de un punto o las ecuaciones de rectas, circunferencias o cónicas,

Más detalles

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué?

Ecuaciones de la forma. y se sabe que pasa por el punto ( 4 ;16 ), cuál es la ecuación de la recta? con m > 0. contenga los puntos ( 2;? por qué? Ecuaciones de la forma y = m. Haga las gráficas de y = y = y = y = y y y y y y a. Como son las rectas b. Cuales son simétricas respecto al origen c. La recta y que tipo de simetría presenta respecto a

Más detalles

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.

GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el

Más detalles

DIBUJO TÉCNICO II. 2º bach. IES Sánchez Cantón. Transformaciones geométricas anamórficas INVERSIÓN

DIBUJO TÉCNICO II. 2º bach. IES Sánchez Cantón. Transformaciones geométricas anamórficas INVERSIÓN DIBUJO TÉCNICO II. 2º bach. IES Sánchez Cantón Transformaciones geométricas anamórficas INVERSIÓN CONCEPTO DE POTENCIA DE UN PUNTO RESPECTO DE UNA CIRCUNFERENCIA Antes de centrarnos en el concepto de inversión,

Más detalles

TRIÁNGULOS. APM Página 1

TRIÁNGULOS. APM Página 1 TRIÁNGULOS 1. Definición de triángulo. 2. Propiedades de los triángulos. 3. Construcción de triángulos. 3.1. Conociendo los tres lados. 3.2. Conociendo dos lados y el ángulo que forman. 3.3. Conociendo

Más detalles

INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA

INTRODUCCIÓN A LA GEOMETRÍA DINÁMICA El significado de geometría dinámica lo podemos resumir diciendo que se trata de un programa con una serie de elementos u objetos elementales (puntos, segmentos, circunferencias, polígonos, etc.), a partir

Más detalles

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90

LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90 LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar

Más detalles

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.

ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6. ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el

Más detalles

ACTIVIDAD FINAL DEL CURSO MAT08-13-CALCULA

ACTIVIDAD FINAL DEL CURSO MAT08-13-CALCULA ACTIVIDAD FINAL DEL CURSO MAT08-13-CALCULA Actividad realizada por José Antonio Hidalgo Planelles email: lanik666@hotmail.com A) DESARROLLO DE LOS CONTENIDOS Los contenidos elegidos para desarrollar en

Más detalles

Dibujo Técnico Curvas técnicas

Dibujo Técnico Curvas técnicas 22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta

Más detalles

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.

Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a

Más detalles

Líneas notables de un triángulo

Líneas notables de un triángulo Líneas notables de un triángulo Los cuatro grupos de líneas notables más importantes que se trabajan en los triángulos son las siguientes: Medianas: segmentos que unen los puntos medios de cada lado con

Más detalles

PUNTOS NOTABLES DE UN TRIÁNGULO

PUNTOS NOTABLES DE UN TRIÁNGULO PUNTOS NOTABLES DE UN TRIÁNGULO 1. CIRCUNCENTRO. Cualquier punto de la mediatriz de un lado de un triángulo equidista de los vértices que definen dicho lado. Luego si llamamos O al punto de intersección

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I - AÑO 2012 TRIÁNGULOS TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al

Más detalles

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.

Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C. Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos

Más detalles

EL PROBLEMA DE APOLONIO 1

EL PROBLEMA DE APOLONIO 1 EL PROBLEMA DE APOLONIO 1 Benjamín R. Sarmiento Lugo 2 Universidad Pedagógica Nacional Profesor de Planta Bogotá Colombia bsarmiento@pedagogica.edu.co RESUMEN El objetivo de este cursillo es reconstruir

Más detalles

Polígonos IES BELLAVISTA

Polígonos IES BELLAVISTA Polígonos IES BELLAVISTA Polígonos: definiciones Un polígono es la porción de plano limitada por rectas que se cortan. Polígono regular: el que tiene todos los lados y ángulos iguales. Polígono irregular:

Más detalles

Taller de Construcciones clásicas de Geometría con Cabri-Géomètre

Taller de Construcciones clásicas de Geometría con Cabri-Géomètre Taller de Construcciones clásicas de Geometría con Cabri-Géomètre Días 11, 12 y 13 de noviembre de 2008 Juan Francisco Padial y Eugenia Rosado jf.padial@upm.es eugenia.rosado@upm.es El taller consiste

Más detalles

CONSTRUCCIONES Y LUGARES GEOMÉTRICOS. Matemáticas 1º Educación Secundaria Obligatoria

CONSTRUCCIONES Y LUGARES GEOMÉTRICOS. Matemáticas 1º Educación Secundaria Obligatoria CONSTRUCCIONES Y LUGARES GEOMÉTRICOS Matemáticas 1º Educación Secundaria Obligatoria Consideraciones metodológicas Los conceptos de mediatriz y bisectriz permitirán introducir el concepto de lugar geométrico

Más detalles

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.

DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula. DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X

Más detalles

LOS POLIGONOS. 1. Definiciones.

LOS POLIGONOS. 1. Definiciones. LOS POLIGONOS 1. Definiciones. Un triángulo es un polígono cerrado y convexo constituido por tres ángulos (letras mayúsculas y sentido contrario a las agujas del reloj) y tres lado (letras minúsculas).

Más detalles

Translaciones, giros, simetrías.

Translaciones, giros, simetrías. Translaciones, giros, simetrías. Transformaciones geométricas Transformación geométrica es una aplicación del plano en el plano tal que a cada punto de un plano le hace corresponder otro punto del mismo

Más detalles

Geometría con GeoGebra

Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras el icono en el Escritorio, accede desde Inicio/Todos

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

TEMA 9.- TRANSFORMACIONES EN EL PLANO.

TEMA 9.- TRANSFORMACIONES EN EL PLANO. GEOMETRÍ: 5.- TRNSFORMIONES EN EL PLNO TEM 9.- TRNSFORMIONES EN EL PLNO. Definición 9.1.- Llamaremos transformación geométrica en el plano a una operación u operaciones geométricas que permiten deducir

Más detalles

UNIDAD 8 Geometría analítica

UNIDAD 8 Geometría analítica Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.

Más detalles

TRANSFORMACIONES EN EL PLANO

TRANSFORMACIONES EN EL PLANO ACADEMIA SABATINA TRANSFORMACIONES EN EL PLANO Llamaremos transformación geométrica a una operación que permite producir una nueva figura (imagen) de la dada originalmente. Las podemos clasificar en directas,

Más detalles

PROF: Jesús Macho Martínez

PROF: Jesús Macho Martínez DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores

Más detalles

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA

DIVISIÓN DE UN SEGMENTO EN UNA RAZÓN DADA SISTEMA COORDENADO CARTESIANO, DISTANCIA ENTRE DOS PUNTOS ANGULO ENTRE DOS RECTAS y AREA 1) Transportar a una gráfica los siguientes puntos: a) ( 5, 2 ) b) (0, 0 ) c) ( 1 + 3, 1-3 ) d) ( 0, 3 ) e) ( -

Más detalles

CURSO DE INICIACIÓN A GEOGEBRA

CURSO DE INICIACIÓN A GEOGEBRA 1.- Triángulo equilátero. CURSO DE INICIACIÓN A GEOGEBRA i. En la vista gráfica, desactivar los ejes y activar la cuadrícula. ii. Seleccionar dos puntos A y B con la herramienta iii. Con la herramienta

Más detalles

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).

Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos

Más detalles

Primera edición INVERSIÓN DT2

Primera edición INVERSIÓN DT2 Primera edición INVERSIÓN DT2 Inversión 1 La Inversión en Dibujo Técnico es una transformación geométrica en la que a una figura corresponde otra. Sección 1 Introducción Definición La Inversión en Dibujo

Más detalles

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos:

ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: ACTIVIDADES DE GEOMETRÍA PARA 4º ESO DE EPV Nombre y apellidos: Curso: TEMA 1: TRAZADOS BÁSICOS. 1. RECTAS PARALELAS Las rectas paralelas son aquellas que por mucho que las prolongues nunca se van a cortar.

Más detalles

Geometría del Triángulo con la TI Voyage 200 Fermí Vilà

Geometría del Triángulo con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 1 Geometría del Triángulo con la TI Voyage 200 Fermí Vilà Fermí Vilà TI Voyage 200 2 Las tres medianas de un triángulo se cortan en un único punto, que se denomina BARICENTRO del

Más detalles

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS

GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 22 TRANSFORMACIONES ISOMÉTRICAS Definición: Se llaman transformaciones

Más detalles

1.3.-Trazados geométricos básicos.

1.3.-Trazados geométricos básicos. 1.3.-Trazados geométricos básicos. 1.3.1.-Notaciones Los elementos básicos del dibujo técnico son el punto, la recta y el plano. El punto no tiene dimensión, podemos considerarlo como una posición del

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.

Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por

Más detalles

2.-GEOMETRÍA PLANA O EUCLIDIANA

2.-GEOMETRÍA PLANA O EUCLIDIANA 2.-GEOMETRÍA PLANA O EUCLIDIANA 2.1.-Triángulos. Definición, clasificación y notación. Puntos notables, ortocentro, circuncentro, baricentro e incentro. Propiedades de las medianas. Los Triángulos son

Más detalles

Club GeoGebra Iberoamericano 6 LUGARES GEOMÉTRICOS

Club GeoGebra Iberoamericano 6 LUGARES GEOMÉTRICOS 6 LUGARES GEOMÉTRICOS LUGARES GEOMÉTRICOS INTRODUCCIÓN Este tema está dedicado a la construcción de lugares geométricos. Un lugar geométrico se define como un conjunto de puntos que cumplen una misma propiedad.

Más detalles

DIBUJO TÉCNICO ELEMENTAL

DIBUJO TÉCNICO ELEMENTAL DIBUJO TÉCNICO ELEMENTAL Profesor: Jesús Macho Martínez Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución- CompartirIgual 3.0 Unported 1º.- Trazar la perpendicular a

Más detalles

Polígonos. Triángulos

Polígonos. Triángulos CLAVES PARA EMPEZAR Cada hora equivale a una abertura de 360 o : 12 30 o A las 12 h: ángulo 0 o A las 11 h y a la 1 h: ángulo 30 o A las 9 h y a las 3 h: ángulo 90 o A las 7 h y a las 5 h: ángulo 150 o

Más detalles

La Geometría del triángulo TEMA 3

La Geometría del triángulo TEMA 3 La Geometría del triángulo TEMA 3 Diana Barredo Blanco Profesora de Matemáticas I.E.S. Luis de Camoens (CEUTA) Los puntos notables de un triángulo son: Circuncentro Incentro Baricentro Ortocentro Circuncentro

Más detalles

C onstrucción de triángulos

C onstrucción de triángulos C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

95 EJERCICIOS de RECTAS

95 EJERCICIOS de RECTAS 9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

TEMA 6: LAS FORMAS POLIGONALES

TEMA 6: LAS FORMAS POLIGONALES EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado

Más detalles

2º de E.S.O. Actividades TIC. Mosaicos: Nivel intermedio. I.E.S. Rafael Puga Ramón. En el nivel intermedio realizaremos con Geogebra dos mosaicos:

2º de E.S.O. Actividades TIC. Mosaicos: Nivel intermedio. I.E.S. Rafael Puga Ramón. En el nivel intermedio realizaremos con Geogebra dos mosaicos: Actividades TIC 2º de E.S.O. I.E.S. Rafael Puga Ramón DPTO DE MATEMÁTICAS Mosaicos: Nivel intermedio En el nivel intermedio realizaremos con Geogebra dos mosaicos: - El 1º está basado en un hexágono irregular.

Más detalles

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150

a 2 = = 1600 ; a = 40 A = = 80. Iguales A = 361 1:150 uno es agudo y el otro es obtuso. Á = (48. 5 ) / 2 = 120 D 2 = 20 2 + 10 2 + 6 2 = 536 ; D = 23 15 V = V S + V c = 2 / 3. π 125 + 1 / 3. π 25. 3 = 325/3. π Área = lado x lado = l 2 Los paralelepípedos

Más detalles

INECUACIONES Y VALOR ABSOLUTO

INECUACIONES Y VALOR ABSOLUTO INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.

Más detalles

Unidad didáctica 2. Trazados básicos

Unidad didáctica 2. Trazados básicos Unidad didáctica 2. Trazados básicos 2.1 Paralelas, perpendiculares y ángulos 2.1.1 Trazado de paralelas 1. Se coloca la hipotenusa de la escuadra sobre la línea a la que se quieren trazar paralelas. 2.

Más detalles

Construcciones. Proporciones. Áreas

Construcciones. Proporciones. Áreas Construcciones Proporciones Áreas Rectángulo y Cometa Dibuja una cometa inscrita en un rectángulo Qué relación hay entre sus áreas respectivas? Cómo cambiará el perímetro de la cometa a medida que E y

Más detalles

PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I

PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I PRIMERA EVALUACIÓN DE DIBUJO TÉCNICO I 1. UD: TRAZADOS FUNDAMENTALES EN EL PLANO 1.1. Tipos de línea- 21 1.1.1. Línea recta 1.1.2. Línea curva 1.1.3. Línea quebrada 1.1.4. Semirrecta 1.2. Segmento 1.2.1.

Más detalles

Soluciones Nota nº 1

Soluciones Nota nº 1 Soluciones Nota nº 1 Problemas Propuestos 1- En el paralelogramo ABCD el ángulo en el vértice A es 30º Cuánto miden los ángulos en los vértices restantes? Solución: En un paralelogramo, los ángulos contiguos

Más detalles

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES

UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES UNIDAD 13. POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 13 POLÍGONOS REGULARES Y CIRCUNFERENCIA ESQUEMA DE LA UNIDAD Nombre y apellidos:...

Más detalles

101 EJERCICIOS de RECTAS

101 EJERCICIOS de RECTAS 101 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(5,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos

Más detalles

EL PROBLEMA DE APOLONIO

EL PROBLEMA DE APOLONIO EL PROBLEMA DE APOLONIO Benjamín Sarmiento Lugo Profesor Universidad Pedagógica Nacional Bogotá D.C, Colombia bsarmiento@pedagogica.edu.co Resumen El objetivo de este cursillo es presentar uno de los problemas

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES - MATEMÁTICA I TRIÁNGULOS TRIÁNGULOS Definición: Dados tres puntos no alineados, A, B y C, se llama triángulo a la intersección de los semiplanos que tienen como borde la recta determinada por dos de estos puntos y contiene al

Más detalles

Guía Nº 2 Transformaciones Isométricas

Guía Nº 2 Transformaciones Isométricas Colegio Raimapu Departamento de Matemática Nombre Alumno o Alumna: Guía Nº 2 Transformaciones Isométricas Curso: Debes copiar cada enunciado en tu cuaderno y realizar el desarrollo indicando la respuesta

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

Ángulos y Triángulos. mmm... ojalá te sirva este módulo. Cristopher Oyarzún. Mauricio Vásquez. Asignatura: Álgebra. Profesor: Orlando Torres

Ángulos y Triángulos. mmm... ojalá te sirva este módulo. Cristopher Oyarzún. Mauricio Vásquez. Asignatura: Álgebra. Profesor: Orlando Torres y Triángulos Integrantes: Felipe Lara Cristopher Oyarzún Mauricio Vásquez mmm... ojalá te sirva este módulo Asignatura: Álgebra Profesor: Orlando Torres Para aprender sobre los ángulos primero tenemos

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.

*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al

Más detalles

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa

MATHEMATICA. Geometría - Recta. Ricardo Villafaña Figueroa. Material realizado con Mathematica. Ricardo Villafaña Figueroa MATHEMATICA Geometría - Recta Material realizado con Mathematica 2 Contenido Sistema de Coordenadas... 3 Distancia entre dos puntos... 3 Punto Medio... 5 La Recta... 8 Definición de recta... 8 Pendiente

Más detalles

Geometría con GeoGebra

Geometría con GeoGebra Geometría con GeoGebra Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras

Más detalles

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE

SOLUCIONES A LAS ACTIVIDADES DE CADA EPÍGRAFE Pág. 1 PÁGINA 246 REFLEXIONA En la inauguración de la Casa de la Cultura observamos, entre otras, las siguientes figuras: Todas ellas son polígonos. Cuáles crees que son regulares? Explica por qué crees

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). UNIVERSIDAD REY JUAN CARLOS, MADRID PRUEBA DE ACCESO PARA MAYORES DE 25 AÑOS MATEMÁTICAS II AÑO 2014 OPCIÓN A Ejercicio 1 a) (1 punto) Determinar el valor del parámetro para que los puntos A(1,2,0), B(5,-4,0)

Más detalles

GEOMETRÍA TANGENCIAS - 1

GEOMETRÍA TANGENCIAS - 1 GEOMETRÍA TANGENCIAS - 1 TANGENCIAS BÁSICAS Recordemos que dos líneas se dice que son tangentes cuando tienen un solo punto común sin cortarse. Para resolver cualquier problema de tangencias de rectas

Más detalles

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x?

Cuáles son las imágenes de los puntos M,N,O,P respecto eje x? Guía N 3 Nombre: Curso: 1 Medio A-B-C-D Unidad Geometría Fecha: Profesora: Odette Castro M. Contenidos: Transformaciones isométricas en el plano cartesiano Simetría Axial 1. Dibuja la figura simétrica,

Más detalles