Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Propuesta para actualizar la Nota Técnica de Daños Materiales y Robo Total del Seguro de Automóviles Residentes"

Transcripción

1 ropuesta para actualzar la Nota Técca de Daños aterales y Robo Total del Seguro de Autoóvles Resdetes Israel Avlés Torres Novebre 99 Sere Docuetos de Trabajo Docueto de Trabajo No. 0

2 Ídce. Estructura Técca Actual. Estructura Técca ropuesta 6 3. Coclusoes 7 Notas 7 Bblografía 7 Apédce A 8 Apédce B 9 Apédce C

3 ropuesta para actualzar la Nota Técca de Daños aterales y Robo Total del Seguro de Autoóvles Resdetes Israel Avlés Torres E uestro país, el creceto vehcular faclta el trasporte de persoas y ercacías, co lo cual se aglza la productvdad y el desarrollo ecoóco. S ebargo, esta stuacó colleva a la ocurreca de accdetes de trásto o robo, lo que provoca a su vez, pérddas ecoócas dode el prcpal afectado e su patroo, es el propetaro del vehículo. Uo de los objetvos del seguro de autoóvles resdetes, es otorgar la proteccó ecesara cotra este tpo de evetualdades, edate la dezacó por daños ocasoados a las udades aseguradas. El costo del seguro depede de la sestraldad ocurrda e los resgos cubertos La pra de resgo está e fucó de las coberturas otorgadas y de las suas aseguradas asocadas a las sas. or sus característcas propas, e el seguro de autoóvles resdetes se detfca cuatro coberturas báscas: ) Daños aterales: que cubre los daños o pérddas aterales que sufra la udad a cosecueca de colsoes, vuelcos, rotura de crstales, cedo, rayo, explosó, ccló, huracá, grazo, terreoto, huelgas, alborotos populares y trasportacó. ) Robo total: que apara el robo del vehículo y las pérddas o daños aterales que coo cosecueca del robo, sufra la udad. 3) Resposabldad cvl por daños a terceros: que apara la resposabldad cvl e que curra el asegurado o coductor que, e accdete de trásto, cause daños a terceros e sus bees y/o e sus persoas, tales coo lesoes corporales o la uerte. 4) Gastos édcos a ocupates: que garatza el reebolso de los gastos erogados por el asegurado, por cocepto de hosptalzacó, edcas, atecó édca, efereros, servco de abulaca y gastos de eterro, e caso de que los ocupates resultara lesoados o uertos e accdete de trásto. ara daños aterales y robo total, los otos de sua asegurada por odelo, clase y tpo de vehículo, se publca cada es e ua tabla de valores por la Asocacó excaa de Isttucoes de Seguros. Co base e estos otos, se obtee artétcaete, valores proedo de vehículos uevos y usados por arca, co objeto de adecuar o odfcar la ota técca del seguro de autoóvles resdetes e u ejercco deterado. S ebargo, el sstea actualete utlzado para calcular los valores proedo preseta alguas cosstecas ateátcas, producto de la falta de estadístcas sufcetes, que puede traer cosgo errores sgfcatvos e la deteracó de las tarfas. El objetvo del presete estudo es propoer u odelo ateátco que perta actualzar el sstea de cálculo de estos valores proedo, para la ota técca de daños aterales y robo

4 total, cuado se cuete co foracó desglosada a vel dvdual, cosderado arcas, clases y odelos de autoóvles. El trabajo se dvde e tres seccoes: e la prera, se descrbe la estructura técca de las coberturas báscas, que cluye la clasfcacó de autoóvles y el cálculo de la pra de resgo, para vehículos uevos y usados. E la seguda seccó se preseta u odelo alteratvo, cuya aplcacó pertrá obteer pras de resgo ás adecuadas para hacer frete a la sestraldad. E la últa seccó del trabajo se resue alguas coclusoes.. Estructura Técca Actual E esta seccó se preseta las varables que cofora la estructura técca de daños aterales y robo total, así coo el odelo actual de cálculo de valores proedo para vehículos uevos y usados. E prer téro, se puede defr el cocepto de arca-tpo, coo la agrupacó de autoóvles co característcas seejates, para vehículos de ua arca deterada, s cosderar sus respectvos odelos. E la actualdad, las udades se clasfca e 53 arcas-tpo. S se deota al subídce µ coo la -ésa arca-tpo, para µ detro de cada grupo exste dferetes clases de vehículos µ, para µ, co sus respectvos odelos µ, co µ. U ejeplo de lo ateror sería: u autoóvl Tsuru II, 989, trassó estádar, cuatro puertas, equpado que se clasfca de acuerdo a las varables sguetes: arca-tpo: Clase: Tsuru Tsuru II, trassó estádar, cuatro puertas, equpado odelo: 989. Co esta clasfcacó se recopla foracó estadístca del ercado por epresa, para las sguetes varables: a) Las udades expuestas, µ, que represeta el úero de resgos asegurados e u certo período de tepo, e el cual cotúa vgete la pólza. b) El úero de sestros, µ, gual al total de reclaacoes presetadas a las sttucoes de seguros co otvo de la ocurreca de sestros. c) El oto de sestros, µ, que es el oto total pagado a los asegurados co otvo de los sestros ocurrdos y se detera toado coo base el pago de sestros, ás los saldos pedetes, ás gastos de ajuste, eos salvaetos y recuperacoes. Coo puede observarse, la estadístca para estas varables se recopla a vel arca-tpo s ebargo, cuado se dspoga de foracó desglosada por clase y odelo, se podrá coocer para cada tpo de autoóvl el úero de udades expuestas µ (que cluso puede ser cero), el úero de sestros, µ, y el oto, µ. La sua de todas las clases y odelos, proporcoará subtotales a vel arca-tpo µ, defdos de la sguete aera:

5 j j j j j () j () (3) Estos subtotales faclta el cálculo de la frecueca de los sestros y su costo edo, para cada arca-tpo La frecueca de sestros, que de la probabldad de ocurreca de u sestro, se calcula coo sgue: F, (4) Susttuyedo () y () e (4), se obtee lo sguete: F j j j j, (5) El costo edo de sestros, que represeta el gasto proedo que realza la epresa por cada sestro, es gual a: S, (6) Susttuyedo () y (3), la expresó ateror puede reescrbrse coo sgue: S j j j j. (7) A partr del producto de (5) y (7) se obtee la pra de resgo: F S, (8) Esta pra es la catdad ecesara y sufcete para cubrr u resgo asegurado es decr, el pago de esta pra coprede u solo vehículo asegurado correspodete a la arca-tpo. Sea j la pra de resgo para u vehículo de arca-tpo, odelo j y clase suado cada oto, cosderado clases y odelos, puede obteerse la sguete pra de resgo. 3

6 j j j. (9) Coo puede aprecarse, depede del úero udades expuestas resgo j, por clase y odelo. j y de las pras de Cabe señalar que, coo o se cueta co foracó a vel dvdual µj, la pra j o puede obteerse drectaete de las estadístcas. Hasta ahora la foracó dspoble se procesa a vel arca-tpo, para deterar cuotas de resgo al llar, aplcables a valores de vehículos uevos y usados. Ua vez deteradas las cuotas de refereca, la pra µ se calcula de la sguete aera: Co: Dode: T + T (0) j T γ y ( γ ) T () alor de vehículo uevo, para la arca-tpo, clase. j alor de vehículo usado, para la arca-tpo, odelo j y clase. T Cuota de resgo al llar para la arca-tpo, aplcable al valor de uevo. T Cuota de resgo al llar para la arca-tpo, aplcable al valor de usado. alor proedo de vehículos uevos para la arca-tpo. alor proedo de vehículos usados para la arca-tpo. γ orcetaje de pérddas parcales aplcable a todas las arca-tpo. γ orcetaje de pérddas totales aplcable a todas las arca-tpo. 4

7 ara la arca-tpo la tabla de valores se preseta coo e el cuadro sguete: Tabla de valores de vehículos uevos y usados para la arca-tpo ehículos Nuevos E las otas téccas actuales y, se obtee edate u proedo artétco de los valores que tega los autoóvles e el ercado 3. E las sguetes expresoes se preseta la fora e que actualete se calcula estos valores: j () Los proedos aterores so guales para daños aterales y robo total porque o depede de las udades expuestas de cada cobertura. Susttuyedo () e (), las cuotas de resgo resultates preseta cossteca ateátca e (0), debdo a que el sstea de cálculo de los valores proedo actuales se ajusta a la foracó dspoble. Coo se deuestra e el apédce B, co la aplcacó de este odelo e el cálculo de la pra de resgo, o se obtee la expresó (), co la que se calcula el total de udades expuestas a vel arca-tpo. 5

8 . Estructura Técca ropuesta E esta seccó se preseta u odelo alteratvo para el cálculo de los valores proedo y. Este odelo se desarrolla cosderado la equdad que debe exstr etre la pra de resgo e cada cobertura y la sestraldad presetada e la sa. Al susttur las cuotas () e (0) se tee: j (3) γ ( ) + γ j Asso, susttuyedo (3) e (9) se tee: j j γ j j + ( γ ) j (4) Lo ateror plca que: γ j j. + j j ( γ ) j ara que la expresó ateror se cupla, etoces: γ + ( γ ) or tato: γ j j γ j j j. (5) S se despeja y de (6), se obtee la expresó correcta para los valores proedo de vehículos uevos y usados respectvaete: j j j j j. (6) Coo se observa, los valores de (6) 4 dfere de los resultates e (), porque depede del úero de udades expuestas e cada cobertura, por arca-tpo, odelo j y clase por otro lado, este odelo puede aplcarse e el cálculo de cuotas T y T defdas e (). 6

9 3. Coclusoes Actualete el cálculo de los valores proedo µ preseta errores. E este trabajo se preseta la fora e que estos valores debería calcularse, toado e cueta la equdad que debe exstr etre la pra de resgo y la sestraldad presetada e el so. Se cosdera que co la aplcacó técca del odelo, el costo del seguro será ás justo y los resultados téccos ás satsfactoros s ebargo, esta hpótess o puede deostrarse, ya que co la foracó actual es dfícl cuatfcar los valores propuestos, que perta ostrar las dferecas e las tarfas obtedas de cada odelo. edate la struetacó de uevas foras estadístcas de seguros (F.E.S.), dode se recople foracó de autoóvles desglosada por arca, clase y odelo, se podrá, e futuros ejerccos, aplcar este étodo para actualzar la ota técca de daños aterales y robo total, e fucó de las udades expuestas de cada cobertura. Asso, cabe señalar que la estructura técca para el seguro de caoes de carga, es seejate a autoóvles resdetes, la dfereca prcpal cosste e la agrupacó de vehículos, ya que ésta se hace e fucó de la capacdad de toelaje y o por arca-tpo por tato, la propuesta del presete docueto de trabajo se puede exteder al seguro de caoes de carga. Notas * Las opoes que aparece e este artículo so del autor y o ecesaraete cocde co las de la C.N.S.F. El autor agradece los valosos coetaros de Rosa a. Alatorre y Ea Izquerdo.. La deostracó se preseta e el apédce A.. Los valores de vehículos uevos y usados se da a coocer por la Asocacó excaa de Isttucoes de Seguros, (A..I.S.), e la publcacó esual relatva a la tabla de valores de autoóvles, por arca-tpo µ, odelo µ y clase µ. 3. Las udades expuestas µ, o se cosdera para estos efectos, porque e el sector asegurador se carece de esta foracó. 4. La coprobacó de que (6) so valores proedo adecuados, se preseta e el apédce C. Bblografa Asocaco excaa de Isttucoes de Seguros, [990]: Nota Técca del Seguro de Autoóvles Resdetes. Asocaco excaa de Isttucoes de Seguros, [990]: la de Iforacó Estadístca del Sector Asegurador. Avlés, T. I. [99]: "Stuacó Actual y erspectvas del Seguro de Autoóvles e éxco", Téss rofesoal, Facultad de Cecas, UNA, Febrero 99. 7

10 Apédce A E este apartado se deuestra la gualdad presetada e (9). Coo: Etoces: j j j F S j j F j S j Esto plca que: j j j j j j Dode resulta : j Es decr, el oto de sestros para la arca -tpo, es gual a la sua de los otos de esa arca, cosderado las dferetes clases y odelos. j 8

11 Apédce B E este apartado se deuestra que el odelo actual para el cálculo de los valores proedo, preseta probleas de cossteca ateátca. S se susttuye (3) e () y se ultplca por j, se tee: j j γ ( ) j + γ jj Suado abas partes sobre µ y µ : γ j j j j jj j + ( γ ) j S se susttuye los valores defdos e (), se llega a la expresó: j j j γ j j ( γ + ) j j j j j Supógase que la gualdad ateror se cuple, etoces el extreo derecho debe ser exactaete, de acuerdo a (9) y por tato, las sguetes ecuacoes tabé debe cuplrse: γ j j ( γ + ) j j j j j 9

12 Lo ateror plca que: j j y j j j j j Es decr: y j j jj j j. De dode: j j y j j j j j. Las ecuacoes aterores o se cuple ateátcaete, ya que cotradce (), lo cual plca que el odelo actual preseta seras dferecas e el cálculo de cuotas de resgo. 0

13 Apédce C E este apartado se deuestra que el odelo propuesto se puede aplcar correctaete e el cálculo de la pra de resgo para cada udad asegurada. S se susttuye las cuotas de resgo defdas e (0), se tee: j + γ ( ) γ j ultplcado abas partes por j se tee: j j + γ ( ) j γ j j Suado abas partes por odelo j y clase, se obtee la sguete gualdad: γ j j j j jj j + ( γ ) j y Al susttur los valores se llega a la sguete expresó: y por tato: del odelo propuesto e (6), del lado derecho de la gualdad [ + ( γ ) ] j jj γ j j j. Lo cual deuestra que bajo las hpótess presetadas, el odelo propuesto para el cálculo de los valores proedo de vehículos uevos y usados, es téccaete correcto. La Reserva de revsó e el Sector Asegurador excao

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN

VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN VARIABLE ALEATORIA Y FUNCIÓN DE DISTRIBUCIÓN - INTRODUCCIÓN E este tema se tratará de formalzar umércamete los resultados de u feómeo aleatoro Por tato, ua varable aleatora es u valor umérco que correspode

Más detalles

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU

MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU MODELOS DE REGRESIÓN LINEALES Y NO LINEALES: SU APLICACIÓN EN PROBLEMAS DE INGENIERÍA Clauda Maard Facultad de Igeería. Uversdad Nacoal de Lomas de Zamora Uversdad CAECE Bueos Ares. Argeta. maard@uolsects.com.ar

Más detalles

Distribución conjunta de variables aleatorias

Distribución conjunta de variables aleatorias FCEyN - Estadístca para Quíca - do. cuat. 006 - Marta García Be Dstrbucó cojuta de varables aleatoras E uchos probleas práctcos, e el so expereto aleatoro, teresa estudar o sólo ua varable aleatora so

Más detalles

Selección de portafolios de mínima varianza cuando están expuestos a diversos factores de riesgo: nota técnica

Selección de portafolios de mínima varianza cuando están expuestos a diversos factores de riesgo: nota técnica Seleccó de portafolos de ía varaza cuado está expuestos a dversos factores de resgo: ota técca 7 Seleccó de portafolos de ía varaza cuado está expuestos a dversos factores de resgo: ota técca Fracsco López

Más detalles

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es

(Feb03-1ª Sem) Problema (4 puntos). Se dispone de un semiconductor tipo P paralepipédico, cuya distribución de impurezas es (Feb03-ª Sem) Problema (4 putos). Se dspoe de u semcoductor tpo P paraleppédco, cuya dstrbucó de mpurezas es ( x a) l = A 0 dode A y 0 so mpurezas/volume, l es u parámetro de logtud y a la poscó de ua

Más detalles

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO

UNA PROPUESTA DE GRÁFICO DE CONTROL DIFUSO PARA EL CONTROL DEL PROCESO UNA POPUESTA DE GÁFICO DE CONTOL DIFUSO PAA EL CONTOL DEL POCESO VIVIAN LOENA CHUD PANTOJA (UDV) vvalorea16@gmal.com NATHALY MATINEZ ESCOBA (UDV) atta10@gmal.com Jua Carlos Osoro Gómez (UDV) juacarosoro@yahoo.es

Más detalles

V Muestreo Estratificado

V Muestreo Estratificado V Muestreo Estratfcado Dr. Jesús Mellado 10 Certas poblacoes que se desea muestrear, preseta grupos de elemetos co característcas dferetes, s los grupos so pleamete detfcables e su peculardad y e su tamaño,

Más detalles

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD

MÉTODOS ESTADÍSTICOS PARA EL CONTROL DE CALIDAD UNIVERSIDAD DE LOS ANDES. FACULTAD DE CIENCIAS ECONÓMICAS Y SOCIALES DEPARTAMENTO DE CIENCIAS ADMINISTRATIVAS MÉRIDA ESTADO MÉRIDA Admstracó de la Produccó y las Operacoes II Prof. Mguel Olveros MÉTODOS

Más detalles

PROBANDO GENERADORES DE NUMEROS ALEATORIOS

PROBANDO GENERADORES DE NUMEROS ALEATORIOS PROBADO GRADORS D UMROS ALATORIOS s mportate asegurarse de que el geerador usado produzca ua secueca sufcetemete aleatora. Para esto se somete el geerador a pruebas estadístcas. S o pasa ua prueba, podemos

Más detalles

Una Propuesta de Presentación del Tema de Correlación Simple

Una Propuesta de Presentación del Tema de Correlación Simple Ua Propuesta de Presetacó del Tema de Correlacó Smple Itroduccó Ua Coceptualzacó de la Correlacó Estadístca La Correlacó o Implca Relacó Causa-Efecto Vsualzacó Gráfca de la Correlacó U Idcador de Asocacó:

Más detalles

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE :

TEMA 3.- OPERACIONES DE AMORTIZACION : PRESTAMOS A INTERES VARIABLE 3.1.-CLASIFICACIÓN DE LOS PRÉSTAMOS A INTERÉS VARIABLE : Dpto. Ecoomía Facera y otabldad Pla de Estudos 994 urso 008-09. TEMA 3 Prof. María Jesús Herádez García. TEMA 3.- OPERAIONES DE AMORTIZAION : PRESTAMOS A INTERES VARIABLE 3..-LASIFIAIÓN DE LOS PRÉSTAMOS

Más detalles

Método de semivarianza y varianza para la selección de un portafolio óptimo. Semivariance and variance method for selecting an optimal portfolio

Método de semivarianza y varianza para la selección de un portafolio óptimo. Semivariance and variance method for selecting an optimal portfolio Método de sevaraza y varaza para la seleccó de u portaolo ópto Sevarace ad varace ethod or selectg a optal portolo Lzbeth María de Jesús Urbe, Mguel Ágel Martíez Daá, Gustavo aírez Valverde ESUMEN E los

Más detalles

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula:

CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS. de una variable X, la denotaremos por x y la calcularemos mediante la fórmula: CÁLCULO Y COMENTARIOS SOBRE ALGUNAS MEDIDAS DESCRIPTIVAS I Meddas de localzacó Auque ua dstrbucó de frecuecas es certamete muy útl para teer ua dea global del comportameto de los datos, es geeralmete ecesaro

Más detalles

El Amplificador Operacional de Tensiones

El Amplificador Operacional de Tensiones El Aplfcador Operacoal de Tesoes El Aplfcador Operacoal de Tesoes. Itroduccó 2. El Aplfcador Operacoal Ideal de Tesoes 3. Nodealdades e el Opap 4. Crcutos co ealetacó Postva. Itroduccó.. El problea de

Más detalles

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA

INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA INTRODUCCIÓN AL CONCEPTO DE VALOR ESPERADO O ESPERANZA MATEMÁTICA DE UNA VARIABLE ALEATORIA Lus Fraco Martí {lfraco@us.es} Elea Olmedo Ferádez {olmedo@us.es} Jua Mauel Valderas Jaramllo {valderas@us.es}

Más detalles

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS

LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS LÍNEA DE REGRESIÓN MÍNIMO CUADRÁTICA BASADA EN ERRORES RELATIVOS Mercedes Alvargozález Rodríguez - malvarg@ecoo.uov.es Uversdad de Ovedo Reservados todos los derechos. Este documeto ha sdo extraído del

Más detalles

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria

Matemáticas 1 1 EJERCICIOS RESUELTOS: Números Complejos. Elena Álvarez Sáiz. Dpto. Matemática Aplicada y C. Computación. Universidad de Cantabria Matemátcas EJERCICIOS RESUELTOS: Números Complejos Elea Álvare Sá Dpto. Matemátca Aplcada y C. Computacó Uversdad de Catabra Igeería de Telecomucacó Fudametos Matemátcos I Ejerccos: Números Complejos Iterpretacó

Más detalles

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple

Curso de Estadística Unidad de Medidas Descriptivas. Lección 2: Medidas de Tendencia Central para Datos Agrupados por Valor Simple 1 Curso de Estadístca Udad de Meddas Descrptvas Leccó 2: Meddas de Tedeca Cetral para Datos Agrupados por Valor Smple Creado por: Dra. Noemí L. Ruz Lmardo, EdD 2010 Derechos de Autor 2 Objetvos 1. Calcular

Más detalles

Guía práctica para la realización de medidas y el cálculo de errores

Guía práctica para la realización de medidas y el cálculo de errores Laboratoro de Físca Prmer curso de Químca Guía práctca para la realzacó de meddas y el cálculo de errores Medda y Error Aquellas propedades de la matera que so susceptbles de ser meddas se llama magtudes;

Más detalles

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1

RENTABILIDAD Y RIESGO DE CARTERAS Y ACTIVOS TEMA 3- I FUNTAMENTOS DE DIRECCIÓN FINANCIERA. Fundamentos de Dirección Financiera Tema 3- Parte I 1 RENTILIDD Y RIESGO DE CRTERS Y CTIVOS TEM 3- I FUNTMENTOS DE DIRECCIÓN FINNCIER Fudametos de Dreccó Facera Tema 3- arte I RIESGO y RENTILIDD ( decsoes de versó productvas) EXISTENCI DE RIESGO ( los FNC

Más detalles

6. ESTIMACIÓN PUNTUAL

6. ESTIMACIÓN PUNTUAL Defcoes 6 ESTIMACIÓN PUNTUAL E la práctca, los parámetros de ua dstrbucó de probabldad se estma a partr de la muestra La fereca estadístca cosste e estmar los parámetros de ua dstrbucó; y e evaluar ua

Más detalles

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos

Algunas Recomendaciones para la Enseñanza de la Estadística Descriptiva o Análisis de Datos Alguas Recomedacoes para la Eseñaza de la Estadístca Descrptva o Aálss de Datos Itroduccó Elemetos Báscos para Aplcar Estadístca Descrptva La Estadístca Descrptva o Formula Iferecas La Estadístca Descrptva

Más detalles

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional.

7.1. Muestreo aleatorio simple. 7.2 Muestreo aleatorio estratificado. 7.3 Muestreo aleatorio de conglomerados. 7.4 Estimación del tamaño poblacional. 7 ELEMETOS DE MUESTREO COTEIDOS: OBJETIVOS: 7.. Muestreo aleatoro smple. 7. Muestreo aleatoro estratfcado. 7.3 Muestreo aleatoro de coglomerados. 7.4 Estmacó del tamaño poblacoal. Determar el dseño de

Más detalles

TEMA 4. EQUIVALENCIA FINANCIERA

TEMA 4. EQUIVALENCIA FINANCIERA ADMIISTRAIÓ Y FIAZAS. GRADO SUPERIOR TEMA 4. EQUIVALEIA FIAIERA TEMA 4: EQUIVALEIA FIAIERA. ITRODUIÓ Estas operacoes se da cuado ua persoa quere susttur uo o varos pagos que tee que realzar (PRIMERA SITUAIÓ)

Más detalles

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral

ANÁLISIS DE DATOS CUALITATIVOS. José Vicéns Otero Eva Medina Moral ÁLISIS D DTOS CULITTIVOS José Vcés Otero va Meda Moral ero 005 . COSTRUCCIÓ D U TL D COTIGCI Para aalzar la relacó de depedeca o depedeca etre dos varables cualtatvas omales o actores, es ecesaro estudar

Más detalles

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 2 ANÁLISIS GRÁFICO.

UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A LABORATORIO DE FÍSICA I/11. PRÁCTICA No. 2 ANÁLISIS GRÁFICO. Pága de 5 NÚCLEO UNIVERSITARIO RAFAEL RANGEL UNIVERSIDAD DE LOS ANDES T R U J I L L O - V E N E Z U E L A ÁREA DE FÍSICA LABORATORIO DE FÍSICA LABORATORIO DE FÍSICA I/ PRÁCTICA No ANÁLISIS GRÁFICO OBJETIVO

Más detalles

División de Evaluación Social de Inversiones

División de Evaluación Social de Inversiones MEODOLOGÍA SIMPLIFICADA DE ESIMACIÓN DE BENEFICIOS SOCIALES POR DISMINUCIÓN DE LA FLOA DE BUSES EN PROYECOS DE CORREDORES CON VÍAS EXCLUSIVAS EN RANSPORE URBANO Dvsó de Evaluacó Socal de Iversoes 2013

Más detalles

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES

ANÁLISIS DE LA VARIANZA ANOVA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANÁLISIS DE LA VARIANZA COMPARACIONES MULTIPLES ENTRE MEDIAS MUESTRALES ANOVA Marta Alper Profesora Adjuta de Estadístca alper@fcym.ulp.edu.ar http://www.fcym.ulp.edu.ar/catedras/estadstca INTRODUCCION

Más detalles

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS

TEMA 12 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 12.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS Tema 1 Ifereca estadístca. Estmacó de la meda Matemátcas CCSSII º Bachllerato 1 TEMA 1 INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA 1.1 DISTRIBUCIÓN NORMAL. REPASO DE TÉCNICAS BÁSICAS UTILIZACIÓN DE

Más detalles

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros

2. Calcular el interés que obtendremos al invertir 6.000 euros al 4% simple durante 2 años. Solución: 480 euros . alcular el motate que obtedremos al captalzar 5. euros al 5% durate días (año cvl y comercal). Solucó: 5., euros (cvl); 5.,5 euros (comercal). 5. o ' 5,5 5,8 5,5 ' 5. 5.,5) 5,5) 5., 5.,5. alcular el

Más detalles

Juegos finitos n-personales como juegos de negociación

Juegos finitos n-personales como juegos de negociación Juegos ftos -persoales como uegos de egocacó A.M.Mármol L.Moro V. Rubales Departameto de Ecoomía Aplcada III. Uversdad de Sevlla. Avd. Ramó Caal.. 0-Sevlla. vrubales@us.es Resume Los uegos -persoales ftos

Más detalles

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx

TEMA 3. Medidas de variabilidad y asimetría. - X mín. X máx TEMA 3 Meddas de varabldad y asmetría 1. MEDIDAS DE VARIABILIDAD La varabldad o dspersó hace refereca al grado de varacó que hay e u cojuto de putuacoes. Por ejemplo: etre dos dstrbucoes que preseta la

Más detalles

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos

Los principales métodos para la selección y valoración de inversiones se agrupan en dos modalidades: métodos estáticos y métodos dinámicos Dreccó Facera Pág Sergo Alejadro Herado Westerhede, Igeero e Orgazacó Idustral 5. INTRODUCCIÓN Los prcpales métodos para la seleccó y valoracó de versoes se agrupa e dos modaldades: métodos estátcos y

Más detalles

( ) Tabla 2. Formulas para gráficas de control. Fórmula. Rsk = xk + 1 -Xk -------- X Rs -------------- Z USL. Gráfica (Símbolo) R, S ó Rs.

( ) Tabla 2. Formulas para gráficas de control. Fórmula. Rsk = xk + 1 -Xk -------- X Rs -------------- Z USL. Gráfica (Símbolo) R, S ó Rs. Boletí Técco Septebre No. Tabla esultados cálculos Núero edcoes Valor áxo Valor ío ago Proedo Desvacó Ídce capacdad l proceso Ídce capacdad l proceso Ídce capacdad aqua Ídce capacdad aqua Fraccó fectva

Más detalles

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS

IV. GRÁFICOS DE CONTROL POR ATRIBUTOS IV Gráfcos de Cotrol por Atrbutos IV GRÁFICOS DE CONTROL POR ATRIBUTOS INTRODUCCIÓN Los dagramas de cotrol por atrbutos costtuye la herrameta esecal utlzada para cotrolar característcas de caldad cualtatvas,

Más detalles

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se

CAPÍTULO III. METODOLOGÍA. De acuerdo con la clasificación de Amartya Sen (2001), las medidas de desigualdad se CAPÍTULO III. METODOLOGÍA III. Tpos de Medcó De acuerdo co la clasfcacó de Amartya Se (200), las meddas de desgualdad se puede catalogar e u setdo objetvo o ormatvo. E el setdo objetvo se utlza algua medda

Más detalles

MEDIDAS DE CENTRALIZACIÓN

MEDIDAS DE CENTRALIZACIÓN Educagua.com MEDIDAS DE CETRALIZACIÓ Las meddas de cetralzacó so estadístcos que releja algú valor global de la sere estadístca. Las prcpales meddas de cetralzacó so: Meda artmétca smple. Meda artmétca

Más detalles

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II)

TEMA 11 OPERACIONES DE AMORTIZACION O PRESTAMO (II) Dapotva Matemátca Facera TEMA OPERACIONES DE AMORTIZACION O PRESTAMO (II). Prétamo dcado 2. Prétamo co teree atcpado. Prétamo Alemá 3. Valor facero del prétamo. Uufructo y uda propedad Dapotva 2 Matemátca

Más detalles

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos:

FEE02-15 FÓRMULAS Y EJEMPLOS. Incluye a los productos: FEE02-5 FÓRMULAS Y EJEMPLOS cluye a los productos: - Epresariales - Credifácil - El tiepo vale oro - Micro agropecuario - Agro crédito - Credigaadero - Credicostruye - Mi terreito - Multioficios - Crédito

Más detalles

GENERACIÓN TERMOELÉCTRICA. Cálculo de la toma de las extracciones de un ciclo de vapor

GENERACIÓN TERMOELÉCTRICA. Cálculo de la toma de las extracciones de un ciclo de vapor GNRCIÓN TRMOLÉCTRIC. Cálculo de la toa de las extraccoes de u cclo de apor ISML PRITO ÍNDIC D MTRIS CÁLCULO D LOS PUNTOS D TOM D LS XTRCCIONS PR QU L MJOR DL RNDIMINTO DL CICLO RGNRTIVO S MÁXIM. MJOR N

Más detalles

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción

PARTE 2 - ESTADISTICA. Parte 2 Estadística Descriptiva. 7. 1 Introducción Parte Estadístca Descrptva Prof. María B. Ptarell PARTE - ESTADISTICA 7- Estadístca Descrptva 7. Itroduccó El campo de la estadístca tee que ver co la recoplacó, orgazacó, aálss y uso de datos para tomar

Más detalles

1,2,,n, se puede asociar otra función sobre el conjunto de medidas probabilísticas. i f i P E f p i f i. Además, ˆP, el dominio de la esperanza

1,2,,n, se puede asociar otra función sobre el conjunto de medidas probabilísticas. i f i P E f p i f i. Además, ˆP, el dominio de la esperanza El Método de Relajacó Aplcado a Optzacó de Ssteas Dscretos F. Szget, J. Cardllo, J. C. Heet y J. L. Calet Uersdad de Los Ades Departaeto de Ssteas de Cotrol, Mérda Veezela Laboratore d Aalyse et d Archtectre

Más detalles

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones

CÁLCULO FINANCIERO. Teoría, Ejercicios y Aplicaciones 2 CÁLCULO FINANCIERO Teoría, Ejerccos y Aplcacoes 3 Uversdad de Bueos Ares Facultad de Cecas Ecoómcas Autores: Jua Ramó Garca Hervás Actuaro (UBA) Master e Ecoomía y Admstracó (ESEADE). Docete de Posgrado

Más detalles

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1

MUESTREO EN POBLACIONES FINITAS. Antonio Morillas 1 MUESTREO E POBLACIOES FIITAS Atoo Morllas Coceptos estadístcos báscos Etapas e el muestreo 3 Tpos de error 4 Métodos de muestreo 5 Tamaño de la muestra e fereca 6 Muestreo e poblacoes ftas 6. Muestreo

Más detalles

Guía para la Presentación de Resultados en Laboratorios Docentes

Guía para la Presentación de Resultados en Laboratorios Docentes Guía para la Presetacó de Resultados e Laboratoros Docetes Prof. Norge Cruz Herádez Departameto de Físca Aplcada I Escuela Poltécca Superor Uversdad de Sevlla Curso 0-03 6 de octubre de 0 I Itroduccó Las

Más detalles

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades

MATEMÁTICA MÓDULO 4 Eje temático: Estadística y Probabilidades MATEMÁTICA MÓDULO 4 Eje temátco: Estadístca y Probabldades Empezaremos este breve estudo de estadístca correspodete al cuarto año de Eseñaza Meda revsado los dferetes tpos de gráfcos.. GRÁFICOS ESTADÍSTICOS

Más detalles

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu

Tema 5: Equilibrio General Parte III OWC Economía para Matemáticos. Fernando Perera Tallo ttp://bit.ly/8l8ddu y Tea 5: Equlbro Geeral Parte III OWC Ecooía para Mateátcos Ferado Perera Tallo ttp://bt.ly/8l8ddu Esteca de Equlbro Ferado Perera-Tallo A lo largo de esta presetacó os vaos a cocetrar e espacos Eucldos,

Más detalles

LA DISTRIBUCIÓN POISSON-BETA: APLICACIONES Y PROPIEDADES EN LA TEORÍA DEL RIESGO COLECTIVO

LA DISTRIBUCIÓN POISSON-BETA: APLICACIONES Y PROPIEDADES EN LA TEORÍA DEL RIESGO COLECTIVO LA DISTRIBUCIÓN POISSON-BETA: APLICACIONES Y PROPIEDADES EN LA TEORÍA DEL RIESGO COLECTIVO Emlo Gómez Déz 1, José María Saraba 2 y Fausto Preto 2 Resume E el presete trabao se estuda la dstrbucó Posso-Beta,

Más detalles

Ampliación de Redes de Telefonía Básica

Ampliación de Redes de Telefonía Básica Amplacó de Redes de Telefoía Básca Carlos D. Almeda Uversdad Nacoal de Asucó. Sa Lorezo, Paraguay cdad@eee.org Nlto R. Amarlla Uversdad Nacoal de Asucó. Sa Lorezo, Paraguay dmatest@copaco.com.py Bejamí

Más detalles

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA

CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA CURSO BÁSICO DE ESTADÍSTICA DESCRIPTIVA - 1 - ÍNDICE CAPÍTULO 1: INTRODUCCIÓN A LA ESTADÍSTICA Tema 1: Itroduccó a la estadístca - 1.1. Itroducc ó a la estadístca descrptva - 1.2. Nocoes báscas o 1.2.1.

Más detalles

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS

MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS MATEMÁTICAS FINANCIERAS Y EVALUACIÓN DE PROYECTOS JAIRO TARAZONA MANTILLA CONSULTOR ASESOR DOCENTE FINANCIERO Y PROYECTOS Bucaramaga, 2010 INTRODUCCIÓN El presete documeto es ua complacó de memoras de

Más detalles

Solución Práctica Evaluable 2. Oligopolio y Competencia Monopolística. 16/11/2012

Solución Práctica Evaluable 2. Oligopolio y Competencia Monopolística. 16/11/2012 Solucó Práctca Evaluable. Olgopolo y Copeteca Moopolístca. 6//0 Cosdere u olgopolo de Courot co epresas que produce u be hoogéeo. La fucó versa de deada es p ) = 0 y todas las epresas tee el so coste argal

Más detalles

UNIVERSIDAD DE BUENOS AIRES

UNIVERSIDAD DE BUENOS AIRES NIVERSIA E BENOS AIRES FACLTA E INGENIERÍA EPARTAMENTO E IRÁLICA Cátedra de Costruccoes dráulcas Tuberías e Sere y e Paralelo Ig. Lus E. Pérez Farrás - Novembre 003 - epartameto de dráulca Cátedra de Costruccoes

Más detalles

Conceptos y ejemplos básicos de Programación Dinámica

Conceptos y ejemplos básicos de Programación Dinámica Coceptos y eemplos báscos de Programacó Dámca Wlso Julá Rodríguez Roas ularodrguez@hotmal.com Trabao de Grado para Optar por el Título de Matemátco Drector: Pervys Regfo Regfo Igeero Uversdad Nacoal de

Más detalles

Simulación de sistemas discretos

Simulación de sistemas discretos Smulacó de sstemas dscretos Novembre de 006 Álvaro García Sáchez Mguel Ortega Mer Smulacó de sstemas dscretos. Presetacó... 4.. Itroduccó... 4.. Sstemas, modelos y smulacó... 4.3. Necesdad de la smulacó...

Más detalles

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES

ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Uversdad Rey Jua Carlos ESTRUCTURA Y TECNOLOGÍA A DE COMPUTADORES Lus Rcó Córcoles Lceso J. Rodríguez-Aragó Programa. Itroduccó. 2. Defcó de redmeto. 3. Meddas para evaluar el redmeto. 4. Programas para

Más detalles

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS

UNIDAD DIDÁCTICA TERCERA: APLICACIÓN DEL CALCULO MERCANTIL Y FINANCIERO A LAS OPERACIONES BANCARIAS Coceptos (cotedos soporte) Udad de trabajo sexta: Geeraldades. Retas auales costates. Retas costates fraccoadas. Retas varables. Udad de trabajo séptma Geeraldades. mortzacó de u préstamo por el sstema

Más detalles

Introducción a la simulación de sistemas discretos

Introducción a la simulación de sistemas discretos Itroduccó a la smulacó de sstemas dscretos Novembre de 6 Álvaro García Sáchez Mguel Ortega Mer Itroduccó a la smulacó de sstemas dscretos. Presetacó.. Itroduccó El presete documeto trata sobre las téccas

Más detalles

Medidas de Tendencia Central

Medidas de Tendencia Central Meddas de Tedeca Cetral Ua edda de tedeca cetral es u valor que se calcula a partr de u cojuto de datos y que se utlza para descrbr los datos e algua fora. Geeralete quereos que el valor sea represetatvo

Más detalles

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS

CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS CÁLCULO DEL ANCHO DE BANDA EFECTIVO PARA UN FLUJO MARKOVIANO CON TASAS DE TRANSFERENCIA CONTINUAS Beatrz Marró Uversdad Nacoal del Sur, beatrz.marro@us.edu.ar Resume: El objetvo de este trabajo es geeralzar

Más detalles

V II Muestreo por Conglomerados

V II Muestreo por Conglomerados V II Muestreo por Coglomerados Dr. Jesús Mellado 31 Por alguas razoes aturales, los elemetos muestrales se ecuetra formado grupos, como por ejemlo, las persoas que vve e coloas de ua cudad, lo elemetos

Más detalles

MATEMÁTICAS 4º ESO. TEMA 2: COMBINATORIA

MATEMÁTICAS 4º ESO. TEMA 2: COMBINATORIA Fracscaos T.O.R. Cód. 87 MATEMÁTICAS º ESO. TEMA : COMBINATORIA.. La regla de la sua el producto.. Varacoes s repetcó.. Varacoes co repetcó.. Perutacoes s repetcó.. Cobacoes s repetcó.. Núeros cobatoros.7.

Más detalles

MATEMÁTICAS FINANCIERAS

MATEMÁTICAS FINANCIERAS MAEMÁICAS FINANCIERAS Aloso ÍNDICE. INERÉS SIMPLE 4. CONCEPOS PREVIOS... 4.2 DEFINICIÓN DE INERÉS SIMPLE... 4.3 FÓRMULAS DERIVADAS... 6.4 INERPREACIÓN GRÁFICA... 8 2. INERÉS COMPUESO 9 2. DEFINICIÓN DE

Más detalles

ANÁLISIS DE LA VARIANZA Es coocdo que ua varable aleatora Y se puede cosderar como suma de ua costate μ de ua varable aleatora ε, que represeta el error aleatoro: μ ε Este modelo se adapta be a datos de

Más detalles

Análisis estadístico de datos muestrales

Análisis estadístico de datos muestrales Aálss estadístco de datos muestrales M. e A. Víctor D. Plla Morá Facultad de Igeería, UNAM Resume Represetacó de los datos de ua muestra: tablas de frecuecas, frecuecas relatvas y frecuecas relatvas acumuladas.

Más detalles

Introducción. Ámbito de la Estadística. Antecedentes. III Objetivos. INE. Instituto Nacional de Estadistica

Introducción. Ámbito de la Estadística. Antecedentes. III Objetivos. INE. Instituto Nacional de Estadistica Itroduccó La Estadístca de Idcadores Hosptalaros proporcoa u cojuto de dcadores báscos que stetza los recursos de persoal y de dotacó, ya sea stalada o e fucoameto, de que dspoe los establecmetos sataros

Más detalles

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO

METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO METODOLOGÍA DE CÁLCULO DE LAS TASAS DE INTERÉS PROMEDIO Nota: A partr del de julo de 200, las empresas reporta a la SBS formacó más segmetada de las tasas de terés promedo de los crédtos destados a facar

Más detalles

1.1 INTRODUCCION & NOTACION

1.1 INTRODUCCION & NOTACION 1. SIMULACIÓN DE SISEMAS DE COLAS Jorge Eduardo Ortz rvño Profesor Asocado Departameto de Igeería de Sstemas e Idustral Uversdad Nacoal de Colomba jeortzt@ual.edu.co 1.1 INRODUCCION & NOACION Clete Servdor

Más detalles

Intensificación en Estadística

Intensificación en Estadística GRADO EN VETERINARIA DEPARTAMENTO DE ESTADÍSTICA E IO 0-0 IV Curso Cero Itesfcacó e Estadístca Itroduccó a la fucó Sumatoro Itroduccó Cocepto de fucó sumatoro Aplcacoes Itroduccó Cocepto de fucó sumatoro

Más detalles

Flujo de Potencia DC con Modelación de Incertidumbres Aplicado al Caso Chileno

Flujo de Potencia DC con Modelación de Incertidumbres Aplicado al Caso Chileno Fluo de Poteca DC co odelacó de Icertdumres Aplcado al Caso Chleo Resume Rodrgo Palma B. rodpalma@cec.uchle.cl Chrsta Jeldres H. celdres@cec.uchle.cl Area de Eergía Departameto de Igeería Eléctrca Uversdad

Más detalles

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL

CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO EXCEL CURSO DE ESTADÍSTICA DESCRIPTIVA Y ANÁLISIS DE DATOS CON LA HOJA DE CÁLCULO ECEL D. Fracsco Parra Rodríguez. Jefe de Servco de Estadístcas Ecoómcas y Socodemográfcas. Isttuto Cátabro de Estadístca. Dª.

Más detalles

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS

INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Uverstat de les Illes Balears Col.leccó Materals Ddàctcs INTRODUCCIÓN A LA ESTADÍSTICA DESCRIPTIVA PARA ECONOMISTAS Joaquí Alegre Martí Magdalea Cladera Muar Palma, 00 ÍNDICE INTRODUCCIÓN: Qué es...? Qué

Más detalles

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS

I. ANÁLISIS DESCRIPTIVO DE UN CONJUNTO DE DATOS Estadístca Tema. Seres Estadístcas. Dstrbucoes de frecuecas. Pág. I. ANÁLISIS DESCIPTIVO DE UN CONJUNTO DE DATOS Seres Estadístcas. Dstrbucoes de frecuecas.. Defcó de Estadístca... Coceptos geerales...2

Más detalles

0(=&/$6*$6(26$6. i = (3)

0(=&/$6*$6(26$6. i = (3) 0(&/$6$6(26$6,1752'8&&,21 E la erodáca, para poder realzar aál de prera eguda le, e ecearo coocer la propedade terodáca de la utaca de trabajo, coo o, por ejeplo, la eergía tera, la etalpía la etropía.

Más detalles

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales

ESTADÍSTICA DESCRIPTIVA Métodos Estadísticos Aplicados a las Auditorías Sociolaborales ESTADÍSTICA DESCRIPTIVA Métodos Estadístcos Aplcados a las Audtorías Socolaborales Fracsco Álvarez Gozález fracsco.alvarez@uca.es Bajo el térmo Estadístca Descrptva se egloba las téccas que os permtrá

Más detalles

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso

Control estadístico de procesos. Control de procesos. Definición de proceso bajo control estadístico. Causas de la variabilidad en un proceso Cotrol de procesos Hstórcamete ha evolucoado e dos vertetes: Cotrol automátco de procesos (APC) empresas de produccó cotua (empresas químcas) Cotrol estadístco de procesos (SPC) e sstemas de produccó e

Más detalles

PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA EL SERVICIO DE TELEFONÍA FIJA Y MÓVIL (DE LA UNIVERSIDAD INTERNACIONAL DE ANDALUCÍA

PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA EL SERVICIO DE TELEFONÍA FIJA Y MÓVIL (DE LA UNIVERSIDAD INTERNACIONAL DE ANDALUCÍA PLIEGO DE PRESCRIPCIONES TÉCNICAS PARA EL SERVICIO DE TELEFONÍA FIJA Y MÓVIL (DE LA UNIVERSIDAD INTERNACIONAL DE ANDALUCÍA . INTRODUCCIÓN 2. SITUACIÓN ACTUAL 2.. Telefoía fja 2.2. Telefoía móvl 3. OBJETO

Más detalles

Gerardo Pastrana León

Gerardo Pastrana León CONSTRUCCIÓN D FRONTRAS FICINTS D INVRSIÓN Gerardo Pastraa Leó (ste esayo se elaboró utlzado coo bblografía prcpal el lbro Seleccó de Iversoes, de Dogo Jorge Messut, Vctor Adrá Alvarez y Hugo Roao Graff,

Más detalles

GENERACION DE NUMEROS ALEATORIOS

GENERACION DE NUMEROS ALEATORIOS GENERACION DE NUMEROS ALEATORIOS U paso clave e smulacó es teer rutas que geere varables aleatoras co dstrbucoes especfcas: epoecal, ormal, etc. Esto es hecho e dos fases. La prmera cosste e geerar ua

Más detalles

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal

Selección de una Cartera de Inversión en la Bolsa Mexicana de Valores por Medio de un Método de Programación Lineal Programacó Matemátca y Software (2009) Vol.. No. ISSN: 2007-3283 Recbdo: 0 de Juo de 2008/Aceptado: 3 de Septembre de 2008 Publcado e líea: 26 de juo de 2009 Seleccó de ua Cartera de Iversó e la Bolsa

Más detalles

SELECCIÓN DE UNA CARTERA DE VALORES MEDIANTE LA APLICACIÓN DE MÉTODOS MULTIOBJETIVO INTERACTIVOS A DATOS REALES DE LA BOLSA ESPAÑOLA

SELECCIÓN DE UNA CARTERA DE VALORES MEDIANTE LA APLICACIÓN DE MÉTODOS MULTIOBJETIVO INTERACTIVOS A DATOS REALES DE LA BOLSA ESPAÑOLA Seleccó de ua cartera de valores medate la aplcacó de métodos multobjetvo teractvos... SELECCIÓN DE UNA CARTERA DE VALORES MEDIANTE LA APLICACIÓN DE MÉTODOS MULTIOBJETIVO INTERACTIVOS A DATOS REALES DE

Más detalles

Números Complejos PREGUNTAS MÁS FRECUENTES

Números Complejos PREGUNTAS MÁS FRECUENTES Repaso de º de Bachllerato Núeros Coplejos PREGUNTAS MÁS FRECUENTES. Qué es la udad agara? Es u eleeto del que cooceos úcaete su cuadrado:.obvaete, o se trata de u úero real.. Qué es u úero coplejo? Es

Más detalles

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA)

Teoría de carteras de inversión para la diversificación del riesgo: enfoque clásico y uso de redes neuronales artificiales (RNA) Teoría de carteras de versó para la dversfcacó del resgo: efoque clásco y uso de redes euroales artfcales (RNA) Ivestmet portfolo theory ad rsk dversfcato: classc ad eural etworks methodology D. Cot* y

Más detalles

1. Modelo de Transporte

1. Modelo de Transporte . Modelo de Trasporte Se trata de u odelo partcular de Redes-Fluo s establecetos teredos o de trasbordo. Para forular u odelo geérco se defe las varables y los paráetros sguetes: s = total de udades dspobles

Más detalles

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA

SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA SELECCIONANDO LA CARTERA DE UN INVERSOR MEDIANTE PROGRAMACIÓN POR METAS LEXICOGRÁFICAS ENTERA Nura Padlla Garrdo Departameto de Ecoomía Geeral y Estadístca Uversdad de Huelva padlla@uhu.es Flor María Guerrero

Más detalles

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática

1 Ce.R.P. del Norte Rivera Julio de 2010 Departamento de Matemática Notas para el curso de Fundamentos de la Matemática Ce.R.P. del Norte Rvera Julo de Departameto de Matemátca Notas para el curso de Fudametos de la Matemátca CONGRUENCIAS NUMÉRICAS Y ECUACIONES DE CONGRUENCIA. RECORDANDO CONCEPTOS: La cogrueca es ua relacó

Más detalles

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO

EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO EVALUACION DEL AHUELLAMIENTO CON EQUIPO DE ALTO RENDIMIENTO CRISTIAN CABRERA TORRICO, Igeero Cvl APSA Ltda. (crstacabrera@apsa.cl) ROBINSON LUCERO, Igeero Cvl Laboratoro Nacoal de Valdad, robso.lucero@moptt.gov.cl

Más detalles

Introducción a la Programación Lineal

Introducción a la Programación Lineal Itroduccó a la Programacó Leal Clauda Llaa Daza Garzó cldaza@uversa.et.co Trabajo de Grado para Optar por el Título de Matemátco Drector: Pervys Rego Rego Igeero Uversdad Nacoal de Colomba Fudacó Uverstara

Más detalles

REGRESIÓN LINEAL SIMPLE

REGRESIÓN LINEAL SIMPLE RGRIÓN LINAL IMPL l aálss de regresó es ua técca estadístca para vestgar la relacó fucoal etre dos o más varables, ajustado algú modelo matemátco. La regresó leal smple utlza ua sola varable de regresó

Más detalles

Inferencia estadística - Estimación puntual

Inferencia estadística - Estimación puntual Probabldades y stadístca Cotacó Facltad de Cecas actas y Natrales. Uversdad de Beos Ares Aa M. Baco y lea J. Martíez 4 Ifereca estadístca - stacó tal La estadístca rovee téccas qe erte obteer coclsoes

Más detalles

III. GRÁFICOS DE CONTROL POR VARIABLES (1)

III. GRÁFICOS DE CONTROL POR VARIABLES (1) III. Gráfcos de Cotrol por Varables () III. GRÁFICOS DE CONTROL POR VARIABLES () INTRODUCCIÓN E cualquer proceso productvo resulta coveete coocer e todo mometo hasta qué puto uestros productos cumple co

Más detalles

2. Hay alguna diferencia entre decir que la masa de una persona es 75 kg o g?

2. Hay alguna diferencia entre decir que la masa de una persona es 75 kg o g? Físca y Quíca ºBachllerato UNIDAD : La actvdad cetífca CUESTIONES INICIALES-PÁG. 9. Sabrías expresar la velocdad de 0,0 /s e k/h? k 000 v = 0,0 = 0,0 s h s 3600s k 36,0 h. Hay algua dfereca etre decr que

Más detalles

6.2.- Funciones cóncavas y convexas

6.2.- Funciones cóncavas y convexas C APÍTULO 6 PROGRAMACIÓN NO LINEAL 6..- Itroduccó a la Programacó No Leal E este tema vamos a cosderar la optmzacó de prolemas que o cumple las codcoes de lealdad, e e la fucó ojetvo, e e las restrccoes.

Más detalles

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión

Modelos de Regresión análisis de regresión diagrama de dispersión coeficientes de regresión Modelos de Regresó E muchos problemas este ua relacó herete etre dos o más varables, resulta ecesaro eplorar la aturaleza de esta relacó. El aálss de regresó es ua técca estadístca para el modelado la

Más detalles

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS

HERRAMIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS HERRAIENTAS BÁSICAS PARA LAS OPERACIONES FINANCIERAS Dr. J. Iñak De La Peña Curso de Postgrado Especalsta e Cotabldad y aplcacó de las Normas Iteracoales de Cotabldad Facera Departameto de Ecoomía Facera

Más detalles

MEDIDAS DE TENDENCIA CENTRAL

MEDIDAS DE TENDENCIA CENTRAL Probabldad y Estadístca Meddas de tedeca Cetral MEDIDAS DE TENDENCIA CENTRAL E la udad ateror se ha agrupado la ormacó y además se ha dado ua descrpcó de la terpretacó de la ormacó, s embargo e ocasoes

Más detalles

Elaborado por: Ing. Rubén Toyama U. 1

Elaborado por: Ing. Rubén Toyama U. 1 CONTENIDO IDENTIFICACIÓN... 2 PLANIFICACIÓN DE LOS ENCUENTROS... 2 PROGRAMA ANALITICO... 3 ORIENTACIONES METODOLÓGICAS... 8. - Itroduccó.... 8..- Objetvos Geerales.... 9 2.- Desarrollo... 9 Prmer ecuetro...

Más detalles

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003

EL COEFICIENTE DE CORRELACIÓN Y CORRELACIONES ESPÚREAS Erick Lahura Enero, 2003 8 EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura Eero, 3 DOCUMENTO DE TRABAJO 8 http://www.pucp.edu.pe/ecooma/pdf/ddd8.pdf EL COEFICIENTE DE CORRELACIÓN CORRELACIONES ESPÚREAS Erck Lahura

Más detalles

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL

CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL CURSO BÁSICO DE ANÁLISIS ESTADÍSTICO EN SPSS. FRANCISCO PARRA RODRÍGUEZ JUAN ANTONIO VICENTE VÍRSEDA MAURICIO BELTRÁN PASCUAL EL PROGRAMA ESTADÍSTICO SPSS . EL PROGRAMA ESTADÍSTICO SPSS. INTRODUCCIÓN El

Más detalles

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es:

- Función Polinómica f es toda función de dominio el conjunto de los números reales, tal que la imagen de cada número real x es: POLINOMIOS Defcó: Fucó Polóc - Fucó Polóc f es tod fucó de doo el cojuto de los úeros reles, tl que l ge de cd úero rel es: f = + + + + +, dode,,,,, so ueros reles y es turl Defcó: Poloo - Poloo de vrble

Más detalles